Next Article in Journal
Social Media-Based Health Management Systems and Sustained Health Engagement: TPB Perspective
Previous Article in Journal
Prospective Evaluation of Fidelity, Impact and Sustainability of Participatory Workplace Health Teams in Skilled Nursing Facilities
Open AccessArticle

Hydrogeochemical Characterization and Irrigation Quality Assessment of Shallow Groundwater in the Central-Western Guanzhong Basin, China

1
School of Environmental Science and Engineering, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
2
Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
*
Author to whom correspondence should be addressed.
Int. J. Environ. Res. Public Health 2019, 16(9), 1492; https://doi.org/10.3390/ijerph16091492
Received: 21 March 2019 / Revised: 17 April 2019 / Accepted: 25 April 2019 / Published: 27 April 2019
(This article belongs to the Section Environmental Science and Engineering)
Groundwater is the major water resource for the agricultural development of the Guanzhong Basin, China. In this study, a total of 97 groundwater samples (51 from the North Bank of the Wei River (NBWR) and 46 from the South Bank of the Wei River (SBWR)) were collected from the central-western Guanzhong Basin. The aim of this study was to investigate the hydrogeochemical characteristics of the basin and to determine the suitability of shallow groundwater for irrigation. The groundwater of the entire study area is alkaline. The groundwater of the SBWR is fresh water, and the NBWR groundwater is either freshwater or brackish water. The average concentration of ions (except for Ca2+) in SBWR samples is lower than in NBWR samples. HCO3 is dominant in the groundwater of the study area. Ca2+ is dominant in the SBWR while Na+ is dominant in the NBWR. The SBWR groundwater is mainly of the HCO3-Ca·Mg type, and has undergone the main hydrogeochemical processes of rock weathering-leaching. The hydrochemical facies of the majority of the NBWR groundwater samples are the HCO3-Na type with several minor hydrochemical facies of the HCO3-Ca·Mg, SO4·Cl-Na, and SO4·Cl-Ca·Mg types. Its chemistry is mainly controlled by rock weathering, cation exchange, and evaporation. Salinity hazard, sodium percentage, sodium adsorption ratio, residual sodium carbonate, magnesium hazard, permeability index, Kelley’s ratio, potential salinity, synthetic harmful coefficient, and irrigation coefficient were assessed to evaluate the irrigation quality of groundwater. The results of the comprehensive consideration of these indicators indicate that the percentage of NBWR water samples suitable for irrigation purposes ranges between 15.7% and 100% at an average level of 56.7%. Of the SBWR water samples suitable for irrigation, the percentage ranges from 78.3% to 100% with an average of 91.8%. Land irrigated with such water will not be exposed to any alkali hazard, but will suffer from a salinity hazard, which is more severe in the NBWR. Thus, most of the water in the NBWR can be used for soils with good drainage conditions which control salinity. View Full-Text
Keywords: groundwater; hydrogeochemistry; quality assessment; irrigation; Guanzhong Basin groundwater; hydrogeochemistry; quality assessment; irrigation; Guanzhong Basin
Show Figures

Figure 1

MDPI and ACS Style

Xu, P.; Feng, W.; Qian, H.; Zhang, Q. Hydrogeochemical Characterization and Irrigation Quality Assessment of Shallow Groundwater in the Central-Western Guanzhong Basin, China. Int. J. Environ. Res. Public Health 2019, 16, 1492.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop