Involvement of FGFR4 Gene Variants on the Clinicopathological Severity in Urothelial Cell Carcinoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Subject Selection
2.2. Genomic DNA Extraction and Selection of SNPs
2.3. The Genotyping of SNPs via Real-Time PCR
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Roupret, M.; Babjuk, M.; Comperat, E.; Zigeuner, R.; Sylvester, R.J.; Burger, M.; Cowan, N.C.; Bohle, A.; Van Rhijn, B.W.; Kaasinen, E. European association of urology guidelines on upper urinary tract urothelial cell carcinoma: 2015 update. Eur. Urol. 2015, 68, 868–879. [Google Scholar] [CrossRef]
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Miyazaki, J.; Nishiyama, H. Epidemiology of urothelial carcinoma. Int. J. Urol. 2017, 24(10), 730–734. [Google Scholar] [CrossRef]
- Mbeutcha, A.; Roupret, M.; Kamat, A.M.; Karakiewicz, P.I.; Lawrentschuk, N.; Novara, G.; Raman, J.D.; Seitz, C.; Xylinas, E.; Shariat, S.F. Prognostic factors and predictive tools for upper tract urothelial carcinoma: A systematic review. World J. Urol. 2017, 35, 337–353. [Google Scholar] [CrossRef]
- Hung, S.C.; Wang, S.S.; Li, J.R.; Chen, C.S.; Yang, C.K.; Chiu, K.Y.; Cheng, C.L.; Ou, Y.C.; Ho, H.C.; Yang, S.F. Effect of hmgb1 polymorphisms on urothelial cell carcinoma susceptibility and clinicopathological characteristics. Int. J. Med. Sci. 2018, 15, 1731–1736. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Chen, Y.; Duan, X.; Zhu, W.; Cai, C.; Deng, T.; Zeng, G. The clinicopathological and prognostic value of pd-l1 in urothelial carcinoma: A meta-analysis. Clin. Exp. Med. 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.C.; Chou, Y.E.; Li, J.R.; Chen, C.S.; Lin, C.Y.; Chang, L.W.; Chiu, K.Y.; Cheng, C.L.; Ou, Y.C.; Wang, S.S. Functional genetic variant of ww domain containing oxidoreductase gene associated with urothelial cell carcinoma clinicopathologic characteristics and long-term survival. Urol. Oncol. 2019, in press. [Google Scholar] [CrossRef]
- Tsay, M.D.; Hsieh, M.J.; Wang, S.S.; Wang, W.C.; Chou, Y.Y.; Shih, C.H.; Yang, S.F.; Chou, Y.E. Impact of endothelial nitric oxide synthase polymorphisms on urothelial cell carcinoma development. Urol. Oncol. 2019, 37, 293.e1–293.e9. [Google Scholar] [CrossRef]
- Hung, S.C.; Wang, S.S.; Li, J.R.; Chen, C.S.; Lin, C.Y.; Chang, L.W.; Chiu, K.Y.; Cheng, C.L.; Ou, Y.C.; Yang, S.F. Impact of rage polymorphisms on urothelial cell carcinoma clinicopathologic characteristics and long-term survival. Urol. Oncol. 2019, 37, 573.e9–573.e17. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S. Clinical utility of single nucleotide polymorphism arrays. Clin. Lab. Med. 2011, 31, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Tung, M.C.; Wen, Y.C.; Wang, S.S.; Lin, Y.W.; Chow, J.M.; Yang, S.F.; Chien, M.H. Impact of long non-coding rna hotair genetic variants on the susceptibility and clinicopathologic characteristics of patients with urothelial cell carcinoma. J. Clin. Med. 2019, 8, 282. [Google Scholar] [CrossRef] [PubMed]
- Su, S.C.; Hsieh, M.J.; Lin, C.W.; Chuang, C.Y.; Liu, Y.F.; Yeh, C.M.; Yang, S.F. Impact of hotair gene polymorphism and environmental risk on oral cancer. J. Dent. Res. 2018, 97, 717–724. [Google Scholar] [CrossRef] [PubMed]
- LaFramboise, T. Single nucleotide polymorphism arrays: A decade of biological, computational and technological advances. Nucleic. Acids. Res. 2009, 37, 4181–4193. [Google Scholar] [CrossRef] [PubMed]
- Sheu, M.J.; Hsieh, M.J.; Chiang, W.L.; Yang, S.F.; Lee, H.L.; Lee, L.M.; Yeh, C.B. Fibroblast growth factor receptor 4 polymorphism is associated with liver cirrhosis in hepatocarcinoma. PLoS ONE 2015, 10, e0122961. [Google Scholar] [CrossRef] [PubMed]
- Su, C.W.; Chen, M.K.; Hung, W.C.; Yang, S.F.; Chuang, C.Y.; Lin, C.W. Functional variant of chi3l1 gene is associated with neck metastasis in oral cancer. Clin. Oral. Investig. 2019, 23, 2685–2694. [Google Scholar] [CrossRef] [PubMed]
- Su, C.W.; Chien, M.H.; Lin, C.W.; Chen, M.K.; Chow, J.M.; Chuang, C.Y.; Chou, C.H.; Liu, Y.C.; Yang, S.F. Associations of genetic variations of the endothelial nitric oxide synthase gene and environmental carcinogens with oral cancer susceptibility and development. Nitric. Oxid. Biol. Chem. 2018, 79, 1–7. [Google Scholar] [CrossRef]
- Wu, E.R.; Chou, Y.E.; Liu, Y.F.; Hsueh, K.C.; Lee, H.L.; Yang, S.F.; Su, S.C. Association of lncrna h19 gene polymorphisms with the occurrence of hepatocellular carcinoma. Genes 2019, 10, 506. [Google Scholar] [CrossRef]
- Wu, E.R.; Hsieh, M.J.; Chiang, W.L.; Hsueh, K.C.; Yang, S.F.; Su, S.C. Association of lncrna ccat2 and casc8 gene polymorphisms with hepatocellular carcinoma. Int. J. Environ. Res. 2019, 16, 2833. [Google Scholar] [CrossRef]
- Wu, Y.L.; Chien, M.H.; Chou, Y.E.; Chang, J.H.; Liu, T.C.; Tsao, T.C.; Chou, M.C.; Yang, S.F. Association of egfr mutations and hmgb1 genetic polymorphisms in lung adenocarcinoma patients. J. Cancer 2019, 10, 2907–2914. [Google Scholar] [CrossRef]
- Tiong, K.H.; Mah, L.Y.; Leong, C.O. Functional roles of fibroblast growth factor receptors (fgfrs) signaling in human cancers. Apoptosis 2013, 18, 1447–1468. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.H.; Yang, S.F.; Liu, Y.F.; Lin, W.L.; Han, C.P.; Wang, P.H. Association of fibroblast growth factor receptor 4 genetic polymorphisms with the development of uterine cervical cancer and patient prognosis. Reprod. Sci. 2018, 25, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Raja, A.; Park, I.; Haq, F.; Ahn, S.M. Fgf19-fgfr4 signaling in hepatocellular carcinoma. Cells 2019, 8, 536. [Google Scholar] [CrossRef] [PubMed]
- Bertz, S.; Abee, C.; Schwarz-Furlan, S.; Alfer, J.; Hofstadter, F.; Stoehr, R.; Hartmann, A.; Gaumann, A.K. Increased angiogenesis and fgfr protein expression indicate a favourable prognosis in bladder cancer. Virchows. Arch. 2014, 465, 687–695. [Google Scholar] [CrossRef]
- Johnson, A.D. Single-nucleotide polymorphism bioinformatics: A comprehensive review of resources. Circ. Cardiovasc. Genet. 2009, 2, 530–536. [Google Scholar] [CrossRef]
- Schirmer, M.A.; Luske, C.M.; Roppel, S.; Schaudinn, A.; Zimmer, C.; Pfluger, R.; Haubrock, M.; Rapp, J.; Gungor, C.; Bockhorn, M. Relevance of sp binding site polymorphism in wwox for treatment outcome in pancreatic cancer. J. Natl. Cancer Inst. 2016, 108. [Google Scholar] [CrossRef]
- Xiong, L.L.; Xue, L.L.; Al-Hawwas, M.; Huang, J.; Niu, R.Z.; Tan, Y.X.; Xu, Y.; Su, Y.Y.; Liu, J.; Wang, T.H. Single-nucleotide polymorphism screening and rna sequencing of key messenger rnas associated with neonatal hypoxic-ischemia brain damage. Neural Regen. Res. 2020, 15, 86–95. [Google Scholar]
- Yang, P.; Wu, P.; Liu, X.; Feng, J.; Zheng, S.; Wang, Y.; Fan, Z. Interaction between enos gene polymorphism and current smoking on susceptibility to coronary heart disease in chinese people. Coron. Artery. Dis. 2019, 31, 87–91. [Google Scholar] [CrossRef]
- Chou, C.H.; Hsieh, M.J.; Chuang, C.Y.; Lin, J.T.; Yeh, C.M.; Tseng, P.Y.; Yang, S.F.; Chen, M.K.; Lin, C.W. Functional fgfr4 gly388arg polymorphism contributes to oral squamous cell carcinoma susceptibility. Oncotarget 2017, 8, 96225–96238. [Google Scholar] [CrossRef]
- Fiatal, S.; Adany, R. Application of single-nucleotide polymorphism-related risk estimates in identification of increased genetic susceptibility to cardiovascular diseases: A literature review. Front. Public Health 2017, 5, 358. [Google Scholar] [CrossRef]
- Lee, H.L.; Chiou, H.L.; Wang, S.S.; Hung, S.C.; Chou, M.C.; Yang, S.F.; Hsieh, M.J.; Chou, Y.E. Wisp1 genetic variants as predictors of tumor development with urothelial cell carcinoma. Urol. Oncol. 2018, 36, 160.e15–160.e21. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R., Jr. The role of fibroblast growth factor receptor (fgfr) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder. Pharmacol Res. 2019, 151, 104567. [Google Scholar] [CrossRef] [PubMed]
- Katoh, M. Fgfr inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (review). Int. J. Mol. Med. 2016, 38, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Quintanal-Villalonga, A.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. A patent review of fgfr4 selective inhibition in cancer (2007–2018). Expert Opin. Ther. Pat. 2019, 29, 429–438. [Google Scholar] [CrossRef]
- Prieto-Dominguez, N.; Shull, A.Y.; Teng, Y. Making way for suppressing the fgf19/fgfr4 axis in cancer. Future Med. Chem. 2018, 10, 2457–2470. [Google Scholar] [CrossRef]
- Tang, S.; Hao, Y.; Yuan, Y.; Liu, R.; Chen, Q. Role of fibroblast growth factor receptor 4 in cancer. Cancer Sci. 2018, 109, 3024–3031. [Google Scholar] [CrossRef]
- Vinsonneau, C.; Girshovich, A.; M’Rad M, B.; Perez, J.; Mesnard, L.; Vandermersch, S.; Placier, S.; Letavernier, E.; Baud, L.; Haymann, J.P. Intrarenal urothelium proliferation: An unexpected early event following ischemic injury. Am. J. Physiol. Ren. Physiol. 2010, 299, F479–F486. [Google Scholar] [CrossRef]
- Yang, Y.C.; Lu, M.L.; Rao, J.Y.; Wallerand, H.; Cai, L.; Cao, W.; Pantuck, A.; Dalbagni, G.; Reuter, V.; Figlin, R.A.; et al. Joint association of polymorphism of the fgfr4 gene and mutation tp53 gene with bladder cancer prognosis. Br. J. Cancer 2006, 95, 1455–1458. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, S.K.; Kim, J.W.; Lee, S.H.; Yoo, K.H.; Chung, J.H. Involvement of fibroblast growth factor receptor genes in benign prostate hyperplasia in a korean population. Dis. Markers 2013, 35, 869–875. [Google Scholar] [CrossRef]
- Babjuk, M.; Burger, M.; Comperat, E.M.; Gontero, P.; Mostafid, A.H.; Palou, J.; van Rhijn, B.W.G.; Roupret, M.; Shariat, S.F.; Sylvester, R. European association of urology guidelines on non-muscle-invasive bladder cancer (tat1 and carcinoma in situ)—2019 update. Eur. Urol. 2019. [Google Scholar] [CrossRef]
- Mori, K.; Janisch, F.; Parizi, M.K.; Mostafaei, H.; Lysenko, I.; Kimura, S.; Enikeev, D.V.; Egawa, S.; Shariat, S.F. Prognostic value of variant histology in upper tract urothelial carcinoma treated with nephroureterectomy: A systematic review and meta-analysis. J. Urol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Kardoust Parizi, M.; Enikeev, D.; Glybochko, P.V.; Seebacher, V.; Janisch, F.; Fajkovic, H.; Chlosta, P.L.; Shariat, S.F. Prognostic value of t1 substaging on oncological outcomes in patients with non-muscle-invasive bladder urothelial carcinoma: A systematic literature review and meta-analysis. World J. Urol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qi, H.; Zhang, L.; Li, H.; Shao, J.; Chen, H.; Zhong, M.; Shi, X.; Ye, T.; Li, Q. Effects of fgfr gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-docetaxel-based chemotherapy in breast cancer patients. BMC. Cancer 2018, 18, 1038. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Tsuchiya, N.; Yuasa, T.; Inoue, T.; Kumazawa, T.; Narita, S.; Horikawa, Y.; Tsuruta, H.; Obara, T.; Saito, M.; et al. Polymorphisms of fibroblast growth factor receptor 4 have association with the development of prostate cancer and benign prostatic hyperplasia and the progression of prostate cancer in a japanese population. Int. J. Cancer 2008, 123, 2574–2579. [Google Scholar] [CrossRef]
- Yap, S.A.; Schupp, C.W.; Chamie, K.; Evans, C.P.; Koppie, T.M. Effect of age on transitional cell carcinoma of the upper urinary tract: Presentation, treatment, and outcomes. Urology 2011, 78, 87–92. [Google Scholar] [CrossRef]
Variable | Controls (N = 856) n (%) | Patients (N = 428) n (%) | P-Value |
---|---|---|---|
Age (years) | |||
Mean ± SD | 57.18 ± 9.99 | 68.61 ± 11.85 | <0.001 |
Gender | |||
Male | 560 (65.4%) | 269 (62.9%) | 0.364 |
Female | 296 (34.6%) | 159 (37.1%) | |
Tobacco consumption | |||
No | 560 (65.4%) | 298 (69.6%) | 0.131 |
Yes | 298 (34.6%) | 130 (30.4%) | |
Stage | |||
pTa–pT2 | 281 (65.7%) | ||
pT3–pT4 | 147 (34.3%) | ||
Tumor T status | |||
Ta–T2 | 286 (66.8%) | ||
T3–T4 | 142 (33.2%) | ||
Lymph node status | |||
N0 | 378 (88.3%) | ||
N1 + N2 | 50 (11.7%) | ||
Metastasis | |||
M0 | 414 (96.7%) | ||
M1 | 14 (3.3%) | ||
Histopathologic grading | |||
Low grade | 53 (12.4%) | ||
High grade | 375 (87.6%) |
Variable | Controls (N = 856) n (%) | Patients (N = 428) n (%) | OR (95% CIs) | AOR (95% CIs) |
---|---|---|---|---|
rs2011077 | ||||
TT | 221 (25.8%) | 110 (25.7%) | 1.000 (reference) | 1.000 (reference) |
TC | 418 (48.8%) | 224 (52.3%) | 1.077 (0.813–1.425) | 1.267 (0.863–1.860) |
CC | 217 (25.4%) | 94 (22.0%) | 0.870 (0.624–1.214) | 0.781 (0.487–1.252) |
TC + CC | 635 (74.2%) | 318 (74.3%) | 1.006 (0.772–1.312) | 1.095 (0.759–1.579) |
rs351855 | ||||
GG | 242 (28.3%) | 114 (26.6%) | 1.000 (reference) | 1.000 (reference) |
GA | 426 (49.7%) | 222 (51.9%) | 1.106 (0.840–1.457) | 1.406 (0.963–2.055) |
AA | 188 (22.0%) | 92 (21.5%) | 1.039 (0.744–1.451) | 0.982 (0.609–1.582) |
GA + AA | 614 (71.7%) | 314 (73.4%) | 1.086 (0.836–1.409) | 1.274 (0.886–1.831) |
rs7708357 | ||||
GG | 838 (97.9%) | 416 (97.2%) | 1.000 (reference) | 1.000 (reference) |
GA | 17 (2.0%) | 10 (2.3%) | 1.185 (0.538–2.611) | 1.696 (0.641–4.485) |
AA | 1 (0.1%) | 2 (0.5%) | 4.029 (0.364–44.559) | |
AG + AA | 18 (2.1%) | 12 (2.8%) | 1.343 (0.641–2.814) | 2.039 (0.801–5.190) |
rs1966265 | ||||
AA | 221 (25.8%) | 107 (25.0%) | 1.000 (reference) | 1.000 (reference) |
AG | 420 (49.1%) | 226 (52.8%) | 0.913 (0.653–1.275) | 0.808 (0.500–1.306) |
GG | 215 (25.1%) | 95 (22.2%) | 1.111 (0.838–1.473) | 1.394 (0.945–2.056) |
AG + GG | 635 (74.2%) | 321 (75.0%) | 1.044 (0.799–1.364) | 1.187 (0.818–1.723) |
Variable | FGFR4 (rs2011077) | |||
---|---|---|---|---|
TT (%) (n = 110) | TC + CC (%) (n = 318) | OR (95% CIs) | P Value | |
Stage | ||||
pTa–pT2 | 82 (74.5%) | 199 (62.6%) | 1.000 (reference) | |
pT3–pT4 | 28 (25.5%) | 119 (37.4%) | 1.751 (1.078–2.846) | 0.023 * |
Tumor T status | ||||
Ta–T2 | 82 (74.5%) | 204 (64.2%) | 1.000 (reference) | |
T3–T4 | 28 (25.5%) | 114 (35.8%) | 1.637 (1.006–2.662) | 0.046 * |
Lymph node status | ||||
N0 | 101 (91.8%) | 277 (87.1%) | 1.000 (reference) | |
N1 + N2 | 9 (8.2%) | 41 (12.9%) | 1.661 (0.779–3.540) | 0.185 |
Metastasis | ||||
M0 | 107 (97.3%) | 307 (96.5%) | 1.000 (reference) | |
M1 | 3 (2.7%) | 11 (3.5%) | 1.278 (0.350–4.668) | 0.710 |
Histopathologic grading | ||||
Low grade | 20 (18.2%) | 33 (10.4%) | 1.000 (reference) | |
High grade | 90 (81.8%) | 285 (89.6%) | 1.919 (1.049–3.511) | 0.032 * |
Variable | FGFR4 (rs1966265) | |||
---|---|---|---|---|
AA (%) (n = 107) | AG + GG (%) (n = 321) | OR (95% CIs) | P-Value | |
Stage | ||||
pTa–pT2 | 80 (74.8%) | 201 (62.6%) | 1.000 (reference) | |
pT3–pT4 | 27 (25.2%) | 120 (37.4%) | 1.769 (1.082–2.891) | 0.022 * |
Tumor T status | ||||
Ta–T2 | 80 (74.8%) | 206 (64.2%) | 1.000 (reference) | |
T3–T4 | 27 (25.2%) | 115 (35.8%) | 1.654 (1.011–2.706) | 0.044 * |
Lymph node status | ||||
N0 | 98 (91.6%) | 280 (87.2%) | 1.000 (reference) | |
N1 + N2 | 9 (8.4%) | 41 (12.8%) | 1.594 (0.748–3.400) | 0.224 |
Metastasis | ||||
M0 | 104 (97.2%) | 310 (96.6%) | 1.000 (reference) | |
M1 | 3 (2.8%) | 11 (3.4%) | 1.230 (0.337–4.495) | 0.754 |
Histopathologic grading | ||||
Low grade | 20 (18.7%) | 33 (10.3%) | 1.000 (reference) | |
High grade | 87 (81.3%) | 288 (89.7%) | 2.006 (1.096–3.674) | 0.022 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsay, M.-D.; Hsieh, M.-J.; Lee, C.-Y.; Wang, S.-S.; Chen, C.-S.; Hung, S.-C.; Lin, C.-Y.; Yang, S.-F. Involvement of FGFR4 Gene Variants on the Clinicopathological Severity in Urothelial Cell Carcinoma. Int. J. Environ. Res. Public Health 2020, 17, 129. https://doi.org/10.3390/ijerph17010129
Tsay M-D, Hsieh M-J, Lee C-Y, Wang S-S, Chen C-S, Hung S-C, Lin C-Y, Yang S-F. Involvement of FGFR4 Gene Variants on the Clinicopathological Severity in Urothelial Cell Carcinoma. International Journal of Environmental Research and Public Health. 2020; 17(1):129. https://doi.org/10.3390/ijerph17010129
Chicago/Turabian StyleTsay, Ming-Dow, Ming-Ju Hsieh, Chia-Yi Lee, Shian-Shiang Wang, Chuan-Shu Chen, Sheng-Chun Hung, Chia-Yen Lin, and Shun-Fa Yang. 2020. "Involvement of FGFR4 Gene Variants on the Clinicopathological Severity in Urothelial Cell Carcinoma" International Journal of Environmental Research and Public Health 17, no. 1: 129. https://doi.org/10.3390/ijerph17010129
APA StyleTsay, M.-D., Hsieh, M.-J., Lee, C.-Y., Wang, S.-S., Chen, C.-S., Hung, S.-C., Lin, C.-Y., & Yang, S.-F. (2020). Involvement of FGFR4 Gene Variants on the Clinicopathological Severity in Urothelial Cell Carcinoma. International Journal of Environmental Research and Public Health, 17(1), 129. https://doi.org/10.3390/ijerph17010129