Benefits of Gardening Activities for Cognitive Function According to Measurement of Brain Nerve Growth Factor Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Assessments
2.3. Data Analysis
3. Results
3.1. Demographic Information
3.2. Levels of the Brain Nerve Growth Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peters, R. Ageing and the Brain. Postgrad. Med. J. 2006, 82, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Scahill, R.I.; Frost, C.; Fox, N.C. A Longitudinal Study of Brain Volume Changes in Normal Aging Using Serial Registered Magnetic Resonance Imaging. Arch. Neurol. 2003, 60, 989–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svennerholm, L.; Boström, K.; Jungbjer, B. Changes in Weight and Compositions of Major Membrane Components of Human Brain during the Span of Adult Human Life of Swedes. Acta Neuropathol. 1997, 94, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Papp, K.V.; Kaplan, R.F.; Wolfson, L. Processing Speed in Normal Aging: Effects of White Matter Hyperintensities and Hippocalpal Volume Loss. Aging Neuropsychol. Cogn. 2014, 21, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Reuben, A.; Brickman, A.M.; Stern, Y. Hippocampal Atrophy Relates to Fluid Intelligence Decline in the Elderly. J. Int. Neuropsychol. Soc. 2011, 17, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Philbeck, J.W.; Caputy, A.J. Medial Temporal Lobe Roles in Human Path Integration. PLoS ONE 2014, 9, e96583. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, A.; Cohen, R.; Woods, A.J. Cognitive Aging and the Hippocampus in Older Adults. Front. Aging Neurosci. 2016, 8, 298. [Google Scholar]
- Squire, L.R. Memory and the Hippocampus: A Synthesis from Findings with Rats, Monkeys, and Humans. Psychol. Rev. 1992, 99, 195. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Petersen, R.C.; Kokmen, E. Prediction of AD with MRI-based Hippocampal Volume in Mild Cognitive Impairment. Neurology 1999, 52, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Colcombe, S.; Kramer, A.F. Fitness Effects on the Cognitive Function of Older Adults: A Meta-Analytic Study. Psychol. Sci. 2003, 14, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Roig, M.; Nordbrandt, S.; Nielsen, J.B. The Effects of Cardiovascular Exercise on Human Memory: A Review with Meta-Analysis. Neurosci. Biobehav. Rev. 2013, 37, 1645–1666. [Google Scholar] [CrossRef] [PubMed]
- Brisswalter, J.; Collardeau, M.; René, A. Effects of Acute Physical Exercise Characteristics on Cognitive Performance. Sports Med. 2002, 32, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Etnier, J.L.; Salazar, W.; Nowell, P. The Influence of Physical Fitness and Exercise Upon Cognitive Functioning: A Meta-Analysis. J. Sport Exerc. Psychol. 1997, 19, 249–277. [Google Scholar] [CrossRef]
- Tomporowski, P.D. Effects of Acute Bouts of Exercise on Cognition. Acta Psychol. 2003, 112, 297–324. [Google Scholar] [CrossRef]
- Audiffren, M. Acute Exercise and Psychological Functions: A Cognitive-Energetic Approach. Exerc. Cogn. Funct. 2009, 3–39. [Google Scholar] [CrossRef]
- Covassin, T.; Weiss, L.; Womack, C. Effects of a Maximal Exercise Test on Neurocognitive Function. Br. J. Sports Med. 2007, 41, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Davey, C.P. Physical Exertion and Mental Performance. Ergonomics 1973, 16, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, A.; Sparling, P.B. Endurance Exercise Selectively Impairs Prefrontal-Dependent Cognition. Brain Cogn. 2004, 55, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Pontifex, M.B.; Hillman, C.H.; Valentini, T.A. The Effect of Acute Aerobic and Resistance Exercise on Working Memory. Med. Sci. Sports Exerc. 2009, 41, 927–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roig, M.; Skriver, K.; Nielsen, J.B. A Single Bout of Exercise Improves Motor Memory. PLoS ONE 2012, 7, e44594. [Google Scholar]
- Hassmén, P.; Koivula, N. Mood, Physical Working Capacity and Cognitive Performance in the Elderly as Related to Physical Activity. Aging Clin. Exp. Res. 1997, 9, 136–142. [Google Scholar] [CrossRef]
- Masley, S.; Roetzheim, R.; Gualtieri, T. Aerobic exercise enhances cognitive flexibility. J. Clin. Psychol. Med. Settings 2009, 16, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Carro, E.; Trejo, J.L.; Busiguina, S.; Torres-Aleman, I. Circulating Insulin-like Growth Factor I Mediates the Protective Effects of Physical Exercise Against Brain Insults of Different Etiology and Anatomy. J. Neurosci. 2001, 21, 5678–5684. [Google Scholar] [CrossRef] [PubMed]
- Fabel, K.; Fabel, K.; Palmer, T.D. VEGF is Necessary for Exercise-Induced Adult Hippocampal Neurogenesis. Eur. J. Neurosci. 2003, 18, 2803–2812. [Google Scholar] [CrossRef] [PubMed]
- Neeper, S.A.; Góauctemez-Pinilla, F.; Cotman, C. Exercise and Brain Neurotrophins. Nature 1995, 373, 109. [Google Scholar] [CrossRef] [PubMed]
- Bibel, M.; Barde, Y.A. Neurotrophins: Key Regulators of Cell Fate and Cell Shape in the Vertebrate Nervous System. Genes Dev. 2000, 14, 2919–2937. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Brakenhielm, E.; Cao, Y. Angiogenesis Stimulated by PDGF-CC, a Novel Member in the PDGF Family, Involves Activation of PDGFR-αα and -αβ Receptors. FASEB 2002, 16, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Poo, M.M. Neurotrophin Regulation of Neural Circuit Development and Function. Nat. Rev. Neurosci. 2013, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Arjunan, P.; Li, X. Survival Effect of PDGF-CC Rescues Neurons from Apoptosis in both Brain and Retina by Pegulating GSK3β Phosphorylation. J. Exp. Med. 2010, 207, 867–880. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, A.S.; Castro, A.A.; Prediger, R.D. Short Bouts of Mild-Intensity Physical Exercise Improve Spatial Learning and Memory in Aging Rats: Involvement of Hippocampal Plasticity Via AKT, CREB and BDNF Signaling. Mech. Ageing Dev. 2011, 11–12, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, A.S.; Speck, A.E.; Pinho, R.A. Downhill Training Upregulates Mice Hippocampal and Striatal Brain-Derived Neurotrophic Factor Levels. J. Neural Transm. 2008, 115, 1251–1255. [Google Scholar] [CrossRef] [PubMed]
- Uysal, N.; Kiray, M.; Aksu, I. Effects of Voluntary and Involuntary Exercise on Cognitive Functions, and VEGF and BDNF Levels in Adolescent Rats. Biotech. Histochem. 2015, 90, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Vaynman, S.; Ying, Z.; Gomez-Pinilla, F. Hippocampal BDNF Mediates the Efficacy of Exercise on Synaptic Plasticity and Cognition. Eur. J. Neurosci. 2004, 20, 2580–2590. [Google Scholar] [CrossRef] [PubMed]
- Park, S.A.; Lee, A.Y.; Son, K.C. A Comparison of Exercise Intensity Between Two Horticultural and Four Common Physical Activities Among Male Adults in Their 20s. Hort. Sci. Technol. 2015, 33, 133–142. [Google Scholar] [CrossRef]
- Park, S.A.; Lee, K.S.; Son, K.C. Determining Exercise Intensities of Gardening Tasks as a Physical Activity Using Metabolic Equivalents in Older Adults. HortScience 2011, 46, 1706–1710. [Google Scholar] [CrossRef]
- Park, S.A.; Oh, S.R.; Son, K.C. Electromyographic Analysis of Upper Limb and Hand Muscles During Horticultural Activity Motions. HortTechnology 2013, 23, 51–56. [Google Scholar] [CrossRef]
- Park, S.A.; Lee, A.Y.; Kim, D.S. Gardening Intervention for Physical and Psychological Health Benefits in Elderly Women at Community Centers. HortTechnology 2016, 26, 474–483. [Google Scholar]
- Park, S.A.; Lee, A.Y.; Park, H.G.; Lee, W.L. Gardening intervention as a Low-to Moderate-Intensity Physical Activity for Improving Blood Lipid Profiles, Blood Pressure, Inflammation, and Oxidative Stress in Women Over the Age of 70: A pilot Study. HortScience 2017, 52, 200–205. [Google Scholar] [CrossRef]
- Park, S.A.; Lee, K.S.; Shoemaker, C. Metabolic Cost of Horticulture Activities in Older Adults. J. Jpn. Soc. Hort. Sci. 2012, 81, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Park, S.A.; Shoemaker, C.A.; Haub, M. How to Measure Exercise Intensity of Gardening Tasks as a Physical Activity for Older Adults Using Metabolic Equivalents. Acta Hortic. 2008, 775, 37–40. [Google Scholar] [CrossRef]
- Song, G.J. The Effects of Horticultural Therapy Using the Rehabilitation Assessment on the Changes of Cognitive and Upper Extremity Function in the Demented Old Adults. Master’s Thesis, Konkuk University, Seoul, Korea, 2007. [Google Scholar]
- Kim, M.H.; Kim, J.M. The Effect of an Occupational Therapeutic Intervention Program Using Horticultural Therapy on Cognition and Daily Living Performance of the Elderly with Dementia. J. Korean Soc. Community Based Occup. Ther. 2012, 2, 75–84. [Google Scholar]
- Pate, R.R.; Pratt, M.; Kriska, A. Physical Activity and Public Health: A Recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 1995, 273, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.E.; Rejeski, W.J.; Castaneda-Sceppa, C. Physical Activity and Public Health in Older Adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Cowansage, K.K.; LeDoux, J.D.; Monfils, M.H. Brain-Derived Neurotrophic Factor: A Dynamic Gatekeeper of Neural Plasticity. Curr. Mol. Pharmacol. 2010, 3, 12–29. [Google Scholar] [CrossRef] [PubMed]
- Gottmann, K.; Mittmann, T.; Lessmann, V. BDNF Signaling in the Formation, Maturation and Plasticity of Glutamatergic and GABAergic Synapses. Exp. Brain Res. 2009, 199, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, R.H.; Marini, A.M. Brain-Derived Neurotrophic Factor in Neuronal Survival and Behavior-Related Plasticity. Ann. N. Y. Acad. Sci. 2007, 1122, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Cotman, C.W.; Berchtold, N.C. Exercise: A Behavioral Intervention to Enhance Brain Health and Plasticity. Trends Neurosci. 2002, 25, 295–301. [Google Scholar] [CrossRef]
- Erickson, K.I.; Miller, D.L.; Roecklein, K.A. The Aging Hippocampus: Interactions Between Exercise, Depression, and BDNF. Neuroscientist 2012, 18, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Voss, M.W.; Kramer, A.F. Exercise Training Increases Size of Hippocampus and Improves Memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [PubMed]
- Ruscheweyh, R.; Willemer, C.; Flöel, A. Physical Activity and Memory Functions: An Interventional Study. Neurobiol. Aging 2011, 32, 1304–1319. [Google Scholar] [CrossRef] [PubMed]
- Zoladz, J.A.; Pilc, A.; Duda, K. Endurance Training Increases Plasma Brain-Derived Neurotrophic Factor Concentration in Young Healthy Men. J. Physiol. Pharmacol. 2008, 59, 119–132. [Google Scholar] [PubMed]
- Lee, C.; Zhang, F.; Li, X. PDGF-C: A New Performer in the Neurovascular Interplay. Trends Mol. Med. 2013, 19, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Connolly, P.H.; Caiozzo, V.J.; Cooper, D.M. Effects of Exercise on Gene Expression in Human Peripheral Blood Mononuclear Cells. J. Appl. Physiol. 2004, 97, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Czarkowska-Paczek, B.; Bartlomiejczyk, I.; Przybylski, J. The Serum Levels of Growth Factors: PDGF, TGF-BETA. J. Physiol. Pharmacol. 2006, 57, 189–197. [Google Scholar] [PubMed]
- Adams, R.H.; Alitalo, K. Molecular Regulation of Angiogenesis and Lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 2007, 8, 464–478. [Google Scholar] [CrossRef] [PubMed]
- During, M.J.; Cao, L. VEGF, a Mediator of the Effect of Experience on Hippocampal Neurogenesis. Curr. Alzheimer Res. 2006, 3, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Namiki, A.; Brogi, E.; Isner, J.M. Hypoxia Induces Vascular Endothelial Growth Factor in Cultured Human Endothelial Cells. J. Biol. Chem. 1995, 270, 31189–31195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, M.W.; Erickson, K.I.; Kramer, A.F. Neurobiological Markers of Exercise-Related Brain Plasticity in Older Adults. Brain Behav. Immun. 2013, 28, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Kraus, R.M.; Stallings, H.W.; Gavin, T.P. Circulating Plasma VEGF Response to Exercise in Sedentary and Endurance-Trained Men. J. Appl. Physiol. 2004, 96, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
Activity | Mean Time (min) | Description | Estimated MET Values 1 |
---|---|---|---|
Cleaning garden plot | 2 | Removing weeds and fallen leaves in the garden plot | 3.4 |
Digging | 5 | Digging a 1m (w) × 1.8 m (l) garden plot with a shovel (1.3 kg) | 4.5 |
Fertilizing | 3 | Spreading fertilizer using a bucket (22 cm (d) × 9 cm (h); average 8.1 L) on the garden plot and then mixing it into the soil using a shovel | 4.0 |
Raking | 3 | Raking the garden plot using a hand rake (0.9 kg), then making four furrows using a hand rake (0.9 kg) | 3.4 |
Transplanting plant | 5 | Transplanting lettuce plants (average 23 plants) into the garden plot using a hand trowel (0.1 kg) | 2.9 |
Watering using a watering can | 2 | Watering plants using a watering can (average 5.7 L) | 2.8 |
(Total 20 min) | (Mean 3.5 METs) |
Variable | Gardening Intervention Group |
---|---|
Sex | |
Male | 13 (31.7) 1 |
Female | 28 (68.3) |
Age (years) | 76.6 ± 6.0 1 |
Height (cm) | 154.7 ± 8.1 |
Body composition | |
Body weight (kg) | 60.3 ± 10.1 |
Body mass index (kg/m2) | 25.4 ± 3.8 |
Lean mass (kg) | 37.6 ± 6.1 |
Fat mass (kg) | 19.6 ± 7.2 |
Percent fat (%) | 31.5 ± 8.7 |
Age-adjusted maximum heart rate (beats/min) | 143.4 ± 6.0 |
Current disease | |
Diabetes | 7 (28.0) |
Hyperlipidemia | 5 (20.0) |
Musculoskeletal | 4 (16.0) |
Genito-urinary | 2 (8.0) |
Respiratory | 2 (8.0) |
Gastrointestinal | 2 (8.0) |
Thyroid | 2 (8.0) |
Cerebral infarction | 1 (4.0) |
Current medications | |
Blood pressure | 24 (52.2) |
Diabetes mellitus | 7 (15.2) |
Cholesterol | 6 (13.0) |
Antiarthritic | 4 (8.7) |
Thyroid | 2 (4.4) |
Gastrointestinal | 2 (4.4) |
Prostate | 1 (2.2) |
Measurement 1 | BDNF (ng/mL) | PDGF (pg/mL) | VEGF (pg/mL) |
---|---|---|---|
Mean ± SD | |||
Pre-intervention | 53.75 ± 21.49 | 3477.46 ± 1171.82 | 338.69 ± 171.64 |
Post-intervention | 58.26 ± 23.40 | 3945.80 ± 1372.26 | 325.83 ± 145.98 |
p2 | 0.038 * | 0.001 ** | 0.126 NS |
Variable | Male (n = 13) | Female (n = 28) | p1 |
---|---|---|---|
Mean ± SD | |||
BDNF (ng/ml) | |||
Pre-intervention | 58.7 ± 20.0 | 51.5 ± 22.1 | 0.362 NS |
Post-intervention | 67.2 ± 26.1 | 54.3 ± 21.5 | 0.132 NS |
PDGF (pg/mL) | |||
Pre-intervention | 3531.2 ± 1052.7 | 3450.6 ± 1252.5 | 0.863 NS |
Post-intervention | 4464.5 ± 1318.8 | 3686.4 ± 1355.7 | 0.146 NS |
VEGF (pg/mL) | |||
Pre-intervention | 375.2 ± 258.4 | 322.6 ± 119.4 | 0.405 NS |
Post-intervention | 364.5 ± 207.0 | 308.8 ± 110.6 | 0.298 NS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-A.; Lee, A.-Y.; Park, H.-G.; Lee, W.-L. Benefits of Gardening Activities for Cognitive Function According to Measurement of Brain Nerve Growth Factor Levels. Int. J. Environ. Res. Public Health 2019, 16, 760. https://doi.org/10.3390/ijerph16050760
Park S-A, Lee A-Y, Park H-G, Lee W-L. Benefits of Gardening Activities for Cognitive Function According to Measurement of Brain Nerve Growth Factor Levels. International Journal of Environmental Research and Public Health. 2019; 16(5):760. https://doi.org/10.3390/ijerph16050760
Chicago/Turabian StylePark, Sin-Ae, A-Young Lee, Hee-Geun Park, and Wang-Lok Lee. 2019. "Benefits of Gardening Activities for Cognitive Function According to Measurement of Brain Nerve Growth Factor Levels" International Journal of Environmental Research and Public Health 16, no. 5: 760. https://doi.org/10.3390/ijerph16050760