Effect of Income Heterogeneity on Valuation of Mortality Risk in Taiwan: An Application of Unconditional Quantile Regression Method
Abstract
1. Introduction
2. Research Methods
2.1. Application of HWM in VSL
2.2. Unconditional Quantile Regression Model with Endogeneity
2.3. Choice of Empirical Function Form: Box-Cox Transform
3. Empirical Data Source and Processing
3.1. Manpower Utilization Survey
3.2. Source and Processing of Fatal Risk and Non-Fatal Injuries Risk Variables
3.3. Sample Processing
- based on the general life cycle of labor, those who are aged below 20 years or over 65 years were excluded;
- those who receive monthly wages were used as analysis objects;
- full-time employees were used as analysis objects, and part-time ones were excluded;
- those who are self-employed, employers, and unpaid homemakers were excluded;
- those who earn a wage below the minimum wage according to Taiwan’s official standard (with a monthly salary of less than $625.4, or an hourly rate of $3.79; the 2014 average exchange rate of NT$ dollar to US dollar: 30.38:1) were excluded; and,
- those who have missing information on monthly salary and working hours were excluded.
4. Empirical Results and Discussions
4.1. Choice of Function Form: Box-Cox Estimation Result
4.2. Estimation Result of Hedonic Wage Function
4.3. VSL Estimation under Different Income Levels
5. Conclusions
Funding
Conflicts of Interest
References
- United States Environmental Protection Agency. Valuing Mortality Risk Reductions for Policy: A Meta-Analytic Approach. 2016. Available online: https://yosemite.epa.gov/sab/sabproduct.nsf/0/0CA9E925C9A702F285257F380050C842/$File/VSL%20white%20paper_final_020516.pdf (accessed on 15 May 2018).
- Viscusi, W.K.; Aldy, J.E. The value of a statistical life: A critical review of market estimates throughout the world. J. Risk Uncertain. 2003, 27, 5–76. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Huber, J.; Bell, J. Assessing whether there is a cancer premium for the value of a statistical life. Health Econ. 2014, 23, 384–396. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, L.; Song, C.; Yin, H.; Yang, J. Spatiotemporal assessment of PM2.5-related economic losses from health impacts during 2014–2016 in China. Int. J. Environ. Res. Public Health 2018, 15, 1278. [Google Scholar] [CrossRef]
- Furuya, S.; Chimed-Ochir, O.; Takahashi, K.; David, A.; Takala, J. Global asbestos disaster. Int. J. Environ. Res. Public Health 2018, 15, 1000. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Li, X.; Zhang, Z. DALY-based health risk assessment of construction noise in Beijing, China. Int. J. Environ. Res. Public Health 2016, 13, 1045. [Google Scholar] [CrossRef] [PubMed]
- Tekesin, C.; Ara, S. Measuring the value of mortality risk reductions in Turkey. Int. J. Environ. Res. Public Health 2014, 11, 6890–6922. [Google Scholar] [CrossRef] [PubMed]
- Hammit, J.K.; Robinson, L.A. The income elasticity of the value per statistic life: Transferring estimates between high and low income populations. J. Benefit Cost Anal. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Hammitt, J.K.; Graham, J.D. Willingness to pay for health protection: Inadequate sensitivity to probability. J. Risk Uncertain. 1999, 8, 33–62. [Google Scholar] [CrossRef]
- Corso, P.S.; Hammitt, J.K.; Graham, J.D. Valuing mortality—Risk reduction: Using visual aids to improve validity of contingent valuation. J. Risk Uncertain. 2001, 23, 165–184. [Google Scholar] [CrossRef]
- Alberrini, A.; Cropper, M.; Krupnick, M.; Simon, N.B. Does the value of a statistical life vary with age and health status? Evidence from the US and Canada. J. Environ. Econ. Manag. 2004, 48, 769–792. [Google Scholar] [CrossRef]
- Hammitt, J.K.; Haninger, K. Valuing fatal risks to children and adults: Effects of disease, latency, and risk aversion. J. Risk Uncertain. 2010, 40, 57–83. [Google Scholar] [CrossRef]
- Cameron, T.A.; DeShazo, J.R. Euthanizing the value of a statistic life. Rev. Environ. Econ. Policy 2010, 4, 161–178. [Google Scholar] [CrossRef]
- Cameron, T.A.; DeShazo, J.R.; Johnson, E.H. The effect of children on adult demands for health—Risk reductions. J. Health Econ. 2010, 29, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Chestnut, L.G.; Rowe, R.D.; Breffle, W.S. Economic valuation of mortality—Risk reduction: Stated preference estimates from the United States and Canada. Contemp. Econ. Policy 2012, 30, 399–416. [Google Scholar] [CrossRef]
- Cameron, T.A.; DeShazo, J.R. Demand for health risk reductions: A cross-national comparison between the U.S. and Canada. J. Risk Uncertain. 2013, 41, 245–273. [Google Scholar] [CrossRef][Green Version]
- Yang, Z.; Liu, P.; Xu, X. Estimation of social value of statistical life using willingness-to-pay method in Nanjing, China. Accid. Anal. Prev. 2016, 95, 308–316. [Google Scholar] [CrossRef]
- Evan, M.F.; Schaur, G. A quantile estimation approach to identify income and age variation in the value of a statistical life. J. Environ. Econ. Manag. 2010, 59, 260–270. [Google Scholar] [CrossRef]
- Kniesner, T.J.; Viscusi, W.K.; Ziliak, J.P. Policy relevant heterogeneity in the value of statistical life: New evidence from panel data quantile regressions. J. Risk Uncertain. 2010, 40, 15–31. [Google Scholar] [CrossRef]
- Viscusi, W.K. Racial differences in labor market values of statistical life. J. Risk Uncertain. 2003, 27, 239–256. [Google Scholar] [CrossRef]
- Smith, V.K.; Evans, M.F.; Kim, H.; Taylor, D.H., Jr. Do the near-elderly value mortality risks differently? Rev. Econ. Stat. 2004, 86, 423–429. [Google Scholar] [CrossRef]
- Viscusi, W.K. The value of life: Estimates with risks by occupation and industry. Econ. Inq. 2004, 42, 29–48. [Google Scholar] [CrossRef]
- Kniesner, T.J.; Viscusi, W.K. Value of a statistical life: Relative position vs. relative age. Am. Econ. Rev. 2005, 95, 142–146. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Aldy, J.E. Labor market estimates of the senior discount for the value of statistical life. J. Environ. Econ. Manag. 2007, 53, 377–392. [Google Scholar] [CrossRef]
- Aldy, J.E.; Viscusi, W.K. Adjusting the value of a statistical life for age and cohort effects. Rev. Econ. Stat. 2008, 90, 573–581. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Hersch, J. The mortality cost to smokers. J. Health Econ. 2008, 27, 943–958. [Google Scholar] [CrossRef]
- Hersch, J.H.; Viscusi, W.K. Immigrant status and the value of statistical life. J. Hum. Resour. 2010, 45, 749–771. [Google Scholar]
- Scotton, C.R.; Taylor, L.O. Valuing risk reductions: Incorporating risk heterogeneity into a revealed preference framework. Resour. Energy Econ. 2011, 33, 381–397. [Google Scholar] [CrossRef]
- Scotton, C.R. New risk rates, inter-industry differential and the magnitude of VSL estimates. J. Benefit Cost Anal. 2013, 4, 39–80. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Masterman, C.J. Income elasticities and global values of a statistical life. J. Benefit Cost Anal. 2017, 8, 226–250. [Google Scholar] [CrossRef]
- Viscusi, W.K. Policy challenges of the heterogeneity of the value of statistical life. Found. Trends Econom. 2011, 6, 99–172. [Google Scholar] [CrossRef][Green Version]
- Firpo, S.; Fortin, N.M.; Lemieux, T. Unconditional quantile regressions. Econometrica 2009, 77, 953–973. [Google Scholar]
- Borah, B.J.; Basu, A. Highlighting differences between conditional and unconditional quantile regression approaches through an application to assess medication adherence. Health Econ. 2013, 22, 1052–1070. [Google Scholar] [CrossRef]
- Frölich, M.; Melly, B. Unconditional quantile treatment effects under endogeneity. J. Bus. Econ. Stat. 2013, 31, 346–357. [Google Scholar] [CrossRef]
- Powell, D. Quantile treatment effects in the presence of covariates. In Quantile Regression 2017; Bepress: Berkeley, CA, USA, 2017; Available online: http://works.bepress.com/david_powell/4/ (accessed on 25 April 2019).
- Wang, W. Estimation of Value of Statistical Life. Master’s Thesis, Department of Economics, Feng Chia University, Taichung, Taiwan, 1987. [Google Scholar]
- Hsueh, L.M.; Wang, S.W. Evaluation of Value of Statistical Life for Workers in Taiwan Area: Theory and Practice of Wage Premium of Job-Related Risk; Chung-Hua Institution for Economic Research: Taipei, Taiwan, 1987. [Google Scholar]
- Liu, J.-T.; Zhan, F.-G. Estimation of the value of statistical life of workers in Taiwan: Analysis from 1982 to 1986. Acad. Econ. Pap. 1989, 17, 55–87. [Google Scholar]
- Liu, J.T.; Hammitt, J.K.; Liou, J.L. Estimated hedonic wage function and value of life in developing country. Econ. Lett. 1997, 57, 353–358. [Google Scholar] [CrossRef]
- Liu, J.-L. The Older the Less Value? An Analysis in the Effect of Age on the Value of Life; National Central University: Taoyuan City, Taiwan, 2011. [Google Scholar]
- Koenker, R.; Hallock, K.F. Quantile regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Koenker, R. Quantile Regression; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Kniesner, T.J.; Viscusi, W.K.; Woock, C.; Ziliak, J.P. Pinning Down the Value of Statistical Life; IZA Institute of Labor Economics: Bonn, Germany, 2007. [Google Scholar]
- Mardones, C.; Riquelme, M. Estimation of the value of statistical life in Chile and extrapolation to other Latin American countries. Lat. Am. Res. Rev. 2018, 53, 815–830. [Google Scholar] [CrossRef]
- Moore, M.J.; Viscusi, W.K. The quantity-adjusted value of life. Econ. Inq. 1988, 3, 369–388. [Google Scholar] [CrossRef]
- Directorate-General of Budget, Accounting and Statistic, Executive Yuan. Manpower Utilization Survey; Survey Research Data Archive, Academia Sinica: Taipei City, Taiwan, 2014. [Google Scholar]
- Occupational Injuries Ratio per Thousandth under Labor Insurance. Available online: https://statfy.mol.gov.tw/ (accessed on 10 May 2018).
Variable | Definition | Mean | Standard Deviation |
---|---|---|---|
hour_wage | Hourly wage rate(2014 NT$) | 220.3872 | 103.75 |
FRt | Fatalities per 1000 workers in the individual’s industry (t = 2014) | 0.0259 | 0.0407 |
FRt − 1 | Fatalities per 1000 workers in the individual’s industry (t − 1 = 2013) | 0.0123 | 0.0121 |
NFR | Injury per 1000 workers in the individual’s industry | 3.1558 | 2.4898 |
Area_1 | Dummy variable that equals 1 if individual’s location of workplace is in Taipei City | 0.0722 | 0.2589 |
Area_2 | Dummy variable that equals 1 if individual’s location of workplace is in New Taipei City | 0.1062 | 0.3081 |
Area_3 | Dummy variable that equals 1 if individual’s location of workplace is in Taichung City | 0.1256 | 0.3314 |
Area_4 | Dummy variable that equals 1 if individual’s location of workplace is in Tainan City | 0.0833 | 0.2764 |
Area_5 | Dummy variable that equals 1 if individual’s location of workplace is in Kaohsiung City | 0.1233 | 0.3288 |
Area_6 | Dummy variable that equals 1 if individual’s location of workplace is outside of the five municipalities in Taiwan | 0.4894 | 0.5000 |
familysize | Number of family members over 15 years old | 3.6228 | 1.5132 |
Age | Individual’s age in years | 39.2285 | 10.0255 |
Sex | Dummy variable indicating individual is male | 0.5528 | 0.4973 |
Exp | Total number of years worked | 8.3132 | 7.2991 |
Edu1 | Dummy variable that equals 1 if individual’s education attainment is primary school | 0.0216 | 0.1455 |
Edu2 | Dummy variable that equals 1 if individual’s education attainment is junior high school | 0.0893 | 0.2853 |
Edu3 | Dummy variable that equals 1 if individual’s education attainment is senior high school | 0.2343 | 0.4236 |
Edu4 | Dummy variable that equals 1 if individual’s education attainment is vocational high school | 0.0941 | 0.2920 |
Edu5 | Dummy variable that equals 1 if individual’s education attainment is junior college | 0.1545 | 0.3615 |
Edu6 | Dummy variable that equals 1 if individual’s education attainment is university | 0.3261 | 0.4689 |
Edu7 | Dummy variable that equals 1 if individual’s education attainment is master | 0.0730 | 0.2601 |
Edu8 | Dummy variable that equals 1 if individual’s education attainment is Ph.D | 0.0065 | 0.0806 |
Marital | Dummy variable that equals 1 if individual is single without spouse | 0.3958 | 0.4891 |
Indus_size1 | Dummy variable that equals 1 if number of employees of company is 2-9 persons | 0.1993 | 0.3995 |
Indus_size2 | Dummy variable that equals 1 if number of employees of company is 10-29 persons | 0.2028 | 0.4021 |
Indus_size3 | Dummy variable that equals 1 if number of employees of company is 30-49 persons | 0.1002 | 0.3002 |
Indus_size4 | Dummy variable that equals 1 if number of employees of company is 50-99 persons | 0.0888 | 0.2845 |
Indus_size5 | Dummy variable that equals 1 if number of employees of company is 100-199 persons | 0.0924 | 0.2896 |
Indus_size6 | Dummy variable that equals 1 if number of employees of company is 200-499 persons | 0.0541 | 0.2262 |
Indus_size7 | Dummy variable that equals 1 if number of employees of company is above 500 persons | 0.1090 | 0.3116 |
Public_sector | Dummy variable that equals 1 if individual worked in public sector | 0.1535 | 0.3605 |
Occu1 | Dummy variable that equals 1 if individual’s occupation belongs senior officials and chief executives | 0.0345 | 0.1825 |
Occu2 | Dummy variable that equals 1 if individual’s occupation belongs technicians and associate professionals | 0.2116 | 0.4085 |
Occu3 | Dummy variable that equals 1 if individual’s occupation belongs craft and related trades workers | 0.1251 | 0.3308 |
Occu4 | Dummy variable that equals 1 if individual’s occupation belongs clerical support workers | 0.1490 | 0.3561 |
Occu5 | Dummy variable that equals 1 if individual’s occupation belongs service workers and sales | 0.1095 | 0.3123 |
Occu6 | Dummy variable that equals 1 if individual’s occupation belongs elementary labourers | 0.0365 | 0.1875 |
Occu7 | Dummy variable that equals 1 if individual’s occupation belongs professionals | 0.1590 | 0.3658 |
Occu8 | Dummy variable that equals 1 if individual’s occupation belongs skilled agricultural, forestry and fishery Workers | 0.0025 | 0.0501 |
Occu9 | Dummy variable that equals 1 if individual’s occupation belongs stationary plant and machine operators | 0.1724 | 0.3777 |
Number of Observations: 3974 |
Variable | Estimated Coefficient | Standard Errors | 95% Confidence Interval | |
---|---|---|---|---|
−0.7291 *** | 822.91 | −0.7987 | −0.6596 | |
= 3343.98 *** |
Variable | Unconditional Quantile Regression | 2SLS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | ||
0.000277 *** (1.11 × 10−5) | 0.000221 *** (1.31 × 10−5) | 0.000231 *** (4.50 × 10−5) | 0.000285 *** (2.44 × 10−5) | 0.000303 *** (3.34 × 10−5) | 0.000275 *** (2.94 × 10−5) | 0.000366 *** (2.52 × 10−5) | 0.000791 *** (1.35 × 10−5) | 0.000991 *** (8.70 × 10−6) | 0.000188 *** (1.38 × 10−5) | |
0.0000001 *** (2.0 × 10−7) | 0.000001 *** (2.40 × 10−7) | 0.000001 (6.80 × 10−7) | −0.000001 (4.10 × 10−7) | −0.000002 *** (4.90 × 10−7) | −0.000002 *** (3.73 × 10−6) | −0.000003 *** (4.30 × 10−7) | −0.000008 *** (2.30 × 10−7) | −0.000012 *** (1.60 × 10−7) | −0.000001 (1.80 × 10−6) | |
Area_1 | 0.001378 *** (4.57 × 10−5) | 0.001430 *** (6.35 × 10−5) | 0.001080 *** (8.64 × 10−5) | 0.001471 *** (1.38 × 10−4) | 0.001823 *** (1.47 × 10−5) | 0.001808 *** (1.0 × 10−4) | 0.001974 *** (1.46 × 10−4) | 0.002127 *** (8.36 × 10−5) | 0.002297 *** (6.16 × 10−5) | 0.00175 *** (3.05 × 10−4) |
Area_2 | 0.000850 *** (4.92 × 10−5) | 0.000850 *** (7.0 × 10−5) | 0.000565 *** (7.13 × 10−5) | 0.000753 *** (9.50 × 10−5) | 0.000494 *** (1.26 × 10−4) | 0.000327 *** (9.59 × 10−5) | 0.000376 *** (1.39 × 10−4) | 0.000218 *** (8.31 × 10−5) | 0.000196 *** (2.46 × 10−5) | 0.00047 * (2.58 × 10−4) |
Area_3 | 0.000594 *** (4.0 × 10−5) | −0.000022 6.64 × 10−5) | −0.000248 ** (7.63 × 10−5) | −0.000287 ** (1.22 × 10−4) | −0.000272 ** (1.26 × 10−4) | −0.000277 *** (1.21 × 10−4) | −0.000119 (9.57 × 10−5) | −0.000078 (9.49 × 10−5) | 0.000207 *** (5.78 × 10−5) | −0.0000854 (2.42 × 10−4) |
Area_4 | −0.000703 ** (4.95 × 10−5) | −0.001029 *** (7.11 × 10−5) | −0.001285 *** (1.17 × 10−4) | −0.001332 *** (1.02 × 10−4) | −0.001369 *** (1.67 × 10−4) | −0.001322 *** (1.16 × 10−4) | −0.001414 *** (1.23 × 10−4) | −0.001274 *** (7.26 × 10−5) | −0.001035 *** (7.71 × 10−5) | −0.0012083 *** (2.83 × 10−4) |
Area_5 | −0.000919 *** (4.55 × 10−5) | −0.001208 *** (6.13 × 10−5) | −0.001343 *** (7.93 × 10−5) | −0.001208 *** (7.64 × 10−5) | −0.001180 *** (1.01 × 10−4) | −0.001268 *** (8.80× 10−4) | −0.001001 *** (9.40 × 10−5) | −0.000949 *** (1.05 × 10−4) | −0.000562 *** (6.27 × 10−5) | −0.00113 *** (2.42 × 10−4) |
familysize | −0.0000003 (8.63 × 10−7) | −0.000031 * (1.49 × 10−5) | −0.000076 *** (2.0 × 10−5) | −0.000118 *** (1.91 × 10−5) | −0.000149 *** (2.27 × 10−5) | −0.000136 *** (2.33 × 10−5) | −0.000150 *** (2.59 × 10−5) | −0.000193 *** (2.01 × 10−5) | −0.000115 ** (5.3 × 10−6) | −0.0001283 ** (5.10 × 10−5) |
Age | 0.000019 *** (1.55 × 10−7) | 0.0000041 (4.11 × 10−6) | 0.000026 *** (4.0 × 10−6) | 0.00004 *** (6.55 × 10−6) | 0.000066 *** (5.13 × 10−6) | 0.000070 *** (5.55 × 10−6) | 0.000097 *** (4.42 × 10−6) | 0.000107 *** (3.56 × 10−6) | 0.000126 *** (1.69 × 10−6) | 0.0000562 *** (1.19 × 10−5) |
Sex | 0.002458 *** (2.62 × 10−5) | 0.002943 *** (4.77 × 10−5) | 0.003105 *** (5.95 × 10−5) | 0.003257 *** (6.64 × 10−5) | 0.003234 *** (1.11× 10−4) | 0.003384 *** (6.93 × 10−5) | 0.003454 *** (5.92 × 10−5) | 0.003204 *** (5.70 × 10−5) | 0.003479 *** (2.84 × 10−5) | 0.0031233 *** (1.66 × 10−4) |
Exp | 0.000211 *** (1.59 × 10−7) | 0.000228 *** (3.78 × 10−6) | 0.000216 *** (5.0 × 10−6) | 0.000216 *** (5.02 × 10−6) | 0.000185 *** (5.74 × 10−6) | 0.000172 *** (4.57 × 10−6) | 0.000158 *** (5.89 × 10−6) | 0.000156 *** (3.90 × 10−6) | 0.000114 *** (2.70 × 10−6) | 0.0001884 *** (1.34 × 10−5) |
Edu1 | −0.008922 *** (1.67 × 10−4) | −0.008084 *** (3.64 × 10−4) | −0.008208 *** (4.93 × 10−4) | −0.007900 *** (6.36 × 10−4) | −0.008033 *** (7.89 × 10−4) | −0.008181 *** (9.48 × 10−4) | −0.009021 *** (4.02 × 10−4) | −0.008283 *** (3.18 × 10−4) | −0.004672 *** (2.28 × 10−4) | −0.0083917 *** (1.06 × 10−4) |
Edu2 | −0.008049 *** (1.91 × 10−4) | −0.007079 *** (2.55 × 10−4) | −0.007793 *** (4.75 × 10−4) | −0.007421 *** (6.68 × 10−4) | −0.00711 *** (7.52 × 10−4) | −0.007097 *** (8.25 × 10−4) | −0.007838 *** (4.96 × 10−4) | −0.006572 *** (2.09 × 10−4) | −0.004177 *** (1.63 × 10−4) | −0.0073933 *** (9.58 × 10−4) |
Edu3 | −0.007230 *** (1.90 × 10−4) | −0.006746 *** (2.80 × 10−4) | −0.007205 *** (4.26 × 10−5) | −0.006847 *** (6.69 × 10−4) | −0.006373 *** (6.70 × 10−4) | −0.006596 *** (8.62 × 10−4) | −0.007364 *** (4.64 × 10−4) | −0.00631 *** (2.32 × 10−4) | −0.004205 *** (1.62 × 10−4) | −0.0068345 *** (9.26 × 10−4) |
Edu4 | −0.007308 *** (1.55 × 10−4) | −0.006658 *** (3.13 × 10−4) | −0.007051 *** (4.86 × 10−4) | −0.006788 *** (6.60 × 10−4) | −0.005936 *** (7.31 × 10−4) | −0.005825 *** (8.33 × 10−4) | −0.006766 *** (4.50 × 10−4) | −0.005661 *** (2.22 × 10−4) | −0.004070 *** (1.39 × 10−4) | −0.0065956 *** (9.48 × 10−4) |
Edu5 | −0.005864 *** (1.77 × 10−4) | −0.005351 *** (2.78 × 10−4) | −0.005671 *** (4.65 × 10−5) | −0.005323 *** (6.76 × 10−4) | −0.004759 *** (6.86 × 10−4) | −0.005066 *** (8.16 × 10−4) | −0.005828 *** (4.46 × 10−4) | −0.005001 *** (2.23 × 10−4) | −0.003230 *** (1.38 × 10−4) | −0.0054207 *** (9.25 × 10−4) |
Edu6 | −0.005166 *** (1.67 × 10−4) | −0.004439 *** (3.07 × 10−4) | −0.004708 *** (4.25 × 10−4) | −0.004263 *** (6.65 × 10−4) | −0.003408 *** (6.54 × 10−4) | −0.003577 *** (8.59 × 10−4) | −0.004374 *** (4.61 × 10−4) | −0.003503 *** (2.24 × 10−4) | −0.001749 *** (1.4 × 10−4) | −0.0040912 *** (9.14 × 10−4) |
Edu7 | −0.001711 ** (1.67 × 10−4) | −0.001152 *** (3.21 × 10−4) | −0.001849 *** (4.03 × 10−4) | −0.001843 *** (6.61 × 10−4) | −0.001213 * (6.66 × 10−4) | −0.001511 * (8.33 × 10−4) | −0.002622 *** (4.65 × 10−4) | −0.001796 *** (2.62 × 10−4) | −0.000885 *** (1.65 × 10−5) | −0.001758 *** (9.40 × 10−4) |
Marital | −0.000740 *** (1.80 × 10−5) | −0.00095 *** (4.48 × 10−5) | −0.000869 *** (8.16 × 10−5) | −0.000682 *** (8.36 × 10−5) | −0.000710 *** (8.56 × 10−5) | −0.000648 *** (8.41 × 10−5) | −0.000406 *** (8.74 × 10−5) | −0.000465 *** (4.90 × 10−5) | −0.000640 *** (4.32 × 10−5) | −0.0008086 *** (1.90 × 10−4) |
Indus_size1 | −0.002298 *** (7.15 × 10−5) | −0.002277 *** (8.11 × 10−5) | −0.002528 *** (1.05 × 10−4) | −0.002371 *** (1.38 × 10−4) | −0.002165 *** (1.06 × 10−4) | −0.002036 *** (1.15 × 10−4) | −0.002392 *** (1.17 × 10−4) | −0.002416 *** (1.23 × 10−4) | −0.002612 *** (4.41 × 10−5) | −0.0021572 *** (3.08 × 10−4) |
Indus_size2 | −0.001984 *** (7.15 × 10−5) | −0.002076 *** (1.02 × 10−4) | −0.002288 *** (1.19 × 10−4) | −0.002208 *** (1.44 × 10−4) | −0.002018 *** (9.82 × 10−5) | −0.001739 *** (1.06 × 10−4) | −0.001908 *** (1.09 × 10−4) | −0.001936 *** (1.45 × 10−4) | −0.002181 *** (4.93 × 10−5) | −0.0018518 *** (2.95 × 10−4) |
Indus_size3 | −0.001353 *** (7.18 × 10−5) | −0.00166 *** (6.19 × 10−5) | −0.001971 *** (1.29 × 10−4) | −0.002033 *** (1.65 × 10−5) | −0.001785 *** (1.27 × 10−4) | −0.001756 *** (1.44 × 10−4) | −0.002119 *** (1.38 × 10−4) | −0.001731 *** (1.23 × 10−4) | −0.001518 *** (4.44 × 10−5) | −0.0015528 *** (3.38 × 10−4) |
Indus_size4 | −0.000970 *** (5.82 × 10−5) | −0.000915 *** (7.63 × 10−5) | −0.001368 *** (1.55 × 10−4) | −0.001396 *** (1.40 × 10−4) | −0.001342 *** (1.35 × 10−4) | −0.001354 *** (1.71 × 10−4) | −0.00139 *** (9.54 × 10−5) | −0.001317 *** (1.32 × 10−4) | −0.001717 *** (4.37 × 10−5) | −0.0011651 *** (3.44 × 10−4) |
Indus_size5 | −0.001345 *** (4.46 × 10−5) | −0.000763 *** (1.03 × 10−5) | −0.000832 *** (7.45 × 10−5) | −0.000776 *** (1.10 × 10−4) | −0.000476 *** (1.19 × 10−4) | −0.000787 *** (1.17 × 10−4) | −0.000621 *** (1.46 × 10−4) | −0.000737 *** (1.44 × 10−4) | −0.00070 *** (3.46 × 10−5) | −0.0006715 ** (3.38× 10−4) |
Indus_size6 | −0.000284 ** (5.35 × 10−5) | −0.000607 *** (7.39 × 10−5) | −0.000810 *** (1.32 × 10−4) | −0.000828 *** (1.60 × 10−4) | −0.000491 *** (1.52 × 10−4) | −0.000659 *** (1.57 × 10−4) | −0.000481 *** (1.61 × 10−4) | −0.000465 *** (1.63 × 10−4) | −0.000059 (8.80 × 10−5) | −0.0005252 (3.95 × 10−4) |
Public_sector | 0.001471 *** (5.69 × 10−5) | 0.002588 *** (8.02 × 10−5) | 0.002554 *** (1.41 × 10−4) | 0.002786 *** (1.28 × 10−4) | 0.002976 *** (1.39 × 10−4) | 0.002891 *** (8.36 × 10−5) | 0.002663 *** (1.37 × 10−4) | 0.0018900 *** (1.25 × 10−4) | 0.001453 *** (4.94 × 10−5) | 0.0024619 *** (3.37 × 10−4) |
Occu1 | 0.010617 *** (8.41 × 10−5) | 0.009971 *** (1.36 × 10−4) | 0.009650 *** (2.18 × 10−4) | 0.010058 *** (1.67 × 10−4) | 0.009572 *** (1.71 × 10−4) | 0.009685 *** (1.66 × 10−4) | 0.009922 *** (2.87 × 10−4) | 0.010268 *** (1.22 × 10−4) | 0.010080 *** (6.36 × 10−5) | 0.0097288 *** (4.72 × 10−4) |
Occu2 | 0.002878 *** (3.64 × 10−5) | 0.003376 *** (6.99 × 10−5) | 0.003430 *** (9.55 × 10−5) | 0.003463 *** (1.24 × 10−4) | 0.003485 *** (1.23 × 10−4) | 0.004005 *** (9.75 × 10−5) | 0.004180 *** (1.56 × 10−4) | 0.004102 *** (7.27 × 10−5) | 0.004365 *** (3.36 × 10−5) | 0.003553 *** (2.77 × 10−4) |
Occu3 | 0.001010 *** (3.29 × 10−5) | 0.001080 *** (7.19 × 10−5) | 0.000964 *** (9.73 × 10−5) | 0.000758 *** (1.22 × 10−4) | 0.001263 *** (1.25 × 10−4) | 0.001208 *** (1.20 × 10−4) | 0.001262 *** (1.45 × 10−5) | 0.001095 *** (7.09 × 10−5) | 0.001167 *** (6.59 × 10−5) | 0.0010291 *** (2.88 × 10−4) |
Occu4 | −0.000572 *** (3.18 × 10−5) | −0.000098 (9.31 × 10−5) | −0.000007 (1.22 × 10−4) | 0.000072 (1.42 × 10−4) | 0.000351 *** (1.07 × 10−4) | 0.000837 *** (1.54 × 10−4) | 0.001303 *** (1.58 × 10−4) | 0.001301 *** (1.15 × 10−4) | 0.001822 *** (3.86 × 10−5) | 0.0004284 (2.98 × 10−4) |
Occu5 | −0.001535 *** (4.32 × 10−5) | −0.000793 *** (7.92 × 10−5) | −0.001171 *** (9.15 × 10−5) | −0.001043 *** (1.44 × 10−4) | −0.001034 *** (1.38 × 10−4) | −0.000505 *** (1.08 × 10−4) | −0.000123 (1.74 × 10−4) | −0.0000037 (9.60 × 10−4) | 0.001103 *** (4.51 × 10−5) | −0.000768 ** (3.14 × 10−4) |
Occu6 | −0.002188 *** (5.77 × 10−5) | −0.002127 *** (1.15 × 10−4) | −0.002965 *** (1.09 × 10−4) | −0.003494 *** (1.62 × 10−4) | −0.003413 *** (2.843 × 10−4) | −0.003480 *** (1.51 × 10−4) | −0.003644 *** (2.78 × 10−4) | −0.002582 *** (1.48 × 10−4) | −0.002820 *** (5.61 × 10−5) | −0.002998 *** (4.47 × 10−4) |
Occu7 | 0.005651 *** (4.37 × 10−5) | 0.006392 *** (8.0 × 10−5) | 0.006097 *** (1.21 × 10−4) | 0.006086 *** (1.19 × 10−4) | 0.006157 *** (1.60 × 10−4) | 0.006487 *** (1.05 × 10−4) | 0.006232 *** (1.69 × 10−4) | 0.006525 *** (7.84 × 10−5) | 0.007295 *** (5.27 × 10−5) | 0.0062191 *** (3.15 × 10−4) |
Occu8 | −0.003012 *** (7.05 × 10−5) | −0.005679 *** (2.84 × 10−4) | −0.002506 *** (7.14 × 10−4) | −0.001279 ** (5.67 × 10−4) | −0.001911 *** (5.91 × 10−4) | −0.002600 *** (3.16 × 10−4) | −0.002705 *** (7.67 × 10−4) | −0.004767 *** (2.89 × 10−4) | −0.005625 *** (3.55 × 10−4) | −0.0030964 ** (1.53 × 10−3) |
Constant | 1.343386 *** (2.02 × 10−5) | 1.344819 *** (4.04 × 10−4) | 1.346452 *** (4.81 × 10−4) | 1.34677 *** (9.73 × 10−4) | 1.346595 *** (8.64 × 10−4) | 1.347518 *** (1.06 × 10−3) | 1.34864 *** (5.50 × 10−4) | 1.349212 *** (3.10 × 10−4) | 1.34861 *** (1.56 × 10−4) | 1.347459 *** (1.08 × 10−3) |
Obj. Value | −8.20 | −10.91 | −10.47 | −10.11 | −11.61 | −9.39 | −11.17 | −10.68 | −11.13 | −− |
Adj. R2 | −− | −− | −− | −− | −− | −− | −− | −− | −− | 0.5701 |
Model | Hourly Wage ($/h) | Monthly Wage ($/Month) | VSL (Million $) |
---|---|---|---|
UQR: 10% | 4.46 | 822.91 | 8.91 |
UQR: 20% | 4.86 | 855.83 | 7.10 |
UQR: 30% | 5.35 | 921.66 | 7.43 |
UQR: 40% | 5.76 | 987.49 | 9.17 |
UQR: 50% | 6.17 | 1086.24 | 9.74 |
UQR: 60% | 6.86 | 1168.53 | 8.86 |
UQR: 70% | 7.77 | 1316.66 | 11.78 |
UQR: 80% | 9.21 | 1579.99 | 25.46 |
UQR: 90% | 11.32 | 1974.98 | 31.90 |
2SLS | 7.25 | 1254.93 | 6.05 |
Model | VSL 20 Years Old | VSL 30 Years Old | VSL 40 Years Old | VSL 50 Years Old | VSL 60 Years Old |
---|---|---|---|---|---|
UQR: 10% | 4.54 | 6.81 | 9.08 | 11.35 | 13.62 |
UQR: 20% | 3.62 | 5.43 | 7.24 | 9.05 | 10.87 |
UQR: 30% | 3.79 | 5.68 | 7.58 | 9.47 | 11.37 |
UQR: 40% | 4.67 | 7.01 | 9.35 | 11.68 | 14.02 |
UQR: 50% | 4.96 | 7.45 | 9.93 | 12.41 | 14.89 |
UQR: 60% | 4.52 | 6.78 | 9.04 | 11.30 | 13.56 |
UQR: 70% | 6.01 | 9.01 | 12.02 | 15.02 | 18.02 |
UQR: 80% | 12.98 | 19.47 | 25.96 | 32.45 | 38.94 |
UQR: 90% | 16.26 | 24.40 | 32.53 | 40.66 | 48.79 |
2SLS | 3.09 | 4.63 | 6.17 | 7.71 | 9.26 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liou, J.-L. Effect of Income Heterogeneity on Valuation of Mortality Risk in Taiwan: An Application of Unconditional Quantile Regression Method. Int. J. Environ. Res. Public Health 2019, 16, 1620. https://doi.org/10.3390/ijerph16091620
Liou J-L. Effect of Income Heterogeneity on Valuation of Mortality Risk in Taiwan: An Application of Unconditional Quantile Regression Method. International Journal of Environmental Research and Public Health. 2019; 16(9):1620. https://doi.org/10.3390/ijerph16091620
Chicago/Turabian StyleLiou, Je-Liang. 2019. "Effect of Income Heterogeneity on Valuation of Mortality Risk in Taiwan: An Application of Unconditional Quantile Regression Method" International Journal of Environmental Research and Public Health 16, no. 9: 1620. https://doi.org/10.3390/ijerph16091620
APA StyleLiou, J.-L. (2019). Effect of Income Heterogeneity on Valuation of Mortality Risk in Taiwan: An Application of Unconditional Quantile Regression Method. International Journal of Environmental Research and Public Health, 16(9), 1620. https://doi.org/10.3390/ijerph16091620