Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Progression of Scientific Output
3.2. Publication Distribution by Countries and Institutions
3.3. Keyword Analysis
4. Conclusions
- (1)
- The current research in wastewater treatments with AOPs is mainly focused at a pilot scale in batch mode. The evaluation in real conditions in continuous flow mode is mandatory for large-scale implementation.
- (2)
- Strengthening the investigation on the removal of contaminants of emergent concern and bacterial inactivation for wastewater reuse using different AOPs.
- (3)
- Contamination caused by antibiotics and ARBs/ARGs should be highlighted as a worldwide health and environmental concern. In-depth research about removal mechanisms of antibiotics and ARBs/ARGs using AOPs is required.
Author Contributions
Funding
Conflicts of Interest
References
- European Commission (EC). Water Scarcity & Droughts. 2018. Available online: https://ec.europa.eu/environment/water/quantity/about.htm (accessed on 8 June 2019).
- Fernández-García, A.; Rojas, E.; Pérez, M.; Silva, R.; Hernández-Escobedo, Q.; Manzano-Agugliaro, F. A parabolic-trough collector for cleaner industrial process heat. J. Clean. Prod. 2015, 89. [Google Scholar] [CrossRef]
- Paranychianakis, N.V.; Salgot, M.; Snyder, S.A.; Angelakis, A.N. Water reuse in EU states: Necessity for uniform criteria to mitigate human and environmental risks. Crit. Rev. Environ. Sci. Technol 2015, 45. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011; Available online: https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf;jsessionid=AEEB237C93D4E479E95B9FF65B88AA8F?sequence=1 (accessed on 6 June 2019).
- USEPA. Guidelines for Water Reuse; Office of Wastewater Management, Office of Water: Washington, DC, USA, 2012. Available online: https://www.epa.gov/sites/production/files/2019-08/documents/2012-guidelines-water-reuse.pdf (accessed on 6 June 2019).
- ISO 16075. Guidelines for Treated Wastewater Use for Irrigation Projects—Part 1: The Basis of a Reuse Project for Irrigation. 2015. Available online: http://https://www.iso.org/standard/62756.html (accessed on 7 June 2019).
- Bartzas, G.; Tinivella, F.; Medini, L.; Zaharaki, D.; Komnitsas, K. Assessment of groundwater contamination risk in an agricultural area in north Italy. Inf. Process. Agric. 2015, 2. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1. [Google Scholar] [CrossRef]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147. [Google Scholar] [CrossRef]
- Choi, H.; Antoniou, M.G.; de la Cruz, A.A.; Stathatos, E.; Dionysiou, D.D. Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination. Desalination 2007, 202. [Google Scholar] [CrossRef]
- Al-Dawery, S.K. Photo-catalyst degradation of tartrazine compound in wastewater using TiO2 and UV light. J. Eng. Sci. Technol. 2013, 8, 683–691. [Google Scholar]
- Da Silva, S.W.; Klauck, C.R.; Siqueira, M.A.; Bernardes, A.M. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes. J. Hazard. Mater. 2015, 282. [Google Scholar] [CrossRef]
- Mierzwa, J.C.; Rodrigues, R.; Teixeira, A.C.S.C. UV-Hydrogen Peroxide Processes, in: Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology. Sciencedirect 2018. [Google Scholar] [CrossRef]
- Gernjak, W.; Krutzler, T.; Glaser, A.; Malato, S.; Caceres, J.; Bauer, R.; Fernández-Alba, A.R. Photo-fenton treatment of water containing natural phenolic pollutants. Chemosphere 2003. [Google Scholar] [CrossRef]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 2017. [Google Scholar] [CrossRef]
- Villeneuve, L.; Alberti, L.; Steghens, J.P.; Lancelin, J.M.; Mestas, J.L. Assay of hydroxyl radicals generated by focused ultrasound. Ultrason. Sonochem. 2009. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S.; Sánchez-Pérez, J.A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Sci. Total Environ. 2011. [Google Scholar] [CrossRef] [PubMed]
- Amor, C.; Marchão, L.; Lucas, M.S.; Peres, J.A. Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water 2019, 11, 205. [Google Scholar] [CrossRef]
- Ballesteros Martín, M.M.; Sánchez Pérez, J.A.; García Sánchez, J.L.; Casas López, J.L.; Malato Rodríguez, S. Effect of pesticide concentration on the degradation process by combined solar photo-Fenton and biological treatment. Water Res. 2009. [Google Scholar] [CrossRef]
- Zapata, A.; Malato, S.; Sánchez-Pérez, J.A.; Oller, I.; Maldonado, M.I. Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water. Catal. Today 2010. [Google Scholar] [CrossRef]
- Rahmanian, N.; Jafari, S.M.; Galanakis, C.M. Recovery and removal of phenolic compounds from olive mill wastewater. J. Am. Oil Chem. Soc. 2014. [Google Scholar] [CrossRef]
- Kallel, M.; Belaid, C.; Mechichi, T.; Ksibi, M.; Elleuch, B. Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron. Chem. Eng. J. 2009. [Google Scholar] [CrossRef]
- Cañizares, P.; Lobato, J.; Paz, R.; Rodrigo, M.A.; Sáez, C. Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere 2007. [Google Scholar] [CrossRef]
- Lucas, M.S.; Peres, J.A.; Li Puma, G. Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics. Sep. Purif. Technol. 2010. [Google Scholar] [CrossRef]
- García, C.A.; Hodaifa, G. Real olive oil mill wastewater treatment by photo-Fenton system using artificial ultraviolet light lamps. J. Clean. Prod. 2017. [Google Scholar] [CrossRef]
- Benitez, F.J.; Real, F.J.; Acero, J.L.; Garcia, J.; Sanchez, M. Kinetics of the ozonation and aerobic biodegradation of wine vinasses in discontinuous and continuous processes. J. Hazard. Mater. 2003. [Google Scholar] [CrossRef]
- Andreozzi, R.; Longo, G.; Majone, M.; Modesti, G. Integrated treatment of olive oil mill effluents (OME): Study of ozonation coupled with anaerobic digestion. Water Res. 1998. [Google Scholar] [CrossRef]
- Velegraki, T.; Mantzavinos, D. Solar photo-Fenton treatment of winery effluents in a pilot photocatalytic reactor. Catal. Today 2015. [Google Scholar] [CrossRef]
- Ioannou, L.A.; Fatta-Kassinos, D. Solar photo-Fenton oxidation against the bioresistant fractions of winery wastewater. J. Environ. Chem. Eng. 2013. [Google Scholar] [CrossRef]
- Genthe, B.; Le Roux, W.J.; Schachtschneider, K.; Oberholster, P.J.; Aneck-Hahn, N.H.; Chamier, J. Health risk implications from simultaneous exposure to multiple environmental contaminants. Ecotoxicol. Environ. Saf. 2013. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013. [Google Scholar] [CrossRef]
- Bueno, M.J.M.; Gomez, M.J.; Herrera, S.; Hernando, M.D.; Agüera, A.; Fernández-Alba, A.R. Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring. Environ. Pollut. 2012. [Google Scholar] [CrossRef]
- Petrovic, M.; Eljarrat, E.; Lopez De Alda, M.J.; Barceló, D. Endocrine disrupting compounds and other emerging contaminants in the environment: A survey on new monitoring strategies and occurrence data. Anal. Bioanal. Chem. 2004. [Google Scholar] [CrossRef]
- Pérez-Estrada, L.A.; Malato, S.; Agüera, A.; Fernández-Alba, A.R. Degradation of dipyrone and its main intermediates by solar AOPs. Catal. Today 2007. [Google Scholar] [CrossRef]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—A review. Water Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Piernas, A.B.; Plaza-Bolaños, P.; García-Gómez, E.; Fernández-Ibáñez, P.; Agüera, A. Determination of organic microcontaminants in agricultural soils irrigated with reclaimed wastewater: Target and suspect approaches. Anal. Chim. Acta 2018. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Molina, P.; Plaza-Bolaños, P.; Lorenzo, A.; Agüera, A.; García Sánchez, J.L.; Malato, S.; Sánchez Pérez, J.A. Assessment of solar raceway pond reactors for removal of contaminants of emerging concern by photo-Fenton at circumneutral pH from very different municipal wastewater effluents. Chem. Eng. J. 2019. [Google Scholar] [CrossRef]
- Rivas Ibáñez, G.; Casas López, J.L.; Esteban García, B.; Sánchez Pérez, J.A. Controlling pH in biological depuration of industrial wastewater to enable micropollutant removal using a further advanced oxidation process. J. Chem. Technol. Biotechnol. 2014. [Google Scholar] [CrossRef]
- Wijekoon, K.C.; Hai, F.I.; Kang, J.; Price, W.E.; Guo, W.; Ngo, H.H.; Nghiem, L.D. The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment. Bioresour. Technol. 2013. [Google Scholar] [CrossRef]
- Sánchez Peréz, J.A.; Carra, I.; Sirtori, C.; Agüera, A.; Esteban, B. Fate of thiabendazole through the treatment of a simulated agro-food industrial effluent by combined MBR/Fenton processes at μg/L scale. Water Res. 2014. [Google Scholar] [CrossRef]
- Gabarrón, S.; Ferrero, G.; Dalmau, M.; Comas, J.; Rodriguez-Roda, I. Assessment of energy-saving strategies and operational costs in full-scale membrane bioreactors. J. Environ. Manag. 2014. [Google Scholar] [CrossRef]
- Prieto-Rodríguez, L.; Oller, I.; Klamerth, N.; Agüera, A.; Rodríguez, E.M.; Malato, S. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res. 2013. [Google Scholar] [CrossRef]
- Klamerth, N.; Malato, S.; Agüera, A.; Fernández-Alba, A. Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Res. 2013. [Google Scholar] [CrossRef]
- Lipczynska-Kochany, E.; Kochany, J. Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere 2008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhu, Z.; Zhang, R.; Zheng, C.; Zhang, H.; Qiu, Y.; Zhao, J. Extraction of copper from sewage sludge using biodegradable chelant EDDS. J. Environ. Sci. 2008. [Google Scholar] [CrossRef]
- Yuan, Z.; VanBriesen, J.M. The Formation of Intermediates in EDTA and NTA Biodegradation. Environ. Eng. Sci. 2006. [Google Scholar] [CrossRef]
- Nybo, T.; Dieterich, S.; Gamon, L.F.; Chuang, C.Y.; Hammer, A.; Hoefler, G.; Malle, E.; Rogowska-Wrzesinska, A.; Davies, M.J. Chlorination and oxidation of the extracellular matrix protein laminin and basement membrane extracts by hypochlorous acid and myeloperoxidase. Redox Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Gómez, E.; Esteban García, B.; Ballesteros Martín, M.M.; Fernández Ibáñez, P.; Sánchez Pérez, J.A. Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH. Water Res. 2014. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Lado Ribeiro, A.R.; et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019. [Google Scholar] [CrossRef]
- Giannakis, S.; Polo López, M.I.; Spuhler, D.; Sánchez Pérez, J.A.; Fernández Ibáñez, P.; Pulgarin, C. Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 1: A review of the mechanisms and the fundamental aspects of the process. Appl. Catal. B Environ. 2016. [Google Scholar] [CrossRef]
- Lapara, T.M.; Alleman, J.E. Thermophilic aerobic biological wastewater treatment. Water Res. 1999. [Google Scholar] [CrossRef]
- Ndounla, J.; Pulgarin, C. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region. Environ. Sci. Pollut. Res. 2015. [Google Scholar] [CrossRef]
- Nyangaresi, P.O.; Qin, Y.; Chen, G.; Zhang, B.; Lu, Y.; Shen, L. Effects of single and combined UV-LEDs on inactivation and subsequent reactivation of E. coli in water disinfection. Water Res. 2018. [Google Scholar] [CrossRef]
- Spuhler, D.; Andrés Rengifo-Herrera, J.; Pulgarin, C. The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Appl. Catal. B Environ. 2010. [Google Scholar] [CrossRef]
- Esteban García, B.; Rivas, G.; Arzate, S.; Sánchez Pérez, J.A. Wild bacteria inactivation in WWTP secondary effluents by solar photo-fenton at neutral pH in raceway pond reactors. Catal. Today 2018. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013. [Google Scholar] [CrossRef] [PubMed]
- Sahar, E.; David, I.; Gelman, Y.; Chikurel, H.; Aharoni, A.; Messalem, R.; Brenner, A. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 2011. [Google Scholar] [CrossRef]
- Huang, J.J.; Hu, H.Y.; Wu, Y.H.; Wei, B.; Lu, Y. Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli. Chemosphere 2013. [Google Scholar] [CrossRef]
- Ferro, G.; Fiorentino, A.; Alferez, M.C.; Polo-López, M.I.; Rizzo, L.; Fernández-Ibáñez, P. Urban wastewater disinfection for agricultural reuse: Effect of solar driven AOPs in the inactivation of a multidrug resistant E. coli strain. Appl. Catal. B Environ. 2015. [Google Scholar] [CrossRef]
- Giannakis, S.; Le, T.T.M.; Entenza, J.M.; Pulgarin, C. Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment. Water Res. 2018. [Google Scholar] [CrossRef]
- Giannakis, S.; Watts, S.; Rtimi, S.; Pulgarin, C. Solar light and the photo-Fenton process against antibiotic resistant bacteria in wastewater: A kinetic study with a Streptomycin-resistant strain. Catal. Today 2018. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Gavel, Y.; Iselid, L. Web of Science and Scopus: A journal title overlap study. Online Inf. Rev. 2008, 32, 8–21. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Mesa-Valle, C.; Manzano-Agugliaro, F. Human parasitology worldwide research. Parasitology 2018, 145, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Wang, H.; Wang, K.; Yu, G.; Ke, B.; Yu, H.Q.; Ren, H.; Zheng, X.; Li, J.; Li, W.W.; et al. Municipal wastewater treatment in China: Development history and future perspectives. Front. Environ. Sci. Eng. 2019. [Google Scholar] [CrossRef]
- Cherchi, C.; Kessano, M.; Badruzzaman, M.; Schewab, K.; Jacangelo., J.G. Municipal reclaimed water for multi-purpose applications in the power sector. A review. J. Environ. Manag. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ikemoto, T.; Magara, Y. Measures against impacts of nuclear disaster on drinking water supply systems in Japan. Water Pract. Technol. 2011. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.M.; Victor-Ortega, M.D.; Hodaifa, G.; Martinez-Ferez, A. Physicochemical analysis and adequation of olive oil mill wastewater after advanced oxidation process for reclamation by pressure-driven membrane technology. Sci. Total Environ. 2015. [Google Scholar] [CrossRef]
Cluster | Color | AOP Treatments | Wastewater | Targets |
---|---|---|---|---|
1 | Red | Ozone, ozone/UV, TiO2, | Hospital, olive mill, petroleum refinery | Pharmaceuticals, bacteria |
2 | Dark Green | Electrochemical, H2O2/UV, heterogeneous photocatalysis, TiO2 | Textile industrial, paper industrial | Bisphenol a, formaldehydo, lignin, pharmaceuticals, pesticides, antibiotic resistant bacteria, endocrine disruptors |
3 | Dark Blue | Fenton | Coking, textile, paper industrial, oil refinery, winery | Endocrine disruptors, acetaminophen, colors, COD |
4 | Dark Yellow | Electro-Fenton, anodic oxidation, sonoelectrochemistry | Industrial textile, petrochemical | Organic pollutants, organic matter, dyes |
5 | Dark Purple | TiO2, Fenton, photo-Fenton, UV | Livestock, winery, textile | Persistent organic pollutants |
6 | Cyan | Electrolysis, Fenton, ozone, peroxy- and peroxymonodisulfate, UV/persulfate, UV/H2O2, UV/TiO2, zero-valent ion | Saline | COD, 1,4-dioxane, atrazine, dyes |
7 | Dark Orange | Electro-Fenton, Fenton, microwave, ozonization, UV radiation, wet air oxidation | Dyeing | Phenols, heavy metals |
8 | Brown | Cavitation, ionizing radiation | Oily | Emerging contaminants, azo dyes |
9 | Pink | H2O2, photo-Fenton, UV, | Slaughterhouse, urban | E. coli, pharmaceuticals, COD |
11 | Green | Ozonation, UV/Fenton | Municipal | Pharmaceuticals |
12 | Blue | H2O2, UV, UV/H2O2 | Textile | Pesticides, nitrate, nitrite, dyes |
13 | Yellow | Ultrasound, hydrodynamic cavitation, Fenton, photo-Fenton, TiO2 | Pharmaceutical | Paracetamol, phenol, |
14 | Purple | Fenton, sonolysis, ultrasonic radiation | Papermaking | Herbicides, organic pollutant, COD |
15 | Light Blue | Solar irradiation | Drinking, tannery | COD, dyes |
16 | Orange | Ozonation | Drinking, tannery | Phenol, COD |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido-Cardenas, J.A.; Esteban-García, B.; Agüera, A.; Sánchez-Pérez, J.A.; Manzano-Agugliaro, F. Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. Int. J. Environ. Res. Public Health 2020, 17, 170. https://doi.org/10.3390/ijerph17010170
Garrido-Cardenas JA, Esteban-García B, Agüera A, Sánchez-Pérez JA, Manzano-Agugliaro F. Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. International Journal of Environmental Research and Public Health. 2020; 17(1):170. https://doi.org/10.3390/ijerph17010170
Chicago/Turabian StyleGarrido-Cardenas, José Antonio, Belén Esteban-García, Ana Agüera, José Antonio Sánchez-Pérez, and Francisco Manzano-Agugliaro. 2020. "Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends" International Journal of Environmental Research and Public Health 17, no. 1: 170. https://doi.org/10.3390/ijerph17010170
APA StyleGarrido-Cardenas, J. A., Esteban-García, B., Agüera, A., Sánchez-Pérez, J. A., & Manzano-Agugliaro, F. (2020). Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. International Journal of Environmental Research and Public Health, 17(1), 170. https://doi.org/10.3390/ijerph17010170