Associations between Obesity, Obesogenic Environments, and Structural Racism Vary by County-Level Racial Composition
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cohen, S.S.; Signorello, L.B.; Cope, E.L.; McLaughlin, J.K.; Hargreaves, M.K.; Zheng, W.; Blot, W.J. Obesity and All-Cause Mortality Among Black Adults and White Adults. Am. J. Epidemiol. 2012, 176, 431–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S.S.; Park, Y.Y.; Signorello, L.B.; Patel, A.V.; Boggs, D.A.; Kolonel, L.N.; Kitahara, C.M.; Knutsen, S.F.; Gillanders, E.; Monroe, K.R.; et al. A Pooled Analysis of Body Mass Index and Mortality among African Americans. PLoS ONE 2014, 9, e111980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of All-Cause Mortality With Overweight and Obesity Using Standard Body Mass Index Categories A Systematic Review and Meta-analysis. JAMA J. Am. Med. Assoc. 2013, 309, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Bastien, M.; Poirier, P.; Lemieux, I.; Despres, J.P. Overview of Epidemiology and Contribution of Obesity to Cardiovascular Disease. Prog. Cardiovasc. Dis. 2014, 56, 369–381. [Google Scholar] [CrossRef]
- Bhaskaran, K.; Douglas, I.; Forbes, H.; dos-Santos-Silva, I.; Leon, D.A.; Smeeth, L. Body-mass index and risk of 22 specific cancers: A population-based cohort study of 5.24 million UK adults. Lancet 2014, 384, 755–765. [Google Scholar] [CrossRef]
- Ogden, C.L.; Yanovski, S.Z.; Carroll, M.D.; Flegal, K.M. The epidemiology of obesity. Gastroenterology 2007, 132, 2087–2102. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.W.; Lauderdale, D.S. Income disparities in body mass index and obesity in the United States, 1971–2002. Arch. Intern. Med. 2005, 165, 2122–2128. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Joseph, L.; Pilote, L. Obesity and C-reactive protein in various populations: A systematic review and meta-analysis. Obes. Rev. 2013, 14, 232–244. [Google Scholar] [CrossRef]
- Cohen, A.K.; Rai, M.; Rehkopf, D.H.; Abrams, B. Educational attainment and obesity: A systematic review. Obes. Rev. 2013, 14, 989–1005. [Google Scholar] [CrossRef]
- Cooksey-Stowers, K.; Schwartz, M.B.; Brownell, K.D. Food Swamps Predict Obesity Rates Better Than Food Deserts in the United States. Int. J. Environ. Res. Public Health 2017, 14, 1366. [Google Scholar] [CrossRef]
- Corral, I.; Landrine, H.; Hao, Y.; Zhao, L.H.; Mellerson, J.L.; Cooper, D.L. Residential segregation, health behavior and overweight/obesity among a national sample of African American adults. J. Health Psychol. 2012, 17, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.; Meakins, G.; Hamidi, S.; Nelson, A.C. Relationship between urban sprawl and physical activity, obesity, and morbidity—Update and refinement. Health Place 2014, 26, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Heo, M.; Pietrobelli, A.; Fontaine, K.R.; Sirey, J.A.; Faith, M.S. Depressive mood and obesity in US adults: Comparison and moderation by sex, age, and race. Int. J. Obes. 2006, 30, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Beydoun, M.A. The obesity epidemic in the United States—Gender, age, socioeconomic, Racial/Ethnic, and geographic characteristics: A systematic review and meta-regression analysis. Epidemiol. Rev. 2007, 29, 6–28. [Google Scholar] [CrossRef] [PubMed]
- Black, N.C. An Ecological Approach to Understanding Adult Obesity Prevalence in the United States: A County-level Analysis using Geographically Weighted Regression. Appl. Spat. Anal. Policy 2014, 7, 283–299. [Google Scholar] [CrossRef]
- Ahern, M.; Brown, C.; Dukas, S. A National Study of the Association Between Food Environments and County-Level Health Outcomes. J. Rural Health 2011, 27, 367–379. [Google Scholar] [CrossRef]
- Flegal, K.M.; Carroll, M.D.; Ogden, C.L.; Curtin, L.R. Prevalence and Trends in Obesity Among US Adults, 1999–2008. JAMA J. Am. Med Assoc. 2010, 303, 235–241. [Google Scholar] [CrossRef]
- Flegal, K.M.; Carroll, M.D.; Kit, B.K.; Ogden, C.L. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. J. Am. Med Assoc. 2012, 307, 491–497. [Google Scholar] [CrossRef]
- Flegal, K.M.; Kruszon-Moran, D.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Trends in Obesity Among Adults in the United States, 2005 to 2014. JAMA J. Am. Med Assoc. 2016, 315, 2284–2291. [Google Scholar] [CrossRef]
- Ogden, C.L.; Lamb, M.M.; Carroll, M.D.; Flegal, K.M. Obesity and Socioeconomic Status in Adults: United States, 2005–2008; National Center for Health Statistics: Hyattsville, MD, USA, 2010.
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the United States, 2011–2012. J. Am. Med Assoc. 2014, 311, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Fakhouri, T.H.; Carroll, M.D.; Hales, C.M.; Fryar, C.D.; Li, X.F.; Freedman, D.S. Prevalence of Obesity Among Adults, by Household Income and Education—United States, 2011–2014. Mmwr-Morb. Mortal. Wkly. Rep. 2017, 66, 1369–1373. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, S.S.; Whitt-Glover, M.C.; Lancaster, K.J.; Odoms-Young, A.M.; Gary, T.L. Built environment and health behaviors among African Americans: A systematic review. Am. J. Prev. Med. 2009, 36, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Garfinkel-Castro, A.; Kim, K.; Hamidi, S.; Ewing, R. Obesity and the built environment at different urban scales: Examining the literature. Nutr. Rev. 2017, 75, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Bleich, S.N.; Thorpe, R.J., Jr.; Sharif-Harris, H.; Fesahazion, R.; Laveist, T.A. Social context explains race disparities in obesity among women. J. Epidemiol. Community Health 2010, 64, 465–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kershaw, K.N.; Albrecht, S.S.; Carnethon, M.R. Racial and Ethnic Residential Segregation, the Neighborhood Socioeconomic Environment, and Obesity Among Blacks and Mexican Americans. Am. J. Epidemiol. 2013, 177, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Mackenbach, J.D.; Rutter, H.; Compernolle, S.; Glonti, K.; Oppert, J.M.; Charreire, H.; De Bourdeaudhuij, I.; Brug, J.; Nijpels, G.; Lakerveld, J. Obesogenic environments: A systematic review of the association between the physical environment and adult weight status, the SPOTLIGHT project. BMC Public Health 2014, 14, 233. [Google Scholar] [CrossRef]
- Mehta, N.K.; Chang, V.W. Weight status and restaurant availability—A multilevel analysis. Am. J. Prev. Med. 2008, 34, 127–133. [Google Scholar] [CrossRef]
- Rehm, C.D.; Moudon, A.V.; Hurvitz, P.M.; Drewnowski, A. Residential property values are associated with obesity among women in King County, WA, USA. Soc. Sci. Med. 2012, 75, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Ruel, E.; Reither, E.N.; Robert, S.A.; Lantz, P.M. Neighborhood effects on BMI trends: Examining BMI trajectories for Black and White women. Health Place 2010, 16, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, J.R.J.; Kelley, E.; Bowie, J.V.; Griffith, D.M.; Bruce, M.; LaVeist, T. Explaining racial disparities in obesity among men: Does place matter? Am. J. Men’s Health 2015, 9, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Kowaleski-Jones, L. The built environment and risk of obesity in the United States: Racial-ethnic disparities. Health Place 2012, 18, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, F. Built environment and obesity by urbanicity in the U.S. Health Place 2015, 34, 19–29. [Google Scholar] [CrossRef]
- An, R. Fast-food and full-service restaurant consumption and daily energy and nutrient intakes in US adults. Eur. J. Clin. Nutr. 2016, 70, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Hickson, D.A.; Roux, A.V.D.; Smith, A.E.; Tucker, K.L.; Gore, L.D.; Zhang, L.; Wyatt, S.B. Associations of Fast Food Restaurant Availability With Dietary Intake and Weight Among African Americans in the Jackson Heart Study, 2000–2004. Am. J. Public Health 2011, 101, S301–S309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, L.K.; Edwards, K.L.; Cade, J.; Clarke, G.P. The Geography of Fast Food Outlets: A Review. Int. J. Environ. Res. Public Health 2010, 7, 2290–2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakerveld, J.; Mackenbach, J. The Upstream Determinants of Adult Obesity. Obes. Facts 2017, 10, 216–222. [Google Scholar] [CrossRef]
- Walker, R.E.; Keane, C.R.; Burke, J.G. Disparities and access to healthy food in the United States: A review of food deserts literature. Health Place 2010, 16, 876–884. [Google Scholar] [CrossRef]
- Beaulac, J.; Kristjansson, E.; Cummins, S. A Systematic Review of Food Deserts, 1966–2007. Prev. Chronic Dis. 2009, 6, A105. [Google Scholar]
- Hendrickson, D.; Smith, C.; Eikenberry, N. Fruit and vegetable access in four low-income food deserts communities in Minnesota. J. Agric. Food Hum. Values Soc. 2006, 23, 371–383. [Google Scholar] [CrossRef]
- Bower, K.M.; Thorpe, R.J., Jr.; Rohde, C.; Gaskin, D.J. The intersection of neighborhood racial segregation, poverty, and urbanicity and its impact on food store availability in the United States. Prev. Med. 2014, 58, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwate, N.O.A. Fried chicken and fresh apples: Racial segregation as a fundamental cause of fast food density in black neighborhoods. Health Place 2008, 14, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Riley, A.R. Neighborhood Disadvantage, Residential Segregation, and Beyond-Lessons for Studying Structural Racismand Health. J. Racial Ethn. Health Disparities 2018, 5, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Chambers, B.D.; Erausquin, J.T.; Tanner, A.E.; Nichols, T.R.; Brown-Jeffy, S. Testing the Association Between Traditional and Novel Indicators of County-Level Structural Racism and Birth Outcomes among Black and White Women. J. Racial Ethn. Health Disparities 2018, 5, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Harrell, C.J.P.; Burford, T.I.; Cage, B.N.; Nelson, T.M.; Shearon, S.; Thompson, A.; Green, S. Multiple Pathways Linking Racism to Health Outcomes. Du Bois Rev. Soc. Sci. Res. Race 2011, 8, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Gee, G.C.; Ford, C.L. Structural racism and health inequities old Issues, New Directions. Du Bois Rev. Soc. Sci. Res. Race 2011, 8, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.; Crear-Perry, J.; Richardson, L.; Tarver, M.; Theall, K. Separate and unequal: Structural racism and infant mortality in the US. Health Place 2017, 45, 140–144. [Google Scholar] [CrossRef]
- Bailey, Z.D.; Krieger, N.; Agenor, M.; Graves, J.; Linos, N.; Bassett, M.T. Structural racism and health inequities in the USA: Evidence and interventions. Lancet 2017, 389, 1453–1463. [Google Scholar] [CrossRef]
- Yearby, R. Racial Disparities in Health Status and Access to Healthcare: The Continuation of Inequality in the United States Due to Structural Racism. Am. J. Econ. Sociol. 2018, 77, 1113–1152. [Google Scholar] [CrossRef]
- Kramer, M.R.; Hogue, C.R. Is Segregation Bad for Your Health? Epidemiol. Rev. 2009, 31, 178–194. [Google Scholar] [CrossRef] [Green Version]
- White, K.; Borrell, L.N. Racial/ethnic residential segregation: Framing the context of health risk and health disparities. Health Place 2011, 17, 438–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.R.; Collins, C. Racial residential segregation: A fundamental cause of racial disparities in health. Public Health Rep. 2001, 116, 404–416. [Google Scholar] [CrossRef]
- Massey, D.S.; Condran, G.A.; Denton, N.A. The Effect of Residential Segregation on Black Social and Economic Well-being. Soc. Forces 1987, 66, 29–56. [Google Scholar]
- Rothstein, R. The Color of Law: A Forgotten History of How our Government Segregated America; W.W. Norton & Company, Inc.: New York, NY, USA, 2017. [Google Scholar]
- Armstrong-Brown, J.; Eng, E.; Hammond, W.P.; Zimmer, C.; Bowling, J.M. Redefining racial residential segregation and its association with physical activity among African Americans 50 years and older: A mixed methods approach. J. Aging Phys. Act. 2015, 23, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Borrell, L.N.; Kiefe, C.I.; Diez-Roux, A.V.; Williams, D.R.; Gordon-Larsen, P. Racial discrimination, racial/ethnic segregation, and health behaviors in the CARDIA study. Ethn. Health 2013, 18, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.W. Racial residential segregation and weight status among US adults. Soc. Sci. Med. 2006, 63, 1289–1303. [Google Scholar] [CrossRef] [PubMed]
- Cozier, Y.C.; Yu, J.; Coogan, P.F.; Bethea, T.N.; Rosenberg, L.; Palmer, J.R. Racism, Segregation, and Risk of Obesity in the Black Womens Health Study. Am. J. Epidemiol. 2014, 179, 875–883. [Google Scholar] [CrossRef]
- Wilson-Frederick, S.M.; Thorpe, R.J.; Bell, C.N.; Bleich, S.N.; Ford, J.G.; LaVeist, T.A. Examination of race disparities in physical inactivity among adults of similar social context. Ethn. Dis. 2014, 24, 363–369. [Google Scholar]
- Baker, E.H. Socioeconomic Status, Definition. In The Wiley Blackwell Encyclopedia of Health, Illness, Behavior, and Society; Cockerham, W.C., Dingwall, R., Quah, S., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014. [Google Scholar]
- U.S. Census Bureau. Real Median Household Income by Race and Hispanic Origin: 1967–2017. Available online: https://www.census.gov/content/dam/Census/library/visualizations/2018/demo/p60-263/figure1.pdf (accessed on 31 December 2018).
- Kaiser Family Foundation. Poverty Rate by Race/Ethnicity. Available online: https://www.kff.org/other/state-indicator/poverty-rate-by-raceethnicity/?currentTimeframe=0&sortModel=%7B%22colId%22:%22Location%22,%22sort%22:%22asc%22%7D (accessed on 31 December 2018).
- U.S. Bureau of Labor Statistics. Household Data, not Seasonally Adjusted, Quarterly Averages: Unemployment Rates by Age, Sex, Race, and Hispanic or Latino Ethnicity. 2018. Available online: https://www.bls.gov/web/empsit/cpsee_e16.htm (accessed on 31 December 2018).
- Ogunwole, S.U.; Drewery, J.; Malcolm, P.; Rios-Vargas, M. The Population With a Bachelor’s Degree or Higher by Race and Hispanic Origin: 2006–2010; U.S. Census Bureau: Washington, DC, USA, 2012.
- Hilber, C.A.L.; Liu, Y.C. Explaining the black-white homeownership gap: The role of own wealth, parental externalities and locational preferences. J. Hous. Econ. 2008, 17, 152–174. [Google Scholar] [CrossRef]
- Shapiro, T.; Meschede, T.; Osoro, S. The widening racial wealth gap: Why wealth is not color blind. In Assets Perspective: The Rise of Asset Building and Its Impact on Social Policy; Springer: Berlin/Heidelberg, Germany, 2014; pp. 99–122. [Google Scholar]
- Sullivan, L.; Meschede, T.; Dietrich, L.; Shapiro, T. The Racial Wealth Gap: Why Policy Matters; Demos: New York, NY, USA, 2015. [Google Scholar]
- Williams, D.R.; Priest, N.; Anderson, N.B. Understanding associations among race, socioeconomic status, and health: Patterns and prospects. Health Psychol. 2016, 35, 407–411. [Google Scholar] [CrossRef]
- Phillips, C. Institutional Racism and Ethnic Inequalities: An Expanded Multilevel Framework. J. Soc. Policy 2011, 40, 173–192. [Google Scholar] [CrossRef]
- Lukachko, A.; Hatzenbuehler, M.L.; Keyes, K.M. Structural racism and myocardial infarction in the United States. Soc. Sci. Med. 2014, 103, 42–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, M.E.; Mendola, P.; Liu, D.P.; Grantz, K.L. Joint Effects of Structural Racism and Income Inequality on Small-for-Gestational-Age Birth. Am. J. Public Health 2015, 105, 1681–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisconsin, U.O. County Health Rankings 2014: Codebook for Analytic Datasets. 2018. Available online: http://www.countyhealthrankings.org/sites/default/files/2014%20CHR%20analytic%20data%20documentation.pdf (accessed on 10 December 2018).
- Centers for Disease Control and Prevention. The BRFSS Data User Guide; CDC: Atlanta, GA, USA, 2013.
- U.S. Census Bureau. County Business Patterns (CBP)—Methodology. Available online: http://www.census.gov/programs-surveys/cbp/technical-documentation/methodology.html (accessed on 16 February 2017).
- U.S. Census Bureau. Understanding and UsingAmerican Community Survey Data: What All Data Users Need to Know; U.S. Census Bureau: Washington, DC, USA, 2018.
- Hager, E.R.; Cockerham, A.; O’Reilly, N.; Harrington, D.; Harding, J.; Hurley, K.M.; Black, M.M. Food swamps and food deserts in Baltimore City, MD, USA: Associations with dietary behaviours among urban adolescent girls. Public Health Nutr. 2017, 20, 2598–2607. [Google Scholar] [CrossRef]
- Suglia, S.F.; Shelton, R.C.; Hsiao, A.; Wang, Y.C.; Rundle, A.; Link, B.G. Why the Neighborhood Social Environment Is Critical in Obesity Prevention. J. Urban Health Bull. N. Y. Acad. Med. 2016, 93, 206–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, J.S.; Knight, K.M.; Rafferty, J.A. Race and Unhealthy Behaviors: Chronic Stress, the HPA Axis, and Physical and Mental Health Disparities Over the Life Course. Am. J. Public Health 2010, 100, 933–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paradies, Y.; Ben, J.; Denson, N.; Elias, A.; Priest, N.; Pieterse, A.; Gupta, A.; Kelaher, M.; Gee, G. Racism as a Determinant of Health: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0138511. [Google Scholar] [CrossRef]
- Siahpush, M.; Huang, T.T.K.; Sikora, A.; Tibbits, M.; Shaikh, R.A.; Singh, G.K. Prolonged Financial Stress Predicts Subsequent Obesity: Results from a Prospective Study of an Australian National Sample. Obesity 2014, 22, 616–621. [Google Scholar] [CrossRef]
- Thoits, P.A. Stress and Health: Major Findings and Policy Implications. J. Health Soc. Behav. 2010, 51, S41–S53. [Google Scholar] [CrossRef]
- Williams, D.R.; Mohammed, S.A.; Leavell, J.; Collins, C. Race, socioeconomic status, and health: Complexities, ongoing challenges, and research opportunities. Ann. N. Y. Acad. Sci. 2010, 1186, 69–101. [Google Scholar] [CrossRef] [Green Version]
- Mesic, A.; Franklin, L.; Cansever, A.; Potter, F.; Sharma, A.; Knopov, A.; Siegel, M. The Relationship Between Structural Racism and Black-White Disparities in Fatal Police Shootings at the State Level. J. Natl. Med. Assoc. 2018, 110, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Yancey, A.K.; Cole, B.L.; Brown, R.; Williams, J.D.; Hillier, A.; Kline, R.S.; Ashe, M.; Grier, S.A.; Backman, D.; McCarthy, W.J. A Cross-Sectional Prevalence Study of Ethnically Targeted and General Audience Outdoor Obesity-Related Advertising. Milbank Q. 2009, 87, 155–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, L.M.; Wada, R.; Kumanyika, S.K. Racial/ethnic and income disparities in child and adolescent exposure to food and beverage television ads across the US media markets. Health Place 2014, 29, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.N.; Thorpe, R.J.; Bowie, J.V.; LaVeist, T.A. Race disparities in cardiovascular disease risk factors within socioeconomic status strata. Ann. Epidemiol. 2018, 28, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.L.; Szklo, M.; Yeh, H.-C.; Wang, N.-Y.; Dray-Spira, R.; Thorpe, R.; Brancati, F.L. Black-White Disparities in Overweight and Obesity Trends by Educational Attainment in the United States, 1997–2008. J. Obes. 2013, 2013, 140743. [Google Scholar] [CrossRef] [PubMed]
- McLaren, L. Socioeconomic status and obesity. Epidemiol. Rev. 2007, 29, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Y. Trends in the Association between Obesity and Socioeconomic Status in U.S. Adults: 1971 to 2000. Obes. Res. 2004, 12, 1622–1632. [Google Scholar] [CrossRef] [Green Version]
- Bonilla-Silva, E. Racism without Racists: Color-Blind Racism and the Persistence of Racial Inequality in the United States; Rowman and Littlefield Publishers, Inc.: Lanham, MD, USA, 2006. [Google Scholar]
- Bonilla-Silva, E. Rethinking racism: Toward a structural interpretation. Am. Sociol. Rev. 1997, 62, 465–480. [Google Scholar] [CrossRef]
- Frieden, T.R.; Dietz, W.; Collins, J. Reducing Childhood Obesity Through Policy Change: Acting Now To Prevent Obesity. Health Aff. 2010, 29, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Mauer, M. Racial Impact Statements as a Means of Reducing Unwarranted Sentencing Disparities. Ohio State J. Crim. Law 2007, 5, 19. [Google Scholar]
≤9% Black | >9% Black | t | p-Value | |
---|---|---|---|---|
n = 19,358 | n = 7270 | |||
% Black, mean ± S.E. | 1.9 ± 0.0 | 27.5 ± 0.2 | −0.01 | <0.001 |
Population, mean ± S.E. | 82751 ± 2195 | 187239 ± 4791 | −22.56 | <0.001 |
Area (square miles), mean ± S.E. | 1434 ± 31 | 643 ± 7 | 15.38 | <0.001 |
Urbanization category, % | ||||
Central metro | 0.8 | 7.3 | <0.001 | |
Central fringe metro | 11.0 | 16.6 | ||
Medium metro | 10.9 | 17.3 | ||
Small metro | 11.1 | 14.1 | ||
Micropolitan | 21.9 | 15.6 | ||
Non-core | 44.4 | 29.3 | ||
% physically inactive, mean ± S.E. | 26.5 ± 0.0 | 28.8 ± 0.1 | −27.02 | <0.001 |
Median income ($10,000), mean ± S.E. | 4.69 ± 0.01 | 4.38 ± 0.02 | 18.80 | <0.001 |
% living in poverty, mean ± S.E. | 13.5 ± 0.1 | 17.9 ± 0.1 | −48.20 | <0.001 |
% college graduate, mean ± S.E. | 13.3 ± 0.1 | 12.6 ± 0.1 | 9.26 | <0.001 |
% unemployed, mean ± S.E. | 7.3 ± 0.1 | 9.9 ± 0.0 | −53.49 | <0.001 |
% homeowner, mean ± S.E. | 73.3 ± 0.1 | 68.9 ± 0.1 | 41.07 | <0.001 |
Income inequality, mean ± S.E. | 0.74 ± 0.01 | 0.58 ± 0.01 | 32.22 | <0.001 |
Poverty inequality, mean ± S.E. | 2.69 ± 0.03 | 2.66 ± 0.03 | 0.67 | 0.502 |
College graduation inequality, mean ± S.E. | 0.67 ± 0.01 | 0.51 ± 0.01 | 13.86 | <0.001 |
Unemployment inequality, mean ± S.E. | 2.60 ± 0.05 | 2.38 ± 0.03 | 2.54 | 0.011 |
Homeownership inequality, mean ± S.E. | 0.62 ± 0.01 | 0.69 ± 0.01 | −13.80 | <0.001 |
% obese, mean ± S.E. | 28.5 ± 0.1 | 30.9 ± 0.1 | −19.87 | <0.001 |
Grocery stores (per 10,000 population), mean ± S.E. | 27.9 ± 0.2 | 20.3 ± 0.2 | 18.91 | <0.001 |
Fast food restaurants (per 10,000), mean ± S.E. | 60.8 ± 0.3 | 64.4 ± 0.5 | −6.42 | <0.001 |
Fast food—grocery store ratio, mean ± S.E. | 3.38 ± 0.02 | 3.83 ± 0.04 | −10.49 | <0.001 |
≤9% Black | >9% Black | ||
---|---|---|---|
β (S.E.) | β (S.E.) | β (S.E.) | |
Income | |||
None | --- | --- | --- |
Low | −0.19 (0.10) | −0.18 (0.11) | 0.10 (0.59) |
Medium | −0.06 (0.11) | −0.02 (0.12) | 0.06 (0.63) |
Medium high | −0.18 (0.12) | −0.13 (0.13) | −0.14 (0.63) |
High | −0.07 (0.11) | −0.10 (0.11) | −0.01 (0.65) |
Poverty | |||
None | --- | --- | --- |
Low | 0.14 (0.11) | 0.18 (0.11) | 0.05 (0.43) |
Medium | 0.13 (0.12) | 0.15 (0.13) | 0.17 (0.45) |
Medium high | 0.28 (0.12) * | 0.35 (0.13) * | 0.17 (0.47) |
High | 0.45 (0.13) * | 0.37 (0.13) * | 0.66 (0.50) |
College graduation | |||
None | --- | --- | --- |
Low | −0.12 (0.10) | −0.13 (0.11) | −0.14 (0.35) |
Medium | −0.04 (0.11) | −0.03 (0.13) | −0.31 (0.36) |
Medium high | −0.31 (0.12) * | −0.32 (0.13) * | −0.62 (0.38) |
High | −0.17 (0.13) | −0.09 (0.13) | −1.79 (0.56) * |
Unemployment | |||
None | --- | --- | --- |
Low | 0.19 (0.10) | 0.30 (0.12) * | 0.11 (0.25) |
Medium | 0.19 (0.11) | 0.21 (0.12) | 0.23 (0.27) |
Medium high | 0.37 (0.12) * | 0.33 (0.12) * | 0.41 (0.30) |
High | 0.28 (0.12) * | 0.21 (0.13) | 0.38 (0.35) |
Homeownership | |||
None | --- | --- | --- |
Low | 0.37 (0.10) * | 0.25 (0.12) * | −0.63 (0.42) |
Medium | 0.23 (0.10) * | 0.17 (0.12) | −0.85 (0.41) * |
Medium high | 0.06 (0.10) | 0.12 (0.11) | −1.18 (0.42) * |
High | 0.07 (0.10) | 0.12 (0.11) | −0.52 (0.47) |
>9% Black | 1.10 (0.13) * | --- | --- |
≤9% Black | >9% Black | ||
---|---|---|---|
IRR (95% CI) | IRR (95% CI) | IRR (95% CI) | |
Income inequality | |||
None | 1.00 | 1.00 | 1.00 |
Low | 0.90 (0.87–0.93) | 0.91 (0.88–0.95) | 1.07 (0.83–1.38) |
Medium | 0.87 (0.84–0.91) | 0.90 (0.86–0.93) | 1.02 (0.79–1.32) |
Medium high | 0.87 (0.83–0.90) | 0.89 (0.86–0.93) | 1.02 (0.79–1.32) |
High | 0.89 (0.85–0.93) | 0.90 (0.86–0.94) | 1.08 (0.83–1.40) |
Poverty inequality | |||
None | 1.00 | 1.00 | 1.00 |
Low | 0.94 (0.90–0.99) | 0.95 (0.91–0.99) | 0.89 (0.72–1.10) |
Medium | 0.93 (0.89–0.98) | 0.95 (0.90–0.99) | 0.91 (0.73–1.12) |
Medium high | 0.96 (0.92–1.01) | 0.97 (0.92–1.02) | 0.93 (0.75–1.16) |
High | 0.99 (0.94–1.04) | 0.99 (0.94–1.04) | 0.96 (0.77–1.19) |
College graduation inequality | |||
None | 1.00 | 1.00 | 1.00 |
Low | 0.95 (0.92–0.99) | 0.95 (0.92–0.99) | 1.15 (1.02–1.30) |
Medium | 0.97 (0.93–1.01) | 0.97 (0.93–1.01) | 1.21 (1.07–1.38) |
Medium high | 0.98 (0.94–1.03) | 0.96 (0.92–1.01) | 1.26 (1.11–1.44) |
High | 1.04 (0.99–1.09) | 1.02 (0.93–1.07) | 1.36 (1.04–1.78) |
Unemployment inequality | |||
None | 1.00 | 1.00 | 1.00 |
Low | 0.94 (0.91–0.97) | 0.96 (0.90–1.00) | 0.98 (0.86–1.12) |
Medium | 0.93 (0.90–0.97) | 0.94 (0.91–0.98) | 1.00 (0.87–1.14) |
Medium high | 0.94 (0.91–0.98) | 0.95 (0.91–0.99) | 0.98 (0.85–1.13) |
High | 0.97 (0.93–1.01) | 0.96 (0.92–1.01) | 0.99 (0.85–1.17) |
Homeownership inequality | |||
None | 1.00 | 1.00 | 1.00 |
Low | 0.94 (0.91–0.97) | 0.94 (0.90–0.98) | 0.86 (0.60–1.21) |
Medium | 0.95 (0.92–0.98) | 0.96 (0.93–0.99) | 0.86 (0.61–1.21) |
Medium high | 0.96 (0.93–0.99) | 0.97 (0.94–0.99) | 0.86 (0.61–1.21) |
High | 0.97 (0.93–0.99) | 0.97 (0.93–1.01) | 0.88 (0.62–1.24) |
>9% Black | 1.08 (1.04–1.12) | --- | --- |
≤9% Black | >9% Black | ||
---|---|---|---|
IRR (95% CI) | IRR (95% CI) | IRR (95% CI) | |
Income inequality | |||
None | 1.00 | 1.00 | 1.00 |
Low | 1.03 (1.01–1.05) | 1.03 (1.01–1.06) | 1.08 (0.91–1.27) |
Medium | 1.03 (1.01–1.05) | 1.03 (1.01–1.06) | 1.08 (0.91–1.28) |
Medium high | 1.03 (1.01–1.06) | 1.04 (1.01–1.07) | 1.07 (0.90–1.28) |
High | 1.00 (0.98–1.03) | 1.00 (0.98–1.03) | 1.05 (0.88–1.25) |
Poverty inequality | |||
None | 1.00 | 1.00 | 1.00 |
Low | 0.99 (0.95–1.02) | 0.99 (0.95–1.02) | 0.99 (0.88–1.12) |
Medium | 1.00 (0.96–1.03) | 0.99 (0.96–1.02) | 1.03 (0.91–1.16) |
Medium high | 1.01 (0.97–1.04) | 1.00 (0.07–1.04) | 1.04 (0.92–1.18) |
High | 1.00 (0.96–1.03) | 1.00 (0.97–1.04) | 1.00 (0.88–1.13) |
College graduation inequality | |||
None | 1.00 | 1.00 | 1.00 |
Low | 1.02 (1.01–1.04) | 1.02 (1.01–1.04) | 1.05 (0.99–1.13) |
Medium | 1.03 (1.01–1.05) | 1.03 (1.01–1.05) | 1.06 (0.99–1.13) |
Medium high | 1.03 (1.01–1.06) | 1.03 (1.00–1.05) | 1.08 (1.00–1.16) |
High | 1.00 (0.97–1.04) | 0.99 (0.96–1.03) | 1.00 (0.83–1.21) |
Unemployment inequality | |||
None | 1.00 | 1.00 | 1.00 |
Low | 1.03 (1.01–1.05) | 1.03 (1.01–1.06) | 1.06 (0.97–1.16) |
Medium | 1.02 (0.99–1.04) | 1.01 (0.98–1.03) | 1.08 (0.99–1.19) |
Medium high | 1.01 (0.98–1.03) | 1.00 (0.97–1.02) | 1.06 (0.96–1.17) |
High | 0.98 (0.96–1.01) | 0.99 (0.96–1.02) | 1.01 (0.90–1.12) |
Homeownership inequality | |||
None | 1.00 | 1.00 | 1.00 |
Low | 0.96 (0.94–0.99) | 0.98 (0.96–1.01) | 1.12 (0.90–1.41) |
Medium | 0.97 (0.95–0.99) | 0.97 (0.95–0.99) | 1.14 (0.91–1.43) |
Medium high | 0.98 (0.96–1.00) | 0.98 (0.96–1.01) | 1.16 (0.92–1.45) |
High | 0.99 (0.97–1.02) | 1.00 (0.97–1.02) | 1.15 (0.91–1.44) |
>9% Black | 1.00 (0.98–1.02) | --- | --- |
≤9% Black | >9% Black | ||
---|---|---|---|
β (S.E.) | β (S.E.) | β (S.E.) | |
Income inequality | |||
None | --- | --- | --- |
Low | 0.20 (0.07) * | 0.17 (0.07) * | 0.05 (0.28) |
Medium | 0.32 (0.08) * | 0.28 (0.08) * | 0.22 (0.32) |
Medium high | 0.30 (0.07) * | 0.25 (0.08) * | 0.25 (0.31) |
High | 0.21 (0.08) * | 0.20 (0.09) * | 0.16 (0.32) |
Poverty inequality | |||
None | --- | --- | --- |
Low | 0.12 (0.07) | 0.07 (0.07) | 0.36 (0.26) |
Medium | 0.16 (0.07) * | 0.13 (0.08) | 0.30 (0.27) |
Medium high | 0.11 (0.08) | 0.05 (0.09) | 0.29 (0.28) |
High | 0.01 (0.09) | 0.03 (0.10) | −0.02 (0.29) |
College graduation inequality | |||
None | --- | --- | --- |
Low | 0.06 (0.06) | 0.04 (0.06) | −0.29 (0.22) |
Medium | 0.09 (0.07) | 0.16 (0.08) * | −0.53 (0.23) * |
Medium high | 0.06 (0.07) | 0.10 (0.08) | −0.55 (0.24) * |
High | −0.15 (0.07) | −0.10 (0.08) | −1.26 (0.31) * |
Unemployment inequality | |||
None | --- | --- | --- |
Low | 0.04 (0.06) | 0.02 (0.07) | 0.05 (0.17) |
Medium | 0.09 (0.07) | 0.06 (0.08) | 0.05 (0.18) |
Medium high | 0.05 (0.07) | 0.08 (0.08) | −0.04 (0.21) |
High | −0.07 (0.07) | −0.03 (0.08) | −0.19 (0.21) |
Homeownership inequality | |||
None | --- | --- | --- |
Low | −0.19 (0.06) * | −0.13 (0.08) | 0.05 (0.46) |
Medium | −0.24 (0.06) * | −0.20 (0.09) * | 0.05 (0.46) |
Medium high | −0.22 (0.06) * | −0.20 (0.07) * | 0.05 (0.47) |
High | 0.07 (0.06) | −0.20 (0.07) * | −0.16 (0.47) |
>9% Black | −0.03 (0.09) | --- | --- |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, C.N.; Kerr, J.; Young, J.L. Associations between Obesity, Obesogenic Environments, and Structural Racism Vary by County-Level Racial Composition. Int. J. Environ. Res. Public Health 2019, 16, 861. https://doi.org/10.3390/ijerph16050861
Bell CN, Kerr J, Young JL. Associations between Obesity, Obesogenic Environments, and Structural Racism Vary by County-Level Racial Composition. International Journal of Environmental Research and Public Health. 2019; 16(5):861. https://doi.org/10.3390/ijerph16050861
Chicago/Turabian StyleBell, Caryn N., Jordan Kerr, and Jessica L. Young. 2019. "Associations between Obesity, Obesogenic Environments, and Structural Racism Vary by County-Level Racial Composition" International Journal of Environmental Research and Public Health 16, no. 5: 861. https://doi.org/10.3390/ijerph16050861