Pre-Implantation Mouse Embryos Cultured In Vitro under Different Oxygen Concentrations Show Altered Ultrastructures
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animals
2.3. Embryo Collection, In Vitro Fertilization and Embryo Culture
2.4. Light Microscopy (LM) and Transmission Electron Microscopy (TEM)
3. Results
3.1. 2-Cell Stage
3.2. 4-Cell Stage
3.3. Morula
3.4. Blastocyst
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Delle Piane, L.; Lin, W.; Liu, X.; Donjacour, A.; Minasi, P.; Revelli, A.; Maltepe, E.; Rinaudo, P.F. Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Hum. Reprod. 2010, 25, 2039–2046. [Google Scholar] [CrossRef]
- Donjacour, A.; Liu, X.; Lin, W.; Simbulan, R.; Rinaudo, P.F. In vitro fertilization affects growth and glucose metabolism in a sex-specific manner in an outbred mouse model. Biol. Reprod. 2014, 90, 80. [Google Scholar] [CrossRef]
- Feuer, S.K.; Donjacour, A.; Simbulan, R.K.; Lin, W.; Liu, X.; Maltepe, E.; Rinaudo, P.F. Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes. Endocrinology 2014, 55, 4554–4567. [Google Scholar] [CrossRef] [PubMed]
- Christianson, M.S.; Zhao, Y.; Shoham, G.; Granot, I.; Safran, A.; Khafagy, A.; Leong, M.; Shoham, Z. Embryo catheter loading and embryo culture techniques: Results of a worldwide Web-based survey. J. Assist. Reprod. Genet. 2014, 31, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.; Zhang, L.; Liu, X.; Donjacour, A.; Ruggeri, E.; Palmerini, M.G.; Nottola, S.A.; Macchiarelli, G.; Rinaudo, P. Oxygen concentration alters mitochondrial structure and function in in vitro fertilized preimplantation mouse embryos. Hum. Reprod. 2019, 34, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.; Bavister, B.D. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 1993, 99, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Yedwab, G.A.; Paz, G.; Homonnai, T.Z.; David, M.P.; Kraicer, P.F. The temperature, pH, and partial pressure of oxygen in the cervix and uterus of women and uterus of rats during the cycle. Fertil. Steril. 1976, 27, 304–309. [Google Scholar] [CrossRef]
- Mills, R.M.; Brinster, R.L. Oxygen consumption of preimplantation mouse embryos. Exp. Cell. Res. 1967, 47, 337–344. [Google Scholar] [CrossRef]
- Byatt-Smith, J.G.; Leese, H.J.; Gosden, R.G. An investigation by mathematical modelling of whether mouse and human preimplantation embryos in static culture can satisfy their demands for oxygen by diffusion. Hum. Reprod. 1991, 6, 52–57. [Google Scholar] [CrossRef]
- Adam, A.A.G.; Takahashi, Y.; Katagiri, S.; Nagano, M. In vitro culture of mouse preantral follicles using membrane inserts and developmental competence of in vitro ovulated oocytes. J. Reprod. Dev. 2004, 50, 579–586. [Google Scholar] [CrossRef][Green Version]
- Preis, K.A.; Seidel, G.E.; Gardner, D.K. Reduced oxygen concentration improves the developmental competence of mouse oocytes following in vitro maturation. Mol. Reprod. Dev. 2007, 74, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, H.W.; Tzeng, C.R. Low oxygen tension increases mitochondrial membrane potential and enhances expression of antioxidant genes and implantation protein of mouse blastocyst cultured in vitro. J. Ovarian Res. 2017, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Kasterstein, E.; Strassburger, D.; Komarovsky, D.; Bern, O.; Komsky, A.; Raziel, A.; Friedler, S.; Ron-El, R. The effect of two distinct levels of oxygen concentration on embryo development in a sibling oocyte study. J. Assist. Reprod. Genet. 2013, 30, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Morin, S.J. Oxygen tension in embryo culture: Does a shift to 2% O2 in extended culture represent the most physiologic system? J. Assist. Reprod. Genet. 2017, 34, 309–314. [Google Scholar] [CrossRef]
- Waldenström, U.; Engström, A.B.; Hellberg, D.; Nilsson, S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil. Steril. 2009, 91, 2461–2465. [Google Scholar] [CrossRef]
- Gelo, N.; Kirinec, G.; Baldani, D.P.; Vrčić, H.; Ježek, D.; Milošević, M.; Stanić, P. Influence of human embryo cultivation in a classic CO2 incubator with 20% oxygen versus benchtop incubator with 5% oxygen on live births: The randomized prospective trial. Zygote 2019, 27, 131–136. [Google Scholar] [CrossRef]
- Nottola, S.A.; Albani, E.; Coticchio, G.; Palmerini, M.G.; Lorenzo, C.; Scaravelli, G.; Borini, A.; Levi-Setti, P.E.; Macchiarelli, G. Freeze/thaw stress induces organelle remodeling and membrane recycling in cryopreserved human mature oocytes. J. Assist. Reprod. Genet. 2016, 33, 1559–1570. [Google Scholar] [CrossRef]
- Ebner, T.; Moser, M.; Sommergruber, M.; Gaiswinkler, U.; Shebl, O.; Jesacher, K.; Tews, G. Occurrence and developmental consequences of vacuoles throughout preimplantation development. Fertil. Steril. 2005, 83, 1635–1640. [Google Scholar] [CrossRef]
- Belli, M.; Antonouli, S.; Palmerini, M.G.; Bianchi, S.; Bernardi, S.; Khalili, M.A.; Donfrancesco, O.; Nottola, S.A.; Macchiarelli, G. The effect of low and ultra-low oxygen tensions on mammalian embryo culture and development in experimental and clinical IVF. Syst. Biol. Reprod. Med. 2020, in press. [Google Scholar] [CrossRef]
- Maheshwari, A.; Hamilton, M.; Bhattacharya, S. Should we be promoting embryo transfer at blastocyst stage? Reprod. Biomed. Online. 2016, 32, 142–146. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, B.; Mo, S.; Ma, L.; Chang, F.; Zhang, L.; Xu, F.; Wang, L. Improvement of pregnancy outcome by extending embryo culture in IVF-ET during clinical application. J. Assist. Reprod. Genet. 2018, 35, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Feuer, S.K.; Liu, X.; Donjacour, A.; Lin, W.; Simbulan, R.K.; Giritharan, G.; Piane, L.D.; Kolahi, K.; Ameri, K.; Maltepe, E.; et al. Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology 2014, 155, 1956–1969. [Google Scholar] [CrossRef] [PubMed]
- Macchiarelli, G.; Nottola, S.A.; Palmerini, M.G.; Bianchi, S.; Maione, M.; Lorenzo, C.; Stifano, G.; Di Marco, E.; Correr, S. Morphological expression of angiogenesis in the mammalian ovary as seen by SEM of corrosion casts. Ital. J. Anat. Embryol. 2010, 115, 109–114. [Google Scholar] [PubMed]
- Bernardi, S.; Bianchi, S.; Botticelli, G.; Rastelli, E.; Tomei, A.R.; Palmerini, M.G.; Continenza, M.A.; Macchiarelli, G. Scanning electron microscopy and microbiological approaches for the evaluation of salivary microorganisms behaviour on anatase titanium surfaces: In vitro study. Morphologie 2018, 102, 1–6. [Google Scholar] [CrossRef]
- Bernardi, S.; Bianchi, S.; Tomei, A.R.; Continenza, M.A.; Macchiarelli, G. Microbiological and SEM-EDS Evaluation of Titanium Surfaces Exposed to Periodontal Gel: In Vitro Study. Materials 2019, 12, 1448. [Google Scholar] [CrossRef]
- Palmerini, M.G.; Belli, M.; Nottola, S.A.; Miglietta, S.; Bianchi, S.; Bernardi, S.; Antonouli, S.; Cecconi, S.; Familiari, G.; Macchiarelli, G. Mancozeb impairs the ultrastructure of mouse granulosa cells in a dose-dependent manner. J. Reprod. Dev. 2018, 64, 75–82. [Google Scholar] [CrossRef]
- Nottola, S.A.; Cecconi, S.; Bianchi, S.; Motta, C.; Rossi, G.; Continenza, M.A.; Macchiarelli, G. Ultrastructure of isolated mouse ovarian follicles cultured in vitro. Reprod. Biol. Endocrinol. 2011, 9, 3. [Google Scholar] [CrossRef]
- Bianchi, S.; Macchiarelli, G.; Micara, G.; Linari, A.; Boninsegna, C.; Aragona, C.; Rossi, G.; Cecconi, S.; Nottola, S.A. Ultrastructural markers of quality are impaired in human metaphase II aged oocytes: A comparison between reproductive and in vitro aging. J. Assist. Reprod. Genet. 2015, 32, 1343–1358. [Google Scholar] [CrossRef]
- Palmerini, M.G.; Zhurabekova, G.; Balmagambetova, A.; Nottola, S.A.; Miglietta, S.; Belli, M.; Bianchi, S.; Cecconi, S.; Di Nisio, V.; Familiari, G.; et al. The pesticide Lindane induces dose-dependent damage to granulosa cells in an in vitro culture. Reprod. Biol. 2017, 17, 349–356. [Google Scholar] [CrossRef]
- Gardner, D.K.; Lane, M.; Calderon, I.; Leeton, J. Environment of the preimplantation human embryo in vivo: Metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil. Steril. 1996, 65, 349–353. [Google Scholar] [CrossRef]
- Rinaudo, P.F.; Giritharan, G.; Talbi, S.; Dobson, A.T.; Schultz, R.M. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil. Steril. 2006, 86, 1252–1265. [Google Scholar] [CrossRef] [PubMed]
- McKiernan, S.H.; Bavister, B.D. Environmental variables influencing in vitro development of hamster 2-cell embryos to the blastocyst stage. Biol. Reprod. 1990, 43, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Foote, R.H. Culture of rabbit zygotes into blastocysts in protein-free medium with one to twenty per cent oxygen. J. Reprod. Fertil. 1993, 98, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Berthelot, F.; Terqui, M. Effects of oxygen, CO2/pH and medium on the in vitro development of individually cultured porcine one- and twocell embryos. Reprod. Nutr. Dev. 1996, 36, 241–251. [Google Scholar] [CrossRef][Green Version]
- Thompson, T.G.; Simpson, A.C.; Pugh, P.A.; Donnelly, P.E.; Tervit, H.R. Effect of oxygen concentration on in vitro development of preimplantation sheep and cattle embryos. J. Reprod. Fertil. 1990, 89, 573–578. [Google Scholar] [CrossRef]
- De Munck, N.; Janssens, R.; Segers, I.; Tournaye, H.; Van de Velde, H.; Verheyen, G. Influence of ultra-low oxygen (2%) tension on in-vitro human embryo development. Hum. Reprod. 2019, 34, 228–234. [Google Scholar] [CrossRef]
- Feuer, S.; Liu, X.; Donjacour, A.; Simbulan, R.; Maltepe, E.; Rinaudo, P. Common and specific transcriptional signatures in mouse embryos and adult tissues induced by in vitro procedures. Reproduction 2016, 153, 107–122. [Google Scholar] [CrossRef]
- Khalili, M.A.; Maione, M.; Palmerini, M.G.; Bianchi, S.; Macchiarelli, G.; Nottola, S.A. Ultrastructure of human mature oocytes after vitrification. Eur. J. Histochem. 2012, 56, 38. [Google Scholar] [CrossRef]
- Bianchi, S.; Macchiarelli, G.; Micara, G.; Aragona, C.; Maione, M.; Nottola, S.A. Ultrastructural and morphometric evaluation of aged cumulus-oocyte-complexes. Ital. J. Anat. Embryol. 2013, 118, 28. [Google Scholar]
- Bianchi, S.; Nottola, S.; Torge, D.; Palmerini, M.; Necozione, S.; Macchiarelli, G. Association between Female Reproductive Health and Mancozeb: Systematic Review of Experimental Models. Int. J. Environ. Res. Public Health 2020, 17, 2580. [Google Scholar] [CrossRef]
- Palmerini, M.G.; Nottola, S.A.; Tunjung, W.A.; Kadowaki, A.; Bianchi, S.; Cecconi, S.; Sato, E.; Macchiarelli, G. EGF-FSH supplementation reduces apoptosis of pig granulosa cells in co-culture with cumulus-oocyte complexes. Biochem. Biophys. Res. Commun. 2016, 481, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Zhurabekova, G.; Balmagambetova, A.; Bianchi, S.; Belli, M.; Bekmukhambetov, Y.; Macchiarelli, G. The toxicity of lindane in the female reproductive system: A review on the aral sea. Euromediterranean Biomed. J. 2018, 13, 104–108. [Google Scholar]
- Giusti, I.; Bianchi, S.; Nottola, S.A.; Macchiarelli, G.; Dolo, V. Clinical electron microscopy in the study of human ovarian tissues. EuroMediterranean Biomed. J. 2019, 14, 145–151. [Google Scholar]
- Bianchi, S.; Fantozzi, G.; Bernardi, S.; Antonouli, S.; Continenza, M.A.; Macchiarelli, G. Commercial oral hygiene products and implant collar surfaces: Scanning electron microscopy observations. Can. J. Dent. Hyg. 2020, 54, 26–31. [Google Scholar]
- Bianchi, S.; Bernardi, S.; Continenza, M.A.; Vincenti, E.; Antonouli, S.; Torge, D.; Macchiarelli, G. Scanning Electron Microscopy Approach for Evaluation of Hair Dyed with Lawsonia inermis Powder: In vitro Study. Int. J. Morphol. 2020, 38, 96–100. [Google Scholar] [CrossRef]
- Ducibella, T.; Ukena, T.; Karnovsky, M.; Anderson, E. Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo. J. Cell. Biol. 1977, 74, 153–167. [Google Scholar] [CrossRef]
- Dvorák, M.; Stastná, J.; Cech, S.; Trávnik, P.; Horký, D. The differentiation of rat ova during cleavage. Adv. Anat. Embryol. Cell Biol. 1978, 55, 3–131. [Google Scholar]
- Glujovsky, D.; Blake, D.; Farquhar, C.; Bardach, A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst. Rev. 2012, 7, CD002118. [Google Scholar]
- Fernández-Shaw, S.; Cercas, R.; Braña, C.; Villas, C.; Pons, I. Ongoing and cumulative pregnancy rate after cleavage-stage versus blastocyst-stage embryo transfer using vitrification for cryopreservation: Impact of age on the results. J. Assist. Reprod. Genet. 2015, 32, 177–184. [Google Scholar] [CrossRef][Green Version]
- Dvorák, M. Submicroscopic differentiation of nucleolus during cleavage of rat ovum. Scr. Med. 1974, 47, 497–502. [Google Scholar]
- Izquierdo, L.; Ebensperger, C. Cell membrane regionalization in early mouse embryos as demonstrated by 5’-nucleotidase activity. J. Embryol. Exp. Morphol. 1982, 69, 115–126. [Google Scholar] [PubMed]
- Harvey, A.; Gibson, T.; Lonergan, T.; Brenner, C. Dynamic regulation of mitochondrial function in preimplantation embryos and embryonic stem cells. Mitochondrion 2011, 11, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.; Antonouli, S.; Nottola, S.A. Mitochondria in mammalian oocytes and early embryos. A review on morphological and functional studies. EuroMediterranean Biomed. J. 2018, 13, 114–117. [Google Scholar]
- Ding, W.X.; Yin, X.M. Mitophagy: Mechanisms, pathophysiological roles, and analysis. Biol. Chem. 2012, 393, 547–564. [Google Scholar] [CrossRef]
- Sathananthan, A.H.; Ng, S.C.; Bongso, A.; Trounson, A.; Ratnam, S.S. Visual Atlas of Early Human Development for Assisted Reproductive Technology; National University of Singapore: Singapore, 1993; p. 209. [Google Scholar]
- El Shafie, M.; Sousa, M.; Windt, M.L.; Kruger, T.F. An Atlas of the Ultrastructure of Human Oocytes; Parthenon Publishing: New York, NY, USA, 2000; p. 187. [Google Scholar]
- Van blerkom, J. Mitochondria in early mammalian development. Semin. Cell. Dev. Biol. 2009, 20, 354–364. [Google Scholar] [CrossRef]
- Van Blerkom, J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 2011, 11, 797–813. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, B.; Wang, S.; Wu, W.; Wang, Q.; Chen, Y.; Kong, S.; Lu, J.; Tang, Z.; Ran, H.; et al. Integral Proteomic Analysis of Blastocysts Reveals Key Molecular Machinery Governing Embryonic Diapause and Reactivation for Implantation in Mice. Biol. Reprod. 2014, 90, 52. [Google Scholar] [CrossRef]
- Saksouk, N.; Simboeck, E.; Déjardin, J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 2015, 15, 3. [Google Scholar] [CrossRef]
- Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007, 447, 425–432. [Google Scholar] [CrossRef]
- Popken, J.; Graf, A.; Krebs, S.; Blum, H.; Schmid, V.J.; Strauss, A.; Guengoer, T.; Zakhartchenko, V.; Wolf, E.; Cremer, T. Remodeling of the Nuclear Envelope and Lamina during Bovine Preimplantation Development and Its Functional Implications. PLoS ONE 2015, 10, e0124619. [Google Scholar] [CrossRef]
- Cech, S.; Sedlackova, M. Ultrastructure and morphometric an analysis of preimplantation mouse embryos. Cell Tissue Res. 1983, 230, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Crosier, A.E.; Farin, P.W.; Dykstra, M.J.; Alexander, J.E.; Farin, C.E. Ultrastructural morphometry of bovine compact morulae produced in vivo or in vitro. Biol. Reprod. 2000, 62, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Thandavan, S.P.; Jiang, M.; Schoenlein, P.; Dong, Z. Autophagy: Molecular machinery, regulation, and implications for renal pathophysiology. Am. J. Physiol. Renal. Physiol. 2009, 297, F244–F256. [Google Scholar] [CrossRef] [PubMed]
- Scherz-Shouval, R.; Elazar, Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 2007, 17, 422–427. [Google Scholar] [CrossRef]





| Control: In Vivo Fertilized Mouse Embryos Flushed from the Uterus after Natural Fertilization | In Vitro Fertilization (IVF) 5%: IVF Performed in Optimal Conditions (Potassium Simplex Optimized Medium-KSOM with Amino Acids and 5% Oxygen) | IVF 20%: IVF Performed in High Oxygen (KSOM with Amino Acids and 20% Oxygen) |
|---|---|---|
| 2-cell: 24–28 h | 2-cell: 38 h | 2-cell: 38-h |
| 4-cell: 36–40 h | 4-cell: 48–50 h | 4-cell: 48–50 h |
| Morula: 60–70 h | Morula: 75–85 h | Morula: 75–85 h |
| Blastocyst: 82–84 h | Blastocyst: 108–110 h | Blastocyst: 108–110 h |
| Blastocyst Control | IVF 5% Blastocyst | IVF 20% Blastocyst | |
|---|---|---|---|
| Nuclear Shape | Oval or irregular shape. The surface showed minor irregularities. | Oval or irregular shape. The surface showed minor irregularities. | Oval, round or irregular shape. The surface presented minor irregularities and rare deep invaginations. |
| Nuclear envelope | Common structure formed by two intact membrane. Perinuclear space is often interrupted by nuclear pores. | N.D. (no differences) | N.D. |
| Hetero Chromatin | Regularly distributed in the nucleus with minor condensation close the nuclear envelope. | N.D. | Lower content of heterochromatin. |
| Nucleoli | One or two per nucleoli with irregular shape and reticular aspect. | N.D. | N.D. |
| Cell membrane | TE cell membrane appeared smooth with few and short microvilli. ICM cell surface presented numerous and longer microvilli. | N.D. | Interruption of the TE or ICM cell membrane were occasionally seen. |
| Mitochondria | Elongated and tubular in shape with long cristae and a medium dense matrix. Vacuolated mitochondria were present. | Higher density of vacuolated mitochondria. | Higher density of vacuolated mitochondria. |
| Vacuoles | Vacuoles were present but with smaller dimension if compared with those of the previous developmental stages. | Higher density of vacuoles. | Higher density of vacuoles. |
| Residual bodies | Occasionally seen in the cytoplasm. | Frequently seen in the cytoplasm. | Frequently seen in the cytoplasm. Smaller than the ones of the previous group. |
| Multi vesicular bodies | No presence of MVB in this group. | Occasionally found in the cytoplasm. | Occasionally found in the cytoplasm. |
| RER | Usually found in form of isolated cisternae. | N.D. | N.D. |
| SER | Present in the cytoplasm in form of small and smooth vesicles. Vesicles organized in cisternae are occasionally seen. | Cytoplasm showed lower density of SER vesicle. | Cytoplasm showed lower density of SER vesicle. |
| Golgi | Occasionally seen in the perinuclear region. | N.D. | N.D. |
| Glycogen | Present in the cytoplasm in mono-particulate form. | Higher density of glycogen granules in the cytoplasm. | Higher density of glycogen granules in the cytoplasm. |
| Lipid droplets | Lipid droplets were present quite regularly in the cytoplasm. | N.D. | N.D. |
| 5% O2 Concentration | 20% O2 Concentration | References | |
|---|---|---|---|
| Mitochondrial numerical density | ~100–200 less mitochondria/area detected. | ~300 less mitochondria/area detected. | Belli et al., 2019 [5] |
| Vacuolization | No differences. | Nearly 200 more vacuoles/area detected. | Belli et al., 2019 [5] |
| mtDNA copy number | ~107 less copied detected. | ~1.5 (107) less copies detected. | Belli et al., 2019 [5] |
| Alteration of the global gene expression | The expression of 264 genes is altered compared to in vivo control. | The expression of 2133 genes is altered compared to in vivo control | Feuer et al., 2017 [37] |
| Cell number | 25 more blastomeres than in vivo control. | 10 less blastomeres than in vivo control. | Rinaudo et al., 2006 [31] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belli, M.; Rinaudo, P.; Palmerini, M.G.; Ruggeri, E.; Antonouli, S.; Nottola, S.A.; Macchiarelli, G. Pre-Implantation Mouse Embryos Cultured In Vitro under Different Oxygen Concentrations Show Altered Ultrastructures. Int. J. Environ. Res. Public Health 2020, 17, 3384. https://doi.org/10.3390/ijerph17103384
Belli M, Rinaudo P, Palmerini MG, Ruggeri E, Antonouli S, Nottola SA, Macchiarelli G. Pre-Implantation Mouse Embryos Cultured In Vitro under Different Oxygen Concentrations Show Altered Ultrastructures. International Journal of Environmental Research and Public Health. 2020; 17(10):3384. https://doi.org/10.3390/ijerph17103384
Chicago/Turabian StyleBelli, Manuel, Paolo Rinaudo, Maria Grazia Palmerini, Elena Ruggeri, Sevastiani Antonouli, Stefania Annarita Nottola, and Guido Macchiarelli. 2020. "Pre-Implantation Mouse Embryos Cultured In Vitro under Different Oxygen Concentrations Show Altered Ultrastructures" International Journal of Environmental Research and Public Health 17, no. 10: 3384. https://doi.org/10.3390/ijerph17103384
APA StyleBelli, M., Rinaudo, P., Palmerini, M. G., Ruggeri, E., Antonouli, S., Nottola, S. A., & Macchiarelli, G. (2020). Pre-Implantation Mouse Embryos Cultured In Vitro under Different Oxygen Concentrations Show Altered Ultrastructures. International Journal of Environmental Research and Public Health, 17(10), 3384. https://doi.org/10.3390/ijerph17103384

