Three-Dimensional Calibration for Routine Analyses of Bromide and Nitrate Ions as Indicators of Groundwater Quality in Coastal Territories
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouwer, H. Integrated water management: emerging issues and challenges. Agric. Water Manag. 2000, 45, 217–228. [Google Scholar] [CrossRef]
- Race, M. Applicability of alkaline precipitation for the recovery of EDDS spent solution. J. Environ. Manag. 2017, 203, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Onotri, L.; Race, M.; Clarizia, L.; Guida, M.; Alfè, M.; Andreozzi, R.; Marotta, R. Solar photocatalytic processes for treatment of soil washing wastewater. Chem. Eng. J. 2017, 318, 10–18. [Google Scholar] [CrossRef]
- Berner, E.; Berner, R. The Global Water Cycle; Prentice Hall: Upper Saddle River, NJ, USA, 1987. [Google Scholar]
- Nigro, A.; Sappa, G.; Barbieri, M. Boron isotopes and rare earth elements in the groundwater of a landfill site. J. Geochem. Explor. 2018, 190, 200–206. [Google Scholar] [CrossRef]
- Barbieri, M.; Ricolfi, L.; Vitale, S.; Muteto, P.V.; Nigro, A.; Sappa, G. Assessment of groundwater quality in the buffer zone of Limpopo National Park, Gaza Province, Southern Mozambique. Environ. Sci. Pollut. Res. Int. 2019, 26, 62–77. [Google Scholar] [CrossRef]
- Hitchon, B.; Perkins, E.H.; Gunter, W.D. Introduction to Ground Water Geochemistry; Geoscience Publishing Ltd.: Alberta, AB, Canada, 1999. [Google Scholar]
- USEPA. Estimated National Occurrence and Exposure to Nitrate and Nitrite in Public Drinking Water Supplies; Environmental Protection Agency, Office of Drinking Water: Washington, DC, USA, 1987.
- European Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31991L0676 (accessed on 22 March 2019).
- Jacks, G.; Sharma, V.P. Nitrogen circulation and nitrate in groundwater in an agricultural catchment in Southern India. Environ. Geol. 1983, 5, 61–64. [Google Scholar] [CrossRef]
- Hallberg, G.R.; Keeney, D.R. Nitrate. Regional Groundwater Quality; Alley, W.M., Ed.; Van Norstrand Publishing Company: New York, NY, USA, 1993; pp. 297–322. [Google Scholar]
- Johnson, C.J.; Bonrud, P.A.; Dosch, T.L.; Kilness, A.W.; Senger, K.A.; Busch, D.C.; Meyer, M.R. Fatal outcome of methemoglobinemia in an infant. JAMA 1987, 257, 2796–2797. [Google Scholar] [CrossRef]
- Kamrin, M.A. Health implications of groundwater contaminants. In Rural Groundwater Contamination; D’Itri, F.M., Wolfson, L.G., Eds.; Lewis: Chelsea, MI, USA, 1987; pp. 226–233. [Google Scholar]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef]
- Jones, B.F.; Vengosh, A.; Rosenthal, E.; Yechilieli, Y. Geochemical Investigations. In Seawater Intrusion in Coastal Aquifers-Concepts, Methods and Practices; Bear, J., Cheng, A.H.D., Sorek, S., Ouazar, D., Herrera, I., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; Volume 14, pp. 51–71. [Google Scholar]
- Krasner, S.W.; McGuire, M.J.; Jacangelo, J.G.; Patania, N.L.; Reagan, K.M.; Aieta, E.M. The occurrence of disinfection by-products in US drinking water. J. Am. Water Works Assoc. 1989, 81, 41–53. [Google Scholar] [CrossRef]
- Wang, Y.; Small, M.J.; VanBriesen, J.M. Assessing the risk associated with increasing bromide in drinking water sources in the Monongahela River, Pennsylvania. J. Environ. Eng. 2017, 143, 04016089. [Google Scholar] [CrossRef]
- Kittel, H. Schriftenreihe Gefährliche Arbeitsstoffe N 11, Bremerhaven; Wirtschaftsverlag NW: Dortmund, Germany, 1983. [Google Scholar]
- Bowen, H.J.M. Environmental Chemistry of the Elements; Academic Press: London, UK, 1979. [Google Scholar]
- Parrino, F.; Camera-Roda, G.; Loddo, V.; Palmisano, L.; Augugliaro, A. Combination of ozonation and photocatalysis for purification of aqueous effluents containing formic acid as probe pollutant and bromide ion. Water Res. 2014, 50, 189–199. [Google Scholar] [CrossRef][Green Version]
- Parrino, F.; Camera-Roda, G.; Loddo, V.; Augugliaro, A.; Palmisano, L. Photocatalytic ozonation: Maximization of the reaction rate and control of undesired by-products. Appl. Catal. B. Environ. 2014, 178, 37–43. [Google Scholar] [CrossRef]
- Cataldo, S.; Iannì, A.; Loddo, V.; Mirenda, E.; Palmisano, L.; Parrino, F.; Piazzese, D. Combination of advanced oxidation processes and active carbons adsorption for the treatment of simulated saline wastewater. Sep. Pur. Technol. 2019, 171, 101–111. [Google Scholar] [CrossRef]
- Toledano Garcia, D.; Ozer, L.Y.; Parrino, F.; Ahmed, M.; Brudecki, G.P.; Hasan, S.W.; Palmisano, G. Photocatalytic ozonation under visible light for the remediation of water effluents and its integration with an electro-membrane bioreactor. Chemosphere 2018, 209, 534–541. [Google Scholar] [CrossRef]
- Parrino, F.; Camera-Roda, G.; Loddo, V.; Palmisano, L. Elemental bromine production by TiO2 photocatalysis and/or ozonation. Angew. Chem. Int. Ed. 2016, 55, 10391. [Google Scholar] [CrossRef]
- Parrino, F.; Camera-Roda, G.; Loddo, V.; Palmisano, L. Green synthesis of bromine by TiO2 heterogeneous photocatalysis and/or ozone: A kinetic study. J. Catal. 2018, 366, 167–175. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for Drinking Water Quality; WHO: Geneva, Switzerland, 1993. [Google Scholar]
- Alcalà, F.J.; Custodio, E.J. Use of the Cl/Br Ratio as a Tracer to Identify the Origin of Salinity in Some Coastal Aquifers of Spain. Available online: http://www.swim-site.nl/pdf/swim18/swim18_043.pdf (accessed on 22 March 2019).
- Small, H.; Stevens, T.; Bauman, W. Novel ion exchange chromatographic method using conductimetric detection. Anal. Chem. 1975, 47, 1801–1809. [Google Scholar] [CrossRef]
- Morales, J.A.; De Graterol, L.S.; Mesa, J. Determination of chloride, sulfate and nitrate in groundwater samples by ion chromatography. J. Chromatogr. A 2000, 884, 185–190. [Google Scholar] [CrossRef]
- Jackson, P.E.; Weigert, C.; Pohl, C.A.; Saini, C. Determination of inorganic anions in environmental waters with a hydroxide-selective column. J. Chromatogr. A 2000, 884, 175–184. [Google Scholar] [CrossRef]
- Schminke, G.; Seubert, A. Simultaneous determination of inorganic disinfection by-products and the seven standard anions by ion chromatography. J. Chromatogr. A 2000, 890, 295–301. [Google Scholar] [CrossRef]
- Lucy, C.A.; Hatsis, P. Ion Chromatography. In Chromatography: Fundamentals and Applications of Chromatography and Related Differential Migration Methods, Part A: Fundamentals and Techniques. Journal of Chromatography Library, 6th ed.; Heftmann, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 69A, pp. 171–211. [Google Scholar]
- Murray, E.; Nesterenko, E.P.; McCaul, M.; Morrin, A.; Diamond, D.; Moore, B. A colorimetric method for use within portable test kits for nitrate determination in various water matrices. Anal. Methods 2017, 9, 680. [Google Scholar] [CrossRef]
- Lepore, B.J.; Barak, P. A colorimetric microwell method for determining bromide concentrations. Soil Sci. Soc. Am. J. 2009, 73, 1130–1136. [Google Scholar] [CrossRef]
- Steffen, B.; Müller, K.P.; Komenda, M.; Koppmann, R.; Schaub, R. A new mathematical procedure to evaluate peaks in complex chromatograms. J. Chromatogr. A 2005, 1071, 239–246. [Google Scholar] [CrossRef]
- Tirumalesh, K. Simultaneous determination of bromide and nitrate in contaminated waters by ion chromatography using amperometry and absorbance detectors. Talanta 2008, 74, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Kapinus, E.N.; Revelsky, I.A.; Ulogov, V.O.; Lyalikov, Y.A. Simultaneous determination of fluoride, chloride, nitrite, bromide, nitrate, phosphate and sulfate in aqueous solutions at 10−9 to 10−8% level by ion chromatography. J. Chromatogr. B 2004, 800, 321–323. [Google Scholar] [CrossRef]
- Salhi, E.; Gunten, U. Simultaneous determination of bromide, bromated and nitrite in low µg L−1 levels by ion chromatography without sample pretreatment. Water Res. 1999, 33, 3239–3244. [Google Scholar] [CrossRef]
- Hu, W.Z.; Haddad, P.R.; Tanaka, K.; Sato, S.; Mori, M.; Xu, Q.; Ikedo, M.; Tanaka, S. Determination of monovalent inorganic anions in high-ionic-strength samples by electrostatic ion chromatography with suppressed conductometric detection. J. Chromatogr. A 2004, 1039, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Carrozzino, S.; Righini, F. Ion-chromatographic determination of nutrients in seawater. J. Chromatogr. A 1995, 706, 277–280. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, Y.; Barreto, V.; Pohl, C.; Avdalovic, N.; Joyce, R.; Newton, B. Determination of anions at trace levels in power plant water samples by ion chromatography with electrolytic eluent generation and suppression. J. Chromatogr. A 2002, 956, 129–138. [Google Scholar] [CrossRef]
- Seefeld, S.; Baltensperger, U. Determination of bromide in snow samples by ion chromatography with electrochemical detection. Anal. Chim. Acta 1993, 283, 246–250. [Google Scholar] [CrossRef]
- Tarter, G.J. Gradient elution ion chromatographic determination of inorganic anions using a continuous gradient. Anal. Chem. 1984, 56, 1264–1268. [Google Scholar] [CrossRef]
- Han, K.; Koch, F.W.; Pratt, W.K. Improved procedure for the determination of iodide by ion chromatography with electrochemical detection. Anal. Chem. 1987, 59, 731–736. [Google Scholar] [CrossRef]
- Wang, C.Y.; Scott, B.D.; Tarter, G.J. Ion chromatographic determination of fluorine, chlorine, bromine, and iodine with sequential electrochemical and conductometric detection. Anal. Chem. 1983, 55, 1617–1619. [Google Scholar] [CrossRef]
- Rocklin, R.D.; Johnson, R.E. Determination of cyanide, sulfide, iodide, and bromide by ion chromatography with electrochemical detection. Anal. Chem. 1983, 55, 4–7. [Google Scholar] [CrossRef]
- Hu, W.; Haddad, P.R.; Hasebe, K.; Tanaka, K.; Tong, P.; Khoo, C. Direct determination of bromide, nitrate, and iodide in saline matrixes using electrostatic ion chromatography with an electrolyte as eluent. Anal. Chem. 1999, 71, 1617–1620. [Google Scholar] [CrossRef]
- Fukushi, K.; Ishio, N.; Urayama, H.; Takeda, S.; Wakida, S.; Hiiro, K. Simultaneous determination of bromide, nitrite and nitrate ions in seawater by capillary zone electrophoresis using artificial seawater as the carrier solution. Electrophoresis 2000, 21, 388–395. [Google Scholar] [CrossRef]
- Westerberg, A.W. Detection and resolution of overlapped peaks for an on-line computer system for gas chromatographs. Anal. Chem. 1969, 41, 1770–1777. [Google Scholar] [CrossRef]
- Proksch, E.; Bruneder, H.; Granzner, V. Correction factors for the quantitative evaluation of overlapping gas chromatographic peaks. J. Chromatogr. Sci. 1969, 7, 473–483. [Google Scholar] [CrossRef]
Ions | Eluent 1–3.2 mM | Eluent 1–8 mM | ||
---|---|---|---|---|
Slope | R2 | Slope | R2 | |
Bromide | 0.585 | 0.992 | 0.672 | 0.999 |
Nitrate | 0.651 | 0.993 | 0.575 | 0.997 |
n = 2 | n = 3 | n = 4 | n = 5 | |
---|---|---|---|---|
m = 2 | 0.971 | 0.978 | 0.979 | 0.983 |
m = 3 | 0.973 | 0.978 | 0.980 | 0.984 |
m = 4 | 0.979 | 0.983 | 0.985 | 0.991 |
m = 5 | 0.980 | 0.984 | 0.987 | 0.993 |
Z | 35.438 | C | −2.962 |
A | 7.738 | D | 6.016 |
B | −27.897 | Adj.R2 | 0.973 |
Z | 38.553 | C | 15.328 |
A | −55.776 | D | −5.661 |
B | 19.073 | Adj.R2 | 0.903 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parrino, F.; Camera-Roda, G.; Loddo, V.; Palmisano, L. Three-Dimensional Calibration for Routine Analyses of Bromide and Nitrate Ions as Indicators of Groundwater Quality in Coastal Territories. Int. J. Environ. Res. Public Health 2019, 16, 1419. https://doi.org/10.3390/ijerph16081419
Parrino F, Camera-Roda G, Loddo V, Palmisano L. Three-Dimensional Calibration for Routine Analyses of Bromide and Nitrate Ions as Indicators of Groundwater Quality in Coastal Territories. International Journal of Environmental Research and Public Health. 2019; 16(8):1419. https://doi.org/10.3390/ijerph16081419
Chicago/Turabian StyleParrino, Francesco, Giovanni Camera-Roda, Vittorio Loddo, and Leonardo Palmisano. 2019. "Three-Dimensional Calibration for Routine Analyses of Bromide and Nitrate Ions as Indicators of Groundwater Quality in Coastal Territories" International Journal of Environmental Research and Public Health 16, no. 8: 1419. https://doi.org/10.3390/ijerph16081419
APA StyleParrino, F., Camera-Roda, G., Loddo, V., & Palmisano, L. (2019). Three-Dimensional Calibration for Routine Analyses of Bromide and Nitrate Ions as Indicators of Groundwater Quality in Coastal Territories. International Journal of Environmental Research and Public Health, 16(8), 1419. https://doi.org/10.3390/ijerph16081419