Sprint Interval Running and Continuous Running Produce Training Specific Adaptations, Despite a Similar Improvement of Aerobic Endurance Capacity—A Randomized Trial of Healthy Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Training Protocol
2.3. Measures
2.4. Procedures
2.5. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Laursen, P.B.; Jenkins, D.G. The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002, 32, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Seiler, S.; Tønnessen, E. Intervals, Thresholds, and Long Slow Distance: The Role of Intensity and Duration in Endurance Training. Sport Sci. 2009, 13, 32–53. [Google Scholar]
- Gibala, M.J.; Little, J.P.; Van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 2006, 575 Pt 3, 901–911. [Google Scholar] [CrossRef]
- Burgomaster, K.A.; Howarth, K.R.; Phillips, S.M.; Rakobowchuk, M.; MacDonald, M.J.; McGee, S.L.; Gibala, M.J. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 2008, 586, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Burgomaster, K.A.; Hughes, S.C.; Heigenhauser, G.J.; Bradwell, S.N.; Gibala, M.J. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 2005, 98, 1985–1990. [Google Scholar] [CrossRef]
- MacDougall, J.D.; Hicks, A.L.; MacDonald, J.R.; McKelvie, R.S.; Green, H.J.; Smith, K.M. Muscle performance and enzymatic adaptations to sprint interval training. J. Appl. Physiol. 1998, 84, 2138–2142. [Google Scholar] [CrossRef]
- Burgomaster, K.A.; Heigenhauser, G.J.; Gibala, M.J. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J. Appl. Physiol. 2006, 100, 2041–2047. [Google Scholar]
- Harmer, A.R.; McKenna, M.J.; Sutton, J.R.; Snow, R.J.; Ruell, P.A.; Booth, J.; Thompson, M.W.; Mackay, N.A.; Stathis, C.G.; Crameri, R.M.; et al. Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. J. Appl. Physiol. 2000, 89, 1793–1803. [Google Scholar] [CrossRef]
- Hazell, T.J.; MacPherson, R.E.; Gravelle, B.M.; Lemon, P.W. 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur. J. Appl. Physiol. 2010, 110, 153–160. [Google Scholar]
- Macpherson, T.W.; Weston, M. The effect of low-volume sprint interval training on the development and subsequent maintenance of aerobic fitness in soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 332–338. [Google Scholar]
- Naves, J.P.A.; Viana, R.B.; Rebelo, A.C.S.; de Lira, C.A.B.; Pimentel, G.D.; Lobo, P.C.B.; de Oliveira, J.C.; Ramirez-Campillo, R.; Gentil, P. Effects of High-Intensity Interval Training vs. Sprint Interval Training on Anthropometric Measures and Cardiorespiratory Fitness in Healthy Young Women. Front. Physiol. 2018, 9, 1738. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, T.; Babraj, J. Effects of reduced-volume of sprint interval training and the time course of physiological and performance adaptations. Scand. J. Med. Sci. Sports 2017, 27, 1662–1672. [Google Scholar] [CrossRef] [PubMed]
- Vollaard, N.B.J.; Metcalfe, R.S. Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints. Sports Med. 2017, 47, 2443–2451. [Google Scholar] [CrossRef] [PubMed]
- Sloth, M.; Sloth, D.; Overgaard, K.; Dalgas, U. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2013, 23, e341–e352. [Google Scholar] [CrossRef]
- Ratel, S.; Williams, C.A.; Oliver, J.; Armstrong, N. Effects of age and mode of exercise on power output profiles during repeated sprints. Eur. J. Appl. Physiol. 2004, 92, 204–210. [Google Scholar] [CrossRef]
- Achten, J.; Venables, M.C.; Jeukendrup, A.E. Fat oxidation rates are higher during running compared with cycling over a wide range of intensities. Metabolism 2003, 52, 747–752. [Google Scholar] [CrossRef]
- Millet, G.P.; Vleck, V.E.; Bentley, D.J. Physiological differences between cycling and running: Lessons from triathletes. Sports Med. 2009, 39, 179–206. [Google Scholar] [CrossRef]
- Kavaliauskas, M.; Jakeman, J.; Babraj, J. Early Adaptations to a Two-Week Uphill Run Sprint Interval Training and Cycle Sprint Interval Training. Sports 2018, 6, 72. [Google Scholar] [CrossRef]
- Bangsbo, J.; Gunnarsson, T.P.; Wendell, J.; Nybo, L.; Thomassen, M. Reduced volume and increased training intensity elevate muscle Na+-K+ pump alpha2-subunit expression as well as short- and long-term work capacity in humans. J. Appl. Physiol. 2009, 107, 1771–1780. [Google Scholar] [CrossRef]
- Iaia, F.M.; Hellsten, Y.; Nielsen, J.J.; Fernström, M.; Sahlin, K.; Bangsbo, J. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. J. Appl. Physiol. 2009, 106, 73–80. [Google Scholar] [CrossRef]
- Iaia, F.M.; Thomassen, M.; Kolding, H.; Gunnarsson, T.; Wendell, J.; Rostgaard, T.; Nordsborg, N.; Krustrup, P.; Nybo, L.; Hellsten, Y.; et al. Reduced volume but increased training intensity elevates muscle Na+-K+ pump alpha1-subunit and NHE1 expression as well as short-term work capacity in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R966–R974. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, R.E.; Hazell, T.J.; Olver, T.D.; Paterson, D.H.; Lemon, P.W. Run sprint interval training improves aerobic performance but not maximal cardiac output. Med. Sci. Sports Exerc. 2011, 43, 115–122. [Google Scholar]
- Midgley, A.W.; Bentley, D.J.; Luttikholt, H.; McNaughton, L.R.; Millet, G.P. Challenging a dogma of exercise physiology: Does an incremental exercise test for valid VO 2 max determination really need to last between 8 and 12 minutes? Sports Med. 2008, 38, 441–447. [Google Scholar]
- Grendstad, H.; Nilsen, A.K.; Rygh, C.B.; Hafstad, A.; Kristoffersen, M.; Iversen, V.V.; Nybakken, T.; Vestbøstad, M.; Algrøy, E.A.; Sandbakk, Ø.; et al. Physical capacity, not skeletal maturity, distinguishes competitive levels in male Norwegian U14 soccer players. Scand. J. Med. Sci. Sports 2020, 30, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Edgett, B.A.; Bonafiglia, J.T.; Raleigh, J.P.; Rotundo, M.P.; Giles, M.D.; Whittall, J.P.; Gurd, B.J. Reproducibility of peak oxygen consumption and the impact of test variability on classification of individual training responses in young recreationally active adults. Clin. Physiol. Funct. Imaging 2018, 38, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.L.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability—Part I: Factors contributing to fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.Y.; Plowman, S.A.; Looney, M.A. The reliability and validity of the 20-meter shuttle test in American students 12 to 15 years old. Res. Q. Exerc. Sport 1992, 63, 360–365. [Google Scholar]
- Sandvei, M.; Jeppesen, P.B.; Stoen, L.; Litleskare, S.; Johansen, E.; Stensrud, T.; Enoksen, E.; Hautala, A.; Martinmäki, K.; Kinnunen, H.; et al. Sprint interval running increases insulin sensitivity in young healthy subjects. Arch. Physiol. Biochem. 2012, 118, 139–147. [Google Scholar] [CrossRef]
- Bouchard, C.; Rankinen, T. Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 2001, 33 (Suppl. 6), S446–S451, discussion S452–S453. [Google Scholar] [CrossRef]
- Hautala, A.J.; Kiviniemi, A.M.; Mäkikallio, T.H.; Kinnunen, H.; Nissilä, S.; Huikuri, H.V.; Tulppo, M.P. Individual differences in the responses to endurance and resistance training. Eur. J. Appl. Physiol. 2006, 96, 535–542. [Google Scholar]
- Bouchard, C.; Sarzynski, M.A.; Rice, T.K.; Kraus, W.E.; Church, T.S.; Sung, Y.J.; Rao, D.C.; Rankinen, T. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J. Appl. Physiol. 2011, 110, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Carter, H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000, 29, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.Y.; Kwak, H.B.; Kim, A.H.; Park, S.H.; Heo, J.W.; Kim, H.K.; Ko, J.R.; Lee, S.J.; Bang, H.S.; Sim, J.W.; et al. Cardiac adaptation to exercise training in health and disease. Pflug. Arch. 2020, 472, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Edge, J.; Bishop, D.; Goodman, C.; Dawson, B. Effects of high- and moderate-intensity training on metabolism and repeated sprints. Med. Sci. Sports Exerc. 2005, 37, 1975–1982. [Google Scholar] [CrossRef]
- Glaister, M.; Stone, M.H.; Stewart, A.M.; Hughes, M.G.; Moir, G.L. The influence of endurance training on multiple sprint cycling performance. J. Strength Cond. Res. 2007, 21, 606–612. [Google Scholar]
- Saunders, P.U.; Pyne, D.B.; Telford, R.D.; Hawley, J.A. Factors affecting running economy in trained distance runners. Sports Med. 2004, 34, 465–485. [Google Scholar]
- Iaia, F.M.; Bangsbo, J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand. J. Med. Sci. Sports 2010, 20 (Suppl. 2), 11–23. [Google Scholar]
- Rynecki, N.D.; Siracuse, B.L.; Ippolito, J.A.; Beebe, K.S. Injuries sustained during high intensity interval training: Are modern fitness trends contributing to increased injury rates? J. Sports Med. Phys. Fit. 2019, 59, 1206–1212. [Google Scholar]
CT | SIT | |||
---|---|---|---|---|
Pre | Post | Pre | Post | |
VO2max (mL·kg−1·min−1) | 47.9 ± 1.5 | 49.7 ± 1.5 * | 50.5 ± 1.6 | 53.3 ± 1.5 * |
Maximal O2 pulse | 17.4 ± 1.0 | 18.1 ± 1.0 * | 18.0 ± 1.0 | 19.2 ± 1.0 * |
Laps | 71.5 ± 6.1 | 79.4 ± 5.2 * | 69.5 ± 3.8 | 81.7 ± 4.0 * |
CT | SIT | |||||||
---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | |||||
Time (s) | %dec. | Time (s) | %dec | Time (s) | %dec | Time (s) | %dec | |
1. 60 m | 9.92 ± 0.25 | 9.69 ± 0.26 * | 9.64 ± 0.26 | 9.20 ± 0.21 * | ||||
2. 60 m | 10.44 ± 0.33 | 5.2 | 10.06 ± 0.27 * | 3.8 | 9.98 ± 0.23 | 3.5 | 9.48 ± 0.18 * | 3.0 |
3. 60 m | 10.76 ± 0.29 | 8.5 | 10.31 ± 0.23 * | 6.4 | 10.27 ± 0.22 | 6.5 | 9.89 ± 0.20 * | 7.5 |
4. 60 m | 10.87 ± 0.30 | 9.6 | 10.54 ± 0.23 * | 8.8 | 10.37 ± 0.25 | 7.6 | 9.91 ± 0.19 *,† | 7.7 |
5. 60 m | 10.93 ± 0.21 | 10.2 | 10.70 ± 0.22 * | 10.4 | 10.53 ± 0.25 | 9.2 | 9.96 ± 0.20 *,† | 8.3 |
1 | 2 | 3 | 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | Pre | Post | ||
CT | VO2 (mL·min−1) | 1553 ± 139 | 1381 ± 159 *,# | 2307 ± 177 | 1876 ± 157 * | 2414 ± 175 | 2275 ± 174 * | 2754 ± 186 | 2620 ± 172 * |
% VO2max | 45.1 ± 3.4 | 37.8 ± 2.1 * | 58.4 ± 3.1 | 52.4 ± 2.8 * | 71.1 ± 2.3 | 64.6 ± 2.4 * | 79.4 ± 2.0 | 73.3 ± 1.8 * | |
RE (mL·kg−1·km−1) | 213 ± 16 | 186 ± 10 *,# | 229 ± 12 | 213 ± 10 * | 238 ± 8 | 224 ± 8 * | 232 ± 6 | 223 ± 6 * | |
% HRpeak | 66.9 ± 2.1 | 59.6 ± 2.3 * | 76.8 ± 2.2 | 70.8 ± 2.5 * | 85.3 ± 1.5 | 80.2 ± 2.1 * | 90.0 ± 1.0 | 86.3 ± 1.4 * | |
O2pulse (mL·beat−1) | 11.5 ± 0.7 | 11.5 ± 1.0 | 13.1 ± 0.8 | 13.3 ± 0.9 | 14.2 ± 0.8 | 14.1 ± 0.9 | 15.3 ± 0.9 | 15.2 ± 0.9 | |
RER (VCO2·VO2−1) | 0.89 ± 0.01 | 0.84 ± 0.01 * | 0.93 ± 0.01 | 0.88 ± 0.01 * | 0.94 ± 0.01 | 0.90 ± 0.01 * | 0.97 ± 0.01 | 0.93 ± 0.01 * | |
Lactate (mmol·l−1) | 1.22 ± 0.13 | 0.77 ± 0.06 * | 1.76 ± 0.26 | 1.16 ± 0.13 * | 2.39 ± 0.25 | 1.75 ± 0.17 * | 3.84 ± 0.30 | 2.66 ± 0.24 * | |
SIT | VO2 (mL·min−1) | 1544 ± 152 | 1523 ± 150 | 2221 ± 168 | 2076 ± 158 | 2574 ± 181 | 2500 ± 165 | 2909 ± 204 | 2832 ± 196 *,# |
% VO2max | 42.6 ± 2.2 | 40.1 ± 2.5 * | 61.9 ± 1.6 | 55.3 ± 2.0 * | 71.8 ± 1.2 | 66.5 ± 1.5 * | 81.2 ± 0.9 | 75.2 ± 1.2 * | |
RE (mL·kg−1·km−1) | 201 ± 10 | 199 ± 10 | 243 ± 8 | 228 ± 8 * | 240 ± 5 | 234 ± 4 | 237 ± 4 | 231 ± 4 * | |
% HRpeak | 61.6 ± 2.4 | 61.6 ± 2.5 | 75.0 ± 1.6 | 72.0 ± 2.0 | 82.6 ± 1.2 | 81.1 ± 1.5 | 88.6 ± 0.9 | 87.2 ± 1.2 | |
O2pulse (mL·beat−1) | 12.8 ± 1.0 | 12.6 ± 1.0 | 14.9 ± 1.0 | 14.5 ± 1.1 | 15.8 ± 1.0 | 15.6 ± 0.9 | 16.6 ± 1.0 | 16.4 ± 1.0 | |
RER (VCO2·VO2−1) | 0.86 ± 0.02 | 0.83 ± 0.02 | 0.91 ± 0.01 | 0.87 ± 0.02 *,# | 0.92 ± 0.01 | 0.89 ± 0.01 * | 0.96 ± 0.01 | 0.92 ± 0.01 * | |
Lactate (mmol·l−1) | 1.12 ± 0.08 | 0.89 ± 0.06 * | 1.79 ± 0.15 | 1.20 ± 0.07 *,# | 2.38 ± 0.17 | 1.68 ± 0.12 * | 3.45 ± 0.24 | 2.66 ± 0.19 *,# |
CT | SIT | |||
---|---|---|---|---|
Pre | Post | Pre | Post | |
Velocity (km·h−1) | 8.7 ± 0.4 | 9.7 ± 0.3 * | 8.8 ± 0.4 | 9.6 ± 0.3 * |
% VO2max | 70.5 ± 0.9 | 71.4 ± 0.7 | 70.3 ± 0.7 | 70.2 ± 0.6 |
% HRpeak | 84.3 ± 1.0 | 85.1 ± 0.9 | 81.9 ± 1.6 | 84.9 ± 1.4 * |
O2 pulse (mL·beat−1) | 14.5 ± 0.9 | 15.1 ± 0.9 * | 15.7 ± 1.0 | 16.0 ± 0.9 |
RER (VCO2·VO2−1) | 0.94 ± 0.01 | 0.91 ± 0.01 * | 0.93 ± 0.01 | 0.91 ± 0.01 |
Lactate (mmol·l−1) | 2.62 ± 0.16 | 2.18 ± 0.19 *,# | 2.33 ± 0.12 | 2.03 ± 0.15 *,# |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Litleskare, S.; Enoksen, E.; Sandvei, M.; Støen, L.; Stensrud, T.; Johansen, E.; Jensen, J. Sprint Interval Running and Continuous Running Produce Training Specific Adaptations, Despite a Similar Improvement of Aerobic Endurance Capacity—A Randomized Trial of Healthy Adults. Int. J. Environ. Res. Public Health 2020, 17, 3865. https://doi.org/10.3390/ijerph17113865
Litleskare S, Enoksen E, Sandvei M, Støen L, Stensrud T, Johansen E, Jensen J. Sprint Interval Running and Continuous Running Produce Training Specific Adaptations, Despite a Similar Improvement of Aerobic Endurance Capacity—A Randomized Trial of Healthy Adults. International Journal of Environmental Research and Public Health. 2020; 17(11):3865. https://doi.org/10.3390/ijerph17113865
Chicago/Turabian StyleLitleskare, Sigbjørn, Eystein Enoksen, Marit Sandvei, Line Støen, Trine Stensrud, Egil Johansen, and Jørgen Jensen. 2020. "Sprint Interval Running and Continuous Running Produce Training Specific Adaptations, Despite a Similar Improvement of Aerobic Endurance Capacity—A Randomized Trial of Healthy Adults" International Journal of Environmental Research and Public Health 17, no. 11: 3865. https://doi.org/10.3390/ijerph17113865
APA StyleLitleskare, S., Enoksen, E., Sandvei, M., Støen, L., Stensrud, T., Johansen, E., & Jensen, J. (2020). Sprint Interval Running and Continuous Running Produce Training Specific Adaptations, Despite a Similar Improvement of Aerobic Endurance Capacity—A Randomized Trial of Healthy Adults. International Journal of Environmental Research and Public Health, 17(11), 3865. https://doi.org/10.3390/ijerph17113865