Bone Mineral Density of Femur and Lumbar and the Relation between Fat Mass and Lean Mass of Adolescents: Based on Korea National Health and Nutrition Examination Survey (KNHNES) from 2008 to 2011
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Subjects
2.3. Bone Measurements
2.4. Analysis Method
3. Results
Analysis of the Bone Density Differences of Fat Mass and Lean Mass Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Braithwaite, R.S.; Col, N.F.; Wong, J.B. Estimating Hip Fracture Morbidity, Mortality and Costs. J. Am. Geriatr. Soc. 2003, 51, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Campion, G.; Melton, L.J. Hip Fractures in the Elderly: A World-Wide Projection. Osteoporos. Int. 1992, 2, 285–289. [Google Scholar] [CrossRef] [PubMed]
- The Korean Society for Bone and Mineral Research. Physician’s Guide for Diagnosis & Treatment of Osteoporosis 2015; The Korean Society for Bone and Mineral Research: Seoul, Korea, 2015. [Google Scholar]
- Heaney, R.P.; Abrams, S.; Dawson-Hughes, B.; Looker, A.; Looker, A.; Marcus, R.; Matkovic, V.; Weaver, C. Peak Bone Mass. Osteoporos Int. 2000, 11, 985–1009. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Gordon, C. Pediatric Osteoporosis: Where Are We Now? J. Pediatr. 2012, 161, 983–990. [Google Scholar] [CrossRef]
- Rizzoli, R.; Bonjour, J.P. Determinants of Peak Bone Mass and Mechanisms of Bone Loss. Osteoporos. Int. 1999, 9, S17–S23. [Google Scholar] [CrossRef]
- Lim, J.S.; Hwang, J.S.; Lee, J.A.; Kim, D.H.; Park, K.D.; Cheon, G.J.; Shin, C.H.; Yang, S.W. Bone Mineral Density According to Age, Bone Age, and Pubertal Stages in Korean Children and Adolescents. J. Clin. Densitom. 2010, 13, 68–76. [Google Scholar] [CrossRef]
- Baxter-Jones, A.D.G.; Faulkner, R.A.; Forwood, M.R.; Mirwald, R.L.; Bailey, D.A. Bone Mineral Accrual from 8 to 30 Years of Age: An Estimation of Peak Bone Mass. J. Bone Miner. Res. 2011, 26, 1729–1739. [Google Scholar] [CrossRef]
- Dimitri, P. Fat and Bone in Children—Where Are We Now? Ann. Pediatr. Endocrinol. Metab. 2018, 23, 62–69. [Google Scholar] [CrossRef]
- Liu, C.T.; Karasik, D.; Zhou, Y.; Hsu, Y.H.; Genant, H.K.; Broe, K.E.; Lang, T.F.; Samelson, E.J.; Demissie, S.; Bouxsein, M.L.; et al. Heritability of Prevalent Vertebral Fracture and Volumetric Bone Mineral Density and Geometry at the Lumbar Spine in Three Generations of the Framingham Study. J. Bone Miner. Res. 2012, 27, 954–958. [Google Scholar] [CrossRef]
- Diogenes, M.E.L.; Bezerra, F.F.; Rezende, E.P.; Taveira, M.F.; Pinhal, I.; Donangelo, C.M. Effect of Calcium plus Vitamin D Supplementation during Pregnancy in Brazilian Adolescent Mothers: A Randomized, Placebo-Controlled Trial. Am. J. Clin. Nutr. 2013, 98, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Duckham, R.L.; Baxter-Jones, A.D.G.; Johnston, J.D.; Vatanparast, H.; Cooper, D.; Kontulainen, S. Does Physical Activity in Adolescence Have Site-Specific and Sex-Specific Benefits on Young Adult Bone Size, Content, and Estimated Strength? J. Bone Miner. Res. 2014, 29, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.Y.; Jung, H.W.; Hong, H.; Kim, J.H.; Shin, C.H.; Yang, S.W.; Lee, Y.A. The Role of Overweight and Obesity on Bone Health in Korean Adolescents with a Focus on Lean and Fat Mass. J. Korean Med. Sci. 2017, 32, 1633–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Shin, Y.; Yen, M.S.; Sun, S.S. Peak Bone Mass and Patterns of Change in Total Bone Mineral Density and Bone Mineral Contents from Childhood into Young Adulthood. J. Clin. Densitom. 2016, 19, 180–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wetzsteon, R.J.; Zemel, B.S.; Shults, J.; Howard, K.M.; Kibe, L.W.; Leonard, M.B. Mechanical Loads and Cortical Bone Geometry in Healthy Children and Young Adults. Bone 2011, 48, 1103–1108. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Tandon, V.; Mahajan, S.; Mahajan, V.; Mahajan, A. Obesity: Friend or Foe for Osteoporosis. J. Midlife. Health 2014, 5, 6. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, H.; Heo, B.K.; Joh, H.K.; Lee, C.M.; Hwang, S.S.; Park, D.; Park, J.H. The Association between Fat Mass, Lean Mass and Bone Mineral Density in Premenopausal Women in Korea: A Cross-Sectional Study. Korean J. Fam. Med. 2018, 39, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Ho-Pham, L.T.; Nguyen, U.D.T.; Nguyen, T.V. Association between Lean Mass, Fat Mass, and Bone Mineral Density: A Meta-Analysis. J. Clin. Endocrinol. Metab. 2014, 99, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Sioen, I.; Lust, E.; De Henauw, S.; Moreno, L.A.; Jiménez-Pavón, D. Associations Between Body Composition and Bone Health in Children and Adolescents: A Systematic Review. Calcif Tissue Int. 2016, 99, 557–577. [Google Scholar] [CrossRef]
- Dimitri, P.; Bishop, N.; Walsh, J.S.; Eastell, R. Obesity Is a Risk Factor for Fracture in Children but Is Protective against Fracture in Adults: A Paradox. Bone 2012, 50, 457–466. [Google Scholar] [CrossRef]
- El-Khayat, H.A.; Emam, E.K.; Hassan, N.E.; Kandeel, W.A.; Elagouza, I.A.; Zaki, M.E.; El-Banna, R.A.; Abd-El-Dayem, S.M.; Hashish, A.F.; Aboud, H.T.; et al. Impact of Body Fat Mass on Bone Mineral Density and Content and on Serum Level of C-Terminal Telopeptide of Type 1 Collagen among Overweight. J. Appl. Sci. Res. 2013, 9, 770–777. [Google Scholar]
- Zofkova, I.; Cirmanova, V.; Kasalicky, P.; Lanska, V.; Vyskocil, V.; Matucha, P.; Bayer, M. Relationship between Hormonal Variables and Bone Mineral Density, Muscle Force, and Fat Mass in Peripubertal Girls. Int. J. Endocrinol. Metab. 2011, 9, 391–396. [Google Scholar] [CrossRef]
- Júnior, I.F.F.; Cardoso, J.R.; Christofaro, D.G.D.; Codogno, J.S.; de Moraes, A.C.F.; Fernandes, R.A. The Relationship between Visceral Fat Thickness and Bone Mineral Density in Sedentary Obese Children and Adolescents. BMC Pediatr. 2013, 13, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitri, P.; Wales, J.K.; Bishop, N. Fat and Bone in Children: Differential Effects of Obesity on Bone Size and Mass According to Fracture History. J. Bone Miner. Res. 2010, 25, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Korea Centers for Disease Control and Prevention. The Forth Korea National Health and Nutrition Examination Survey (KNHANES IV) 2007–2009; Korea Centers for Disease Control and Prevention: Chungcheongbuk-do, Korea, 2009. [Google Scholar]
- Korea Centers for Disease Control and Prevention. The Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) 2010–2012; Korea Centers for Disease Control and Prevention: Chungcheongbuk-do, Korea, 2012. [Google Scholar]
- Elloumi, M.; Courteix, D.; Sellami, S.; Tabka, Z.; Lac, G. Bone Mineral Content and Density of Tunisian Male Rugby Players: Differences between Forwards and Backs. Int. J. Sports Med. 2006, 27, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Jürimäe, J.; Mäestu, J.; Jürimäe, T. Bone Turnover Markers during Pubertal Development: Relationships with Growth Factors and Adipocytokines. Med. Sport Sci. 2010, 55, 114–127. [Google Scholar]
- Kameda, T.; Mano, H.; Yuasa, T.; Mori, Y.; Miyazawa, K.; Shiokawa, M.; Nakamaru, Y.; Hiroi, E.; Hiura, K.; Kameda, A.; et al. Estrogen Inhibits Bone Resorption by Directly Inducing Apoptosis of the Bone-Resorbing Osteoclasts. J. Exp. Med. 1997, 186, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Song, Y.M.; Sung, J.; Lee, K.; Kim, Y.S.; Kim, T.; Cho, S.-I. The Association between Fat and Lean Mass and Bone Mineral Density: The Healthy Twin Study. Bone 2012, 50, 1006–1011. [Google Scholar] [CrossRef]
- Weiler, H.A.; Janzen, L.; Green, K.; Grabowski, J.; Seshia, M.M.; Yuen, K.C. Percent Body Fat and Bone Mass in Healthy Canadian Females 10 to 19 Years of Age. Bone 2000, 27, 203–207. [Google Scholar] [CrossRef]
- Lazcano-Ponce, E.; Tamayo, J.; Cruz-Valdez, A.; Díaz, R.; Hernández, B.; Del Cueto, R.; Hernández-Avila, M. Peak Bone Mineral Area Density and Determinants among Females Aged 9 to 24 Years in Mexico. Osteoporos. Int. 2003, 14, 539–547. [Google Scholar] [CrossRef]
- Chang, K.Y.; Yang, H.J.; Shin, Y.K.; Park, S.H.; Lee, K.H.; Lee, K.Y. The Influences of Obesity on Bone Mineral Density in Children. J. Korean Soc. Pediatr. Endocrinol. 2001, 6, 129–136. [Google Scholar]
- Ellis, K.J.; Shypailo, R.J.; Wong, W.W.; Abrams, S.A. Bone Mineral Mass in Overweight and Obese Childre: Diminished or Enhanced? Acta Diabetol. 2003, 40, s274–s277. [Google Scholar] [CrossRef] [PubMed]
- Leonard, M.B.; Shults, J.; Wilson, B.A.; Tershakovec, A.M.; Zemel, B.S. Obesity during Childhood and Adolescence Augments Bone Mass and Bone Dimensions. Am. J. Clin. Nutr. 2004, 80, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Goulding, A.; Jones, I.E.; Taylor, R.W.; Williams, S.M.; Manning, P.J. Bone Mineral Density and Body Composition in Boys with Distal Forearm Fractures: A Dual-Energy x-Ray Absorptiometry Study. J. Pediatr. 2001, 139, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Goulding, A.; Taylor, R.W.; Jones, I.E.; Manning, P.J.; Williams, S.M. Spinal Overload: A Concern for Obese Children and Adolescents? Osteoporos. Int. 2002, 13, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.J.; Jiang, H.; Papasian, C.J.; Maulik, D.; Drees, B.; Hamilton, J.; Deng, H.W. Correlation of Obesity and Osteoporosis: Effect of Fat Mass on the Determination of Osteoporosis. J. Bone Miner. Res. 2008, 23, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.J.; Liu, Y.J.; Liu, P.Y.; Hamilton, J.; Recker, R.R.; Deng, H.W. Relationship of Obesity with Osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.H.; Venners, S.A.; Terwedow, H.A.; Feng, Y.; Niu, T.; Li, Z.; Laird, N.; Brain, J.D.; Cummings, S.R.; Bouxsein, M.L.; et al. Relation of Body Composition, Fat Mass, and Serum Lipids to Osteoporotic Fractures and Bone Mineral Density in Chinese Men and Women. Am. J. Clin. Nutr. 2006, 83, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Greco, E.A.; Fornari, R.; Rossi, F.; Santiemma, V.; Prossomariti, G.; Annoscia, C.; Aversa, A.; Brama, M.; Marini, M.; Donini, L.M.; et al. Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int. J. Clin. Pract. 2010, 64, 817–820. [Google Scholar] [CrossRef]
- Young, D.; Hopper, J.L.; Macinnis, R.J.; Nowson, C.A.; Hoang, N.H.; Wark, J.D. Changes in Body Composition as Determinants of Longitudinal Changes in Bone Mineral Measures in 8 to 26-Year-Old Female Twins. Osteoporos. Int. 2001, 12, 506–515. [Google Scholar] [CrossRef]
- Bakker, I.; Twisk, J.W.R.; Van Mechelen, W.; Kemper, H.C.G. Fat-Free Body Mass Is the Most Important Body Composition Determinant of 10-Yr Longitudinal Development of Lumbar Bone in Adult Men and Women. J. Clin. Endocrinol. Metab. 2003, 88, 2607–2613. [Google Scholar] [CrossRef] [Green Version]
- Douchi, T.; Kuwahata, R.; Matsuo, T.; Uto, H.; Oki, T.; Nagata, Y. Relative Contribution of Lean and Fat Mass Component to Bone Mineral Density in Males. J. Bone Miner. Metab. 2003, 21, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.E.; Nickols-Richardson, S.M.; Wootten, D.F.; Ramp, W.K.; Herbert, W.G. Relationships among Bone Mineral Density, Body Composition, and Isokinetic Strength in Young Women. Calcif. Tissue. Int. 2004, 74, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Rauch, F.; Bailey, D.A.; Baxter-Jones, A.; Mirwald, R.; Faulkner, R. The “muscle-Bone Unit” during the Pubertal Growth Spurt. Bone 2004, 34, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.R.; Choi, S.W.A. Comparative Analysis on Change of Body Composition of Middle School Girls According to Bone Mineral Density Classification. Korea J. Sport. Sci. 2016, 25, 1545–1554. [Google Scholar]
- Susan, J.H. Basic Biomechanics; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Harrison, T.R.; Kasper, D.L.; Fauci, A.S. Harrison’s Internal Medicine, 19th ed.; McGraw-Hill AccessMedicine: New York, NY, USA, 2015. [Google Scholar]
- Lee, H.J.; Song, B.s.; Kim, D.H.; Kim, S.Y.; Cho, J.B.; Kim, D.H.; Lee, J.A.; Lim, J.S. Bone Mineral Density Reference of 10-20 Year-Old Korean Children and Adolescents—Based on Hologic DXA from the Korean National Health and Nutrition Examination Surveys-. J. Korean Soc. Pediatr. Endocrinol. 2011, 16, 92–99. [Google Scholar] [CrossRef]
- Blain, H.; Vuillemin, A.; Teissier, A.; Hanesse, B.; Guillemin, F.; Jeandel, C. Influence of Muscle Strength and Body Weight and Composition on Regional Bone Mineral Density in Healthy Women Aged 60 Years and Over. Gerontology 2001, 47, 207–212. [Google Scholar] [CrossRef]
- Klein, C.S.; Allman, B.L.; Marsh, G.D.; Rice, C.L. Muscle Size, Strength, and Bone Geometry in the Upper Limbs of Young and Old Men. J. Gerontol. A. Biol. Sci. Med. Sci. 2002, 57, M455–M459. [Google Scholar] [CrossRef] [Green Version]
- Garn, S.M. The Earlier Gain and the Later Loss of Cortical Bone, in Nutritional Perspective; Thomas: Springfield, MA, USA, 1970. [Google Scholar]
- Doyle, F.; Brown, J.; Lachance, C. Relation between bone mass and muscle weight. Lancet 1970, 295, 391–393. [Google Scholar] [CrossRef]
- Frost, H.M. Bone “Mass” and the “Mechanostat”: A Proposal. Anat. Rec. 1987, 219, 1–9. [Google Scholar] [CrossRef]
- Kouda, K.; Fujita, Y.; Sato, Y.; Ohara, K.; Nakamura, H.; Uenishi, K.; Iki, M. Fat Mass Is Positively Associated with Bone Mass in Relatively Thin Adolescents: Data from the Kitakata Kids Health Study. Bone 2014, 64, 298–302. [Google Scholar] [CrossRef]
- Kaji, H. Interaction between Muscle and Bone. J. Bone Metab. 2014, 21, 29–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolfe, R.A.; Nowlan, N.C.; Kenny, E.M.; Cormican, P.; Morris, D.W.; Prendergast, P.J.; Kelly, D.; Murphy, P. Identification of Mechanosensitive Genes during Skeletal Development: Alteration of Genes Associated with Cytoskeletal Rearrangement and Cell Signalling Pathways. BMC Genom. 2014, 15, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namwongprom, S.; Rojanasthien, S.; Mangklabruks, A.; Soontrapa, S.; Wongboontan, C.; Ongphiphadhanakul, B. Effect of Fat Mass and Lean Mass on Bone Mineral Density in Postmenopausal and Perimenopausal Thai Women. Int. J. Womens Health 2013, 5, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.W.; Zhang, H.; Wang, C.; Gu, J.M.; Yue, H.; Ke, Y.H.; Hu, Y.Q.; Fu, W.Z.; Li, M.; Zhang, Z.L. Lean Mass Predicts Hip Geometry and Bone Mineral Density in Chinese Men and Women and Age Comparisons of Body Composition. J. Clin. Densitom. 2012, 15, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Baptista, F.; Barrigas, C.; Vieira, F.; Santa-Clara, H.; Homens, P.M.; Fragoso, I.; Teixeira, P.J.; Sardinha, L.B. The Role of Lean Body Mass and Physical Activity in Bone Health in Children. J. Bone Miner. Metab. 2012, 30, 100–108. [Google Scholar] [CrossRef]
Variable | Q1 | Q2 | Q3 | Q4 | Q5 | F/χ2 | p | ||
---|---|---|---|---|---|---|---|---|---|
Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | |||||
Fat mass | Male | Age (year) | 14.79 ± 0.17 | 15.05 ± 0.2 | 15.26 ± 0.18 | 15.3 ± 0.22 | 15.03 ± 0.19 | 86.900 | <0.0001 |
Body weight (kg) | 48.94 ± 0.88 | 53.4 ± 0.77 | 58.67 ± 0.95 | 66.03 ± 0.73 | 77.12 ± 1.12 | 343.170 | <0.0001 | ||
HE_vitD (ng/mL) | 16.13 ± 0.69 | 16.57 ± 0.58 | 17.46 ± 0.64 | 16.58 ± 0.63 | 16.1 ± 0.54 | 1.820 | 0.123 | ||
Intake Ca (g) | 499.74 ± 30.72 | 581.74 ± 46.19 | 567.84 ± 41.48 | 531.5 ± 32.1 | 529.6 ± 34.54 | 2.550 | 0.038 | ||
Walking (y/n) | 63/80 (60.2) (1) | 56/81 (59.8) | 58/80 (59.2) | 56/68 (55.5) | 60/74 (61.3) | 0.840 (2) | 0.933 | ||
Muscle strengthening exercises (y/n) | 90/53 (38.7) | 86/51 (41.9) | 85/53 (43.8) | 84/40 (29.8) | 86/48 (38.8) | 4.048 | 0.400 | ||
Female | Age (year) | 13.78 ± 0.18 | 15.08 ± 0.22 | 15.44 ± 0.24 | 15.17 ± 0.18 | 15.48 ± 0.19 | 1.140 | 0.337 | |
Body weight (kg) | 42.45 ± 0.45 | 47.63 ± 0.38 | 51.1 ± 0.48 | 56.8 ± 0.45 | 67.81 ± 1.15 | 146.820 | <0.0001 | ||
HE_vitD (ng/mL) | 17.47 ± 0.84 | 15.35 ± 0.62 | 15.96 ± 0.62 | 15.35 ± 0.49 | 14.87 ± 0.67 | 0.820 | 0.513 | ||
Intake Ca (g) | 475.29 ± 53.52 | 422.31 ± 25.38 | 407.23 ± 21.57 | 400.89 ± 26.69 | 428.05 ± 23.99 | 0.760 | 0.549 | ||
Walking (y/n) | 57/62 (53.2) | 56/62 (55.3) | 60/55 (46.1) | 53/62 (58.1) | 59/63 (52) | 2.576 | 0.631 | ||
Muscle strengthening exercises (y/n) | 105/14 (10.9) | 113/6 (4.2) | 102/13 (13) | 100/15 (14.7) | 98/24 (16.9) | 7.893 | 0.096 | ||
Lean mass | Male | Age (year) | 13.01 ± 0.15 | 14.28 ± 0.19 | 15.54 ± 0.15 | 15.99 ± 0.15 | 16.11 ± 0.12 | 5.130 | 0.000 |
Body weight (kg) | 42.97 ± 0.56 | 53.77 ± 0.61 | 59.27 ± 0.6 | 65.84 ± 0.63 | 78.12 ± 0.92 | 147.750 | <0.0001 | ||
HE_vitD (ng/mL) | 17.28 ± 0.56 | 17.45 ± 0.64 | 16.44 ± 0.53 | 16.1 ± 0.59 | 15.95 ± 0.51 | 1.050 | 0.381 | ||
Intake Ca (g) | 469.58 ± 26.12 | 582.68 ± 34.66 | 532.22 ± 39.24 | 528.83 ± 40.13 | 593.14 ± 44.07 | 0.380 | 0.825 | ||
Walking (y/n) | 70/78 (57.7) | 61/77 (58.6) | 59/77 (59.5) | 55/78 (60.1) | 48/73 (60.1) | 0.153 | 0.997 | ||
Muscle strengthening exercises (y/n) | 109/39 (26.2) | 90/48 (39.2) | 81/55 (41.5) | 85/48 (40.2) | 66/55 (44.8) | 6.713 | 0.152 | ||
Female | Age (year) | 14.37 ± 0.2 | 14.67 ± 0.21 | 15.37 ± 0.19 | 15.33 ± 0.23 | 15.39 ± 0.2 | 12.720 | <0.0001 | |
Body weight (kg) | 42.97 ± 0.46 | 47.82 ± 0.39 | 51.84 ± 0.53 | 56.67 ± 0.61 | 67.18 ± 1.17 | 198.320 | <0.0001 | ||
HE_vitD (ng/mL) | 16.03 ± 0.54 | 16.53 ± 0.61 | 15.91 ± 0.72 | 14.99 ± 0.67 | 15.4 ± 0.71 | 2.260 | 0.061 | ||
Intake Ca (g) | 402.41 ± 20.35 | 413.58 ± 25.01 | 420.76 ± 26.48 | 451.13 ± 43.5 | 430.81 ± 20.91 | 0.380 | 0.820 | ||
Walking (y/n) | 52/64 (55.6) | 69/48 (43.9) | 57/62 (54.3) | 49/68 (54.7) | 58/62 (54.3) | 2.980 | 0.561 | ||
Muscle strengthening exercises (y/n) | 106/10 (6.6) | 113/5 (4.1) | 106/13 (9.8) | 99/18 (18.1) | 94/26 (19.7) | 16.018 | 0.003 |
Fat Mass Group | F | p | β | Trend p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | ||||||
Male | Model 1 | 0.866 ± 0.015 (1) | 0.903 ± 0.014 | 0.934 ± 0.014 | 0.956 ± 0.012 | 0.974 ± 0.011 | 10.760 | <0.0001 | 0.027 | <0.0001 |
Model 2 | 0.875 ± 0.015 | 0.903 ± 0.014 | 0.931 ± 0.013 | 0.95 ± 0.012 | 0.977 ± 0.01 | 11.430 | <0.0001 | 0.023 | <0.0001 | |
Model 3 | 0.972 ± 0.014 | 0.966 ± 0.013 | 0.954 ± 0.01 | 0.912 ± 0.01 | 0.833 ± 0.016 | 9.800 | <0.0001 | −0.028 | <0.0001 | |
Model 4 | 0.97 ± 0.014 | 0.964 ± 0.013 | 0.951 ± 0.01 | 0.909 ± 0.011 | 0.828 ± 0.015 | 10.920 | <0.0001 | −0.028 | <0.0001 | |
Model 5 | 0.975 ± 0.015 | 0.971 ± 0.014 | 0.95 ± 0.011 | 0.915 ± 0.012 | 0.821 ± 0.016 | 11.660 | <0.0001 | −0.030 | <0.0001 | |
Model 6 | 0.974 ± 0.015 | 0.968 ± 0.013 | 0.948 ± 0.011 | 0.913 ± 0.012 | 0.816 ± 0.016 | 13.120 | <0.0001 | −0.030 | <0.0001 | |
Female | Model 1 | 0.804 ± 0.012 | 0.849 ± 0.013 | 0.862 ± 0.012 | 0.898 ± 0.011 | 0.944 ± 0.009 | 25.770 | <0.0001 | 0.033 | <0.0001 |
Model 2 | 0.814 ± 0.013 | 0.849 ± 0.013 | 0.858 ± 0.012 | 0.896 ± 0.01 | 0.941 ± 0.009 | 22.930 | <0.0001 | 0.030 | <0.0001 | |
Model 3 | 0.879 ± 0.016 | 0.884 ± 0.013 | 0.872 ± 0.011 | 0.874 ± 0.011 | 0.853 ± 0.018 | 0.640 | 0.636 | −0.005 | 0.469 | |
Model 4 | 0.875 ± 0.016 | 0.886 ± 0.014 | 0.871 ± 0.012 | 0.875 ± 0.011 | 0.856 ± 0.018 | 0.620 | 0.648 | −0.004 | 0.559 | |
Model 5 | 0.868 ± 0.017 | 0.894 ± 0.016 | 0.871 ± 0.013 | 0.856 ± 0.012 | 0.853 ± 0.021 | 1.040 | 0.384 | −0.007 | 0.393 | |
Model 6 | 0.866 ± 0.017 | 0.894 ± 0.016 | 0.870 ± 0.013 | 0.854 ± 0.012 | 0.854 ± 0.021 | 1.230 | 0.295 | −0.007 | 0.395 |
Fat Mass Group | F | p | β | Trend p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | ||||||
Male | Model 1 | 0.798 ± 0.015 (1) | 0.836 ± 0.012 | 0.852 ± 0.013 | 0.868 ± 0.013 | 0.876 ± 0.013 | 4.520 | 0.0013 | 0.019 | <0.0001 |
Model 2 | 0.814 ± 0.014 | 0.834 ± 0.009 | 0.848 ± 0.012 | 0.857 ± 0.012 | 0.882 ± 0.010 | 5.280 | 0.0003 | 0.016 | <0.0001 | |
Model 3 | 0.906 ± 0.012 | 0.893 ± 0.009 | 0.87 ± 0.009 | 0.824 ± 0.011 | 0.748 ± 0.014 | 16.950 | <0.0001 | −0.034 | <0.0001 | |
Model 4 | 0.904 ± 0.013 | 0.891 ± 0.009 | 0.867 ± 0.009 | 0.822 ± 0.011 | 0.746 ± 0.013 | 17.450 | <0.0001 | −0.034 | <0.0001 | |
Model 5 | 0.904 ± 0.012 | 0.895 ± 0.011 | 0.860 ± 0.011 | 0.828 ± 0.01 | 0.740 ± 0.017 | 12.900 | <0.0001 | −0.035 | <0.0001 | |
Model 6 | 0.903 ± 0.013 | 0.894 ± 0.011 | 0.859 ± 0.011 | 0.827 ± 0.01 | 0.739 ± 0.017 | 12.900 | <0.0001 | −0.035 | <0.0001 | |
Female | Model 1 | 0.802 ± 0.013 | 0.873 ± 0.012 | 0.885 ± 0.012 | 0.921 ± 0.012 | 0.969 ± 0.012 | 29.590 | <0.0001 | 0.038 | <0.0001 |
Model 2 | 0.826 ± 0.013 | 0.873 ± 0.012 | 0.876 ± 0.010 | 0.918 ± 0.012 | 0.961 ± 0.011 | 21.810 | <0.0001 | 0.032 | <0.0001 | |
Model 3 | 0.886 ± 0.015 | 0.905 ± 0.013 | 0.890 ± 0.009 | 0.898 ± 0.012 | 0.879 ± 0.016 | 0.750 | 0.558 | −0.001 | 0.855 | |
Model 4 | 0.881 ± 0.015 | 0.905 ± 0.012 | 0.887 ± 0.009 | 0.898 ± 0.012 | 0.883 ± 0.016 | 0.810 | 0.519 | 0.000 | 0.975 | |
Model 5 | 0.870 ± 0.017 | 0.895 ± 0.015 | 0.884 ± 0.011 | 0.884 ± 0.011 | 0.891 ± 0.019 | 0.450 | 0.774 | 0.002 | 0.744 | |
Model 6 | 0.869 ± 0.017 | 0.895 ± 0.014 | 0.883 ± 0.011 | 0.883 ± 0.011 | 0.894 ± 0.019 | 0.510 | 0.726 | 0.003 | 0.703 |
Lean Mass Group | F | p | β | Trend p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | ||||||
Male | Model 1 | 0.780 ± 0.008 (1) | 0.863 ± 0.010 | 0.941 ± 0.010 | 0.980 ± 0.012 | 1.041 ± 0.012 | 108.530 | <0.0001 | 0.064 | <0.0001 |
Model 2 | 0.774 ± 0.011 | 0.860 ± 0.011 | 0.942 ± 0.010 | 0.983 ± 0.012 | 1.044 ± 0.012 | 78.460 | <0.0001 | 0.065 | <0.0001 | |
Model 3 | 0.802 ± 0.015 | 0.871 ± 0.011 | 0.943 ± 0.010 | 0.975 ± 0.012 | 1.018 ± 0.017 | 22.250 | <0.0001 | 0.052 | <0.0001 | |
Model 4 | 0.798 ± 0.016 | 0.868 ± 0.012 | 0.940 ± 0.010 | 0.972 ± 0.011 | 1.017 ± 0.017 | 21.700 | <0.0001 | 0.053 | <0.0001 | |
Model 5 | 0.798 ± 0.016 | 0.869 ± 0.013 | 0.939 ± 0.012 | 0.966 ± 0.013 | 1.029 ± 0.019 | 16.270 | <0.0001 | 0.054 | <0.0001 | |
Model 6 | 0.794 ± 0.016 | 0.867 ± 0.014 | 0.937 ± 0.011 | 0.965 ± 0.013 | 1.028 ± 0.018 | 16.740 | <0.0001 | 0.054 | <0.0001 | |
Female | Model 1 | 0.795 ± 0.012 | 0.838 ± 0.010 | 0.875 ± 0.012 | 0.903 ± 0.010 | 0.954 ± 0.010 | 29.290 | <0.0001 | 0.043 | <0.0001 |
Model 2 | 0.800 ± 0.013 | 0.840 ± 0.010 | 0.874 ± 0.012 | 0.900 ± 0.010 | 0.951 ± 0.009 | 26.130 | <0.0001 | 0.036 | <0.0001 | |
Model 3 | 0.839 ± 0.016 | 0.860 ± 0.011 | 0.880 ± 0.012 | 0.887 ± 0.011 | 0.898 ± 0.013 | 1.440 | 0.220 | 0.015 | 0.020 | |
Model 4 | 0.839 ± 0.016 | 0.863 ± 0.012 | 0.880 ± 0.012 | 0.885 ± 0.012 | 0.895 ± 0.013 | 1.400 | 0.232 | 0.014 | 0.035 | |
Model 5 | 0.846 ± 0.018 | 0.857 ± 0.010 | 0.870 ± 0.014 | 0.885 ± 0.015 | 0.884 ± 0.015 | 0.630 | 0.6424 | 0.011 | 0.131 | |
Model 6 | 0.846 ± 0.018 | 0.860 ± 0.010 | 0.869 ± 0.013 | 0.883 ± 0.016 | 0.881 ± 0.015 | 0.460 | 0.7659 | 0.010 | 0.186 |
Lean Mass Group | F | p | β | Trend p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | ||||||
Male | Model 1 | 0.668 ± 0.011 (1) | 0.777 ± 0.010 | 0.868 ± 0.008 | 0.930 ± 0.009 | 0.956 ± 0.011 | 101.780 | <0.0001 | 0.073 | <0.0001 |
Model 2 | 0.703 ± 0.012 | 0.790 ± 0.010 | 0.862 ± 0.007 | 0.914 ± 0.009 | 0.939 ± 0.011 | 60.710 | <0.0001 | 0.058 | <0.0001 | |
Model 3 | 0.708 ± 0.014 | 0.792 ± 0.010 | 0.862 ± 0.007 | 0.913 ± 0.009 | 0.934 ± 0.014 | 33.570 | <0.0001 | 0.056 | <0.0001 | |
Model 4 | 0.708 ± 0.015 | 0.790 ± 0.010 | 0.861 ± 0.008 | 0.910 ± 0.009 | 0.931 ± 0.014 | 31.470 | <0.0001 | 0.056 | <0.0001 | |
Model 5 | 0.702 ± 0.016 | 0.788 ± 0.015 | 0.862 ± 0.009 | 0.899 ± 0.009 | 0.940 ± 0.016 | 21.460 | <0.0001 | 0.057 | <0.0001 | |
Model 6 | 0.702 ± 0.016 | 0.788 ± 0.015 | 0.862 ± 0.009 | 0.898 ± 0.010 | 0.939 ± 0.016 | 20.590 | <0.0001 | 0.057 | <0.0001 | |
Female | Model 1 | 0.800 ± 0.012 | 0.851 ± 0.008 | 0.905 ± 0.011 | 0.923 ± 0.011 | 0.981 ± 0.012 | 34.050 | <0.0001 | 0.043 | <0.0001 |
Model 2 | 0.813 ± 0.011 | 0.858 ± 0.008 | 0.901 ± 0.011 | 0.917 ± 0.010 | 0.973 ± 0.011 | 30.670 | <0.0001 | 0.038 | <0.0001 | |
Model 3 | 0.846 ± 0.014 | 0.875 ± 0.009 | 0.906 ± 0.011 | 0.906 ± 0.011 | 0.926 ± 0.015 | 3.200 | 0.0128 | 0.020 | 0.001 | |
Model 4 | 0.846 ± 0.014 | 0.879 ± 0.009 | 0.905 ± 0.011 | 0.903 ± 0.011 | 0.923 ± 0.015 | 3.270 | 0.0114 | 0.019 | 0.002 | |
Model 5 | 0.833 ± 0.016 | 0.871 ± 0.010 | 0.897 ± 0.013 | 0.901 ± 0.013 | 0.918 ± 0.015 | 2.750 | 0.0274 | 0.021 | 0.003 | |
Model 6 | 0.834 ± 0.016 | 0.874 ± 0.010 | 0.896 ± 0.013 | 0.899 ± 0.013 | 0.915 ± 0.015 | 2.600 | 0.0353 | 0.020 | 0.005 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, A.; Baek, S.; Park, S.; Shin, J. Bone Mineral Density of Femur and Lumbar and the Relation between Fat Mass and Lean Mass of Adolescents: Based on Korea National Health and Nutrition Examination Survey (KNHNES) from 2008 to 2011. Int. J. Environ. Res. Public Health 2020, 17, 4471. https://doi.org/10.3390/ijerph17124471
Kim A, Baek S, Park S, Shin J. Bone Mineral Density of Femur and Lumbar and the Relation between Fat Mass and Lean Mass of Adolescents: Based on Korea National Health and Nutrition Examination Survey (KNHNES) from 2008 to 2011. International Journal of Environmental Research and Public Health. 2020; 17(12):4471. https://doi.org/10.3390/ijerph17124471
Chicago/Turabian StyleKim, Aram, Seunghui Baek, Seyeon Park, and Jieun Shin. 2020. "Bone Mineral Density of Femur and Lumbar and the Relation between Fat Mass and Lean Mass of Adolescents: Based on Korea National Health and Nutrition Examination Survey (KNHNES) from 2008 to 2011" International Journal of Environmental Research and Public Health 17, no. 12: 4471. https://doi.org/10.3390/ijerph17124471
APA StyleKim, A., Baek, S., Park, S., & Shin, J. (2020). Bone Mineral Density of Femur and Lumbar and the Relation between Fat Mass and Lean Mass of Adolescents: Based on Korea National Health and Nutrition Examination Survey (KNHNES) from 2008 to 2011. International Journal of Environmental Research and Public Health, 17(12), 4471. https://doi.org/10.3390/ijerph17124471