# Effects of Bucket Type and Angle on Downstream Nappe Wind Caused by a Turbulent Jet

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Setup

#### 2.1. Experimental Method

#### 2.2. Test Conditions

_{1}represents the length of the CB, and its value is 48.38 cm; l

_{2}represents the sidewall length of the TB, and its value is 37.41 cm; and r represents the radius of the TB, and its value is 15.48 cm.

## 3. Results and Analysis

#### 3.1. Hydraulic Characteristics of the Trajectory Nappe

#### 3.2. Effects of Bucket Shapes on Wind Velocity

#### 3.2.1. Horizontal Distribution

#### 3.2.2. Vertical Distribution

#### 3.3. Effects of Bucket Angles on Wind Velocity

#### 3.3.1. Horizontal Distribution

#### 3.3.2. Vertical Distribution

#### 3.4. Splash Characteristics

#### 3.4.1. Effects of Bucket Shape

#### 3.4.2. Effects of Bucket Angles

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Bartle, A. Hydropower potential and development activities. Energy Policy
**2002**, 30, 1231–1239. [Google Scholar] [CrossRef] - Sternberg, R. Hydropower’s future, the environment, and global electricity systems. Renew. Sustain. Energy Rev.
**2010**, 14, 713–723. [Google Scholar] [CrossRef] - Khatsuria, R.M. Hydraulics of Spillways and Energy Dissipators; Dekker: New York, NY, USA, 2005. [Google Scholar]
- Lian, J.J.; Wang, X.Q.; Zhang, W.J.; Ma, B.; Liu, D. Multi-Source Generation Mechanisms for Low Frequency Noise Induced by Flood Discharge and Energy Dissipation from a High Dam with a Ski-Jump Type Spillway. Int. J. Environ. Res. Public Health
**2017**, 14, 1482. [Google Scholar] [CrossRef] - Fraser, C.N. Ski-Jump Energy Dissipation: Design of a Ski-Jump to Maximize Energy Dissipation and Aeration. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2016. [Google Scholar]
- Lian, J.J.; Li, C.Y.; Liu, F.; Wu, S. A prediction method of flood discharge atomization for high dams. J. Hydraul. Res.
**2014**, 52, 274–282. [Google Scholar] [CrossRef] - Duan, H.D.; Liu, S.H.; Luo, Q.S.; Huang, W. Rain intensity distribution in the splash region of atomized flow. J. Hydrodyn. Ser. B
**2006**, 18, 362–366. [Google Scholar] [CrossRef] - Su, J.M.; Li, H.R. The effects of atomization by flood discharge on downstream slope of Ertan hydroelectric station. Hydrogeol. Eng. Geol.
**2002**, 29, 22–24. (In Chinese) [Google Scholar] - Liu, H.T.; Sun, S.K.; Liu, Z.P.; Wang, X.S. Atomization prediction based on artificial neural networks for flood releasing of high dams. J. Hydraul. Eng.
**2005**, 36, 1241–1245. (In Chinese) [Google Scholar] - Liu, H.T.; Liu, Z.P.; Xia, Q.F.; Su, S.K. Computational model of flood discharge splash in large hydropower stations. J. Hydraul. Res.
**2015**, 53, 576–587. [Google Scholar] [CrossRef] - Lian, J.J.; He, J.L.; Liu, F.; Ran, D.J.; Wang, X.Q.; Wang, C. An Improved Empirical Model for Flood Discharge Atomization and Its Application to Optimize the Flip Bucket of the Nazixia Project. Int. J. Environ. Res. Public Health
**2019**, 16, 316. [Google Scholar] [CrossRef] - Lian, J.J.; Liu, F.; Huang, C.Y. Numerical study on effects of environmental wind and terrain on spray caused by jet from flip bucket. J. Hydraul. Eng.
**2005**, 36, 1147–1152. (In Chinese) [Google Scholar] [CrossRef] - Schmocker, L.; Pfister, M.; Hager, W.H.; Minor, H.E. Aeration Characteristics of Ski Jump Jets. J. Hydraul. Eng.
**2008**, 134, 90–97. [Google Scholar] [CrossRef] - Heller, V.; Hager, W.H.; Minor, H.E. Ski jump hydraulics. J. Hydraul. Eng.
**2005**, 131, 347–355. [Google Scholar] [CrossRef] - Zhu, Y.Q.; Zhang, F.X.; Xu, W.L. Research on Hydraulic Characteristics of Flip Bucket with Tongue-type. Sci. Technol. Eng.
**2004**, 4, 397–403. (In Chinese) [Google Scholar] [CrossRef] - Wahl, T.L.; Frizell, K.H.; Cohen, E.A. Computing the Trajectory of Free Jets. J. Hydraul. Eng.
**2008**, 134, 256–260. [Google Scholar] [CrossRef] - Wu, J.H.; Li, S.F.; Ma, F. Energy dissipation of slot-type flip buckets. J. Hydrodyn. B
**2018**, 30, 365–368. [Google Scholar] [CrossRef] - Pfister, M.; Hager, W.H. Deflector-jets affected by pre-aerated approach flow. J. Hydraul. Res.
**2012**, 50, 181–191. [Google Scholar] [CrossRef] [Green Version] - Azmathullah, H.M.; Deo, M.C.; Deolalikar, P.B. Neural networks for estimation of scour downstream of a ski-jump bucket. J. Hydraul. Eng.
**2005**, 131, 898–908. [Google Scholar] [CrossRef] - Pfister, M.; Hager, W.H.; Boes, R.M. Trajectories and air flow features of ski jump-generated jets. J. Hydraul. Res.
**2014**, 52, 336–346. [Google Scholar] [CrossRef] [Green Version] - Wu, J.H.; Yao, L.; Ma, F.; Wu, W.W. Hydraulics of a multiple slit-type energy dissipater. J. Hydrodyn.
**2014**, 26, 86–93. [Google Scholar] [CrossRef] - Huang, G.B.; Hu, H.; Wang, C.H.; Du, L. Shock waves and water wing in slit-type energy dissipaters. J. Hydrodyn.
**2017**, 29, 504–509. [Google Scholar] [CrossRef] - Zhang, X.D. Study on Droplet Spectrum and Wind Field of Flood Discharge Atomization. Master’s Thesis, Tianjin University, Tianjin, China, 2009. (In Chinese). [Google Scholar]
- Hu, W.P.; Sven, E.; Zhang, F.B. A vertical-compressed three-dimensional ecological model in Lake Taihu, China. Ecol. Model.
**2006**, 190, 367–398. [Google Scholar] [CrossRef] - Zhang, Z.F.; Li, J.C. Experimental Studies on Wind-Wave Momentum Transfer. Acta Aerodyn. Sin.
**1999**, 17, 285–291. (In Chinese) [Google Scholar] [CrossRef] - Zhou, J.; Zeng, C.; Wang, L.L. Influence of wind drag coefficient on wind-driven flow simulation. J. Hydrodyn. Ser. A
**2009**, 24, 440–447. (In Chinese) [Google Scholar] [CrossRef] - Li, M.; Jiang, W.M.; Zhang, N.; Liu, H.L. The numerical simulation analysis of nappe-wind generated by flood discharge. Acta Aerodyn. Sin.
**2003**, 4, 4. (In Chinese) [Google Scholar] - Sha, H.F.; Zhou, H.; Wu, S.Q.; Chen, H.L. 2-D Numerical simulation of two-Phase flow from surface outlet into plunge pool. J. Hydrodyn. Ser. A
**2007**, 3, 8. (In Chinese) [Google Scholar] - Zhu, Y.Q.; Xu, W.L.; Zhang, F.X. The Method to Calculate the Transversal Diffusion Width of the Nappe of Flip Bucket with Tongue-type. In Proceedings of the Symposium on Hydraulics, Chongqing, China, 18 December 2004; pp. 96–101. (In Chinese). [Google Scholar]
- Akrami, S.A.; El-Shafie, A.; Naseri, M.; Santos, C.A.G. Rainfall data analyzing using moving average (MA) model and wavelet multi-resolution intelligent model for noise evaluation to improve the forecasting accuracy. Neural Comput. Appl.
**2014**, 25, 1853–1861. [Google Scholar] [CrossRef] - Liu, H.T.; Sun, S.K.; Wang, X.S.; Xia, Q.F. Study on the distribution of splashing intensity during nappe impingement. J. Hydrodyn.
**2009**, 24, 217–223. (In Chinese) [Google Scholar]

**Figure 1.**Flood discharge atomization caused by trajectory energy dissipation. (

**a**) Nazixia Hydropower Station and (

**b**) Dongjiang Hydropower Station.

**Figure 2.**Schematic diagram of the experiments and measuring point arrangement as an example of a tongue-shaped bucket (TB).

**Figure 3.**Flip-bucket types for the testing: (

**a**) continuous bucket (CB) and (

**b**) tongue-shaped bucket (TB) (θ represents the bucket angles, l

_{1}represents the length of the flip bucket, b represents the width of the flip bucket, l

_{2}represents the sidewall length of the TB, and r represents the radius of the TB).

**Figure 4.**Photographs of the flow regime of the trajectory nappe under the same flow conditions (bucket angle: 50°): (

**a**) the top view of the CB, (

**b**) the top view of the TB, (

**c**) the side view of the CB, and (

**d**) the side view of the TB.

**Figure 10.**The two-dimensional distribution of the nappe wind for different bucket angles at z/ΔH = 0: (

**a**) CB (y/ΔH = 0), (

**b**) CB (y/ΔH = 0.448), (

**c**) TB (y/ΔH = 0), and (

**d**) TB (y/ΔH = 0.448).

**Figure 11.**The wind velocity of the vertical distribution at different bucket angles: (

**a**) CB (2.37, 0), (

**b**) TB (2.37, 0), (

**c**) CB (2.60, 0), (

**d**) TB (2.60, 0), (

**e**) CB (3.04, 0.448), and (

**f**) TB (3.04, 0.448).

**Figure 13.**The distribution of the droplet weights for different bucket angles: (

**a**) CB (y/ΔH = 0), (

**b**) CB (y/ΔH = 0.448), (

**c**) TB (y/ΔH = 0), and (

**d**) TB (y/ΔH = 0.448).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lian, J.; He, J.; Gou, W.; Ran, D.
Effects of Bucket Type and Angle on Downstream Nappe Wind Caused by a Turbulent Jet. *Int. J. Environ. Res. Public Health* **2019**, *16*, 1360.
https://doi.org/10.3390/ijerph16081360

**AMA Style**

Lian J, He J, Gou W, Ran D.
Effects of Bucket Type and Angle on Downstream Nappe Wind Caused by a Turbulent Jet. *International Journal of Environmental Research and Public Health*. 2019; 16(8):1360.
https://doi.org/10.3390/ijerph16081360

**Chicago/Turabian Style**

Lian, Jijian, Junling He, Wenjuan Gou, and Danjie Ran.
2019. "Effects of Bucket Type and Angle on Downstream Nappe Wind Caused by a Turbulent Jet" *International Journal of Environmental Research and Public Health* 16, no. 8: 1360.
https://doi.org/10.3390/ijerph16081360