Associations Between Socio-Economic Status and Child Health: Findings of a Large German Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of SES
2.3. Health Assessments
2.3.1. Health Outcomes
2.3.2. Health Behaviors
2.4. Statistical Analysis
3. Results
3.1. SES Distribution
3.2. Associations Between SES Composite Score and Health Outcomes and Behaviors (Initial Analysis)
3.3. Associations Between Single SES Indicators and Health Outcomes and Behaviors (Specific Analysis)
3.4. Child Age or Sex as a Moderator (Moderator Analysis)
4. Discussion
4.1. Associations of SES with Child Health
4.2. Associations of SES and Child Health Depending on Sex and Age
4.3. Implications
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Flouri, E.; Mavroveli, S.; Tzavidis, N. Modeling risks: Effects of area deprivation, family socio-economic disadvantage and adverse life events on young children’s psychopathology. Soc. Psychiatry Psychiatr. Epidemiol. 2010, 45, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Pinket, A.-S.; De Craemer, M.; De Bourdeaudhuij, I.; Deforche, B.; Cardon, G.; Androutsos, O.; Koletzko, B.; Moreno, L.A.; Socha, P.; Iotova, V.; et al. Can parenting practices explain the differences in beverage intake according to socio-economic status: The Toybox-Study. Nutrients 2016, 8, 591. [Google Scholar] [CrossRef] [PubMed]
- Gecková, A.M.; Stewart, R.; van Dijk, J.P.; Orosová, O.; Groothoff, J.W.; Post, D. Influence of socio-economic status, parents and peers on smoking behaviour of adolescents. Eur. Addict. Res. 2005, 11, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Molina-García, J.; Queralt, A.; Adams, M.A.; Conway, T.L.; Sallis, J.F. Neighborhood built environment and socio-economic status in relation to multiple health outcomes in adolescents. Prev. Med. 2017, 105, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Manos, S.H.; Cui, Y.; MacDonald, N.N.; Parker, L.; Dummer, T.J.B. Youth health care utilization in Nova Scotia: What is the role of age, sex and socio-economic status? Can. J. Public Health 2014, 105, e431–e437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lepeleere, S.; De Bourdeaudhuij, I.; Van Stappen, V.; Huys, N.; Latomme, J.; Androutsos, O.; Manios, Y.; Cardon, G.; Verloigne, M. Parenting practices as a mediator in the association between family socio-economic status and screen-time in primary schoolchildren: A Feel4Diabetes Study. Int. J. Environ. Res. Public Health 2018, 15, 2553. [Google Scholar] [CrossRef] [PubMed]
- Veldhuis, L.; Vogel, I.; van Rossem, L.; Renders, C.M.; Hirasing, R.A.; Mackenbach, J.P.; Raat, H. Influence of maternal and child lifestyle-related characteristics on the socioeconomic inequality in overweight and obesity among 5-year-old children; the “Be Active, Eat Right” Study. Int. J. Environ. Res. Public Health 2013, 10, 2336–2347. [Google Scholar] [CrossRef] [PubMed]
- Bradley, R.H.; Corwyn, R.F. Socioeconomic status and child development. Annu. Rev. Psychol. 2002, 53, 371–399. [Google Scholar] [CrossRef] [PubMed]
- Howe, L.D.; Tilling, K.; Galobardes, B.; Smith, G.D.; Ness, A.R.; Lawlor, D.A. Socioeconomic disparities in trajectories of adiposity across childhood. Int. J. Pediatr. Obes. 2011, 6, e144–e153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, C.L.; Lamb, M.M.; Carroll, M.D.; Flegal, K.M. Obesity and Socioeconomic Status in Children and Adolescents: United States 2005–2008. NCHS Data Brief 2010, 51, 1–8. [Google Scholar]
- Shrewsbury, V.; Wardle, J. Socioeconomic status and adiposity in childhood: A systematic review of cross-sectional studies 1990–2005. Obesity 2008, 16, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Petraviciene, I.; Grazuleviciene, R.; Andrusaityte, S.; Dedele, A.; Nieuwenhuijsen, M.J. Impact of the social and natural environment on preschool-age children weight. Int. J. Environ. Res. Public Health 2018, 15, 449. [Google Scholar] [CrossRef] [PubMed]
- Reiss, F. Socioeconomic inequalities and mental health problems in children and adolescents: A systematic review. Soc. Sci. Med. 2013, 90, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.; Sawyer, M.G.; Lo, S.K.; Priest, N.; Wake, M. Socioeconomic risk factors for mental health problems in 4–5-year-old children: Australian Population Study. Acad. Pediatr. 2010, 10, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Bøe, T.; Øverland, S.; Lundervold, A.J.; Hysing, M. Socioeconomic status and children’s mental health: Results from the Bergen Child Study. Soc. Psychiatry Psychiatr. Epidemiol. 2012, 47, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Piko, B.F.; Fitzpatrick, K.M. Socioeconomic status, psychosocial health and health behaviours among Hungarian adolescents. Eur. J. Public Health 2007, 17, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Rajmil, L.; Herdman, M.; Ravens-Sieberer, U.; Erhart, M.; Alonso, J.; Group, T.E.K. Socioeconomic inequalities in mental health and health-related quality of life (HRQOL) in children and adolescents from 11 European countries. Int. J. Public Health 2014, 59, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Petersen-Ewert, C.; Erhart, M.; Ravens-Sieberer, U. Assessing health-related quality of life in European children and adolescents. Neurosci. Biobehav. Rev. 2011, 35, 1752–1756. [Google Scholar] [CrossRef] [PubMed]
- Raffensperger, S.; Kuczmarski, M.F.; Hotchkiss, L.; Cotugna, N.; Evans, M.K.; Zonderman, A.B. The effect of race and predictors of socioeconomic status on diet quality in the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study sample. J. Natl. Med. Assoc. 2010, 102, 923–930. [Google Scholar] [CrossRef]
- Hanson, M.D.; Chen, E. Socioeconomic status and health behaviors in adolescence: A review of the literature. J. Behav. Med. 2007, 30, 263–285. [Google Scholar] [CrossRef] [PubMed]
- Manz, K.; Schlack, R.; Poethko-Müller, C.; Mensink, G.; Finger, J.; Lampert, T.; KiGGS Study Group. Physical activity and electronic media use in children and adolescents: Results of the KiGGS study: First follow-up (KiGGS wave 1). Bundesgesundheitsblatt 2014, 57, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Gorely, T.; Atkin, A.J.; Biddle, S.J.; Marshall, S.J. Family circumstance, sedentary behaviour and physical activity in adolescents living in England: Project STIL. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairclough, S.J.; Boddy, L.M.; Hackett, A.F.; Stratton, G. Associations between children’s socioeconomic status, weight status, and sex, with screen-based sedentary behaviours and sport participation. Int. J. Pediatr. Obes. 2009, 4, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Rideout, V.; Foehr, U.; Roberts, D. Generation M2: Media in the Lives of 8- to 18-Year-Olds. A Kaiser Family Foundation Study; The Henry J. Kaiser Family Foundation: Menlo Park, CA, USA, 2010. [Google Scholar]
- Lampert, T.; Sygusch, R.; Schlack, R. Use of electronic media in adolescence. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsblatt 2007, 50, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Poulain, T.; Vogel, M.; Neef, M.; Abicht, F.; Hilbert, A.; Genuneit, J.; Körner, A.; Kiess, W. Reciprocal associations between electronic media use and behavioral difficulties in preschoolers. Int. J. Environ. Res. Public Health 2018, 15, 814. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.W.; Kim, P. Multiple risk exposure as a potential explanatory mechanism for the socioeconomic status–health gradient. Ann. N. Y. Acad. Sci. 2010, 1186, 174–189. [Google Scholar] [CrossRef] [PubMed]
- Dathan-Stumpf, A.; Vogel, M.; Rieger, K.; Thiery, J.; Hiemisch, A.; Kiess, W. Serum lipid levels were related to socio-demographic characteristics in a German population-based child cohort. Acta Paediatr. 2016, 105, e360–e367. [Google Scholar] [CrossRef] [PubMed]
- Rieger, K.; Vogel, M.; Engel, C.; Ceglarek, U.; Harms, K.; Wurst, U.; Lengfeld, H.; Richter, M.; Kiess, W. Does physiological distribution of blood parameters in children depend on socioeconomic status? Results of a German cross-sectional study. BMJ Open 2018, 8, e019143. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Torres, L.; Hale, D.; Morris, S.; Viner, R.M. Income-related inequality in health and health-related behaviour: Exploring the equalisation hypothesis. J. Epidemiol. Community Health 2014, 68, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Spencer, N.J. Social equalization in youth: Evidence from a cross-sectional British survey. Eur. J. Public Health 2006, 16, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Wickrama, K.A.S.; Noh, S.; Elder, G.H. An investigation of family SES-based inequalities in depressive symptoms from early adolescence to emerging adulthood. Adv. Life Course Res. 2009, 14, 147–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, P. Health inequalities in the early years: Is there equalisation in youth? Soc. Sci. Med. 1997, 44, 833–858. [Google Scholar] [CrossRef]
- Herrmann, J.; Vogel, M.; Pietzner, D.; Kroll, E.; Wagner, O.; Schwarz, S.; Müller, E.; Kiess, W.; Richter, M.; Poulain, T. Factors associated with the emotional health of children: High family income as a protective factor. Eur. Child Adolesc. Psychiatry 2018, 27, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Poulain, T.; Baber, R.; Vogel, M.; Pietzner, D.; Kirsten, T.; Jurkutat, A.; Hiemisch, A.; Hilbert, A.; Kratzsch, J.; Thiery, J.; et al. The LIFE Child study: A population-based perinatal and pediatric cohort in Germany. Eur. J. Epidemiol. 2017, 32, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Quante, M.; Hesse, M.; Döhnert, M.; Fuchs, M.; Hirsch, C.; Sergeyev, E.; Casprzig, N.; Geserick, M.; Naumann, S.; Koch, C.; et al. The LIFE child study: A life course approach to disease and health. BMC Public Health 2012, 12, 1021. [Google Scholar] [CrossRef] [PubMed]
- Lampert, T.; Müters, S.; Stolzenberg, H.; Kroll, L.E. Measurement of socioeconomic status in the KiGGS study. First follow-up (KiGGS Wave 1). Bundesgesundheitsblatt 2014, 57, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Kromeyer-Hauschild, K.; Wabitsch, M.; Kunze, D.; Geller, F.; Geiss, H.-C.; Hesse, V.; von Hippel, A.; Jaeger, U.; Johnsen, D.; Korte, W.; et al. Perzentile für den Body-Mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr. Kinderheilkd. 2001, 149, 807–818. [Google Scholar] [CrossRef]
- Goodman, R. The Strengths and Difficulties Questionnaire: A research note. J. Child Psychol. Psychiatry 1997, 38, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Ravens-Sieberer, U.; Auquier, P.; Erhart, M.; Gosch, A.; Rajmil, L.; Bruil, J.; Power, M.; Duer, W.; Cloetta, B.; Czemy, L.; et al. The KIDSCREEN-27 quality of life measure for children and adolescents: Psychometric results from a cross-cultural survey in 13 European countries. Qual. Life Res. 2007, 16, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Poulain, T.; Spielau, U.; Vogel, M.; Körner, A.; Kiess, W. CoCu: A new short questionnaire to evaluate diet composition and culture of eating in children and adolescents. Clin. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Owens, J.A.; Spirito, A.; McGuinn, M. The Children’s Sleep Habits Questionnaire (CSHQ): Psychometric properties of a survey instrument for school-aged children. Sleep 2000, 23, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Sauseng, W.; Sonnleitner, A.; Hofer, N.; Pansy, J.; Kiechl-Kohlendorfer, U.; Weiss, S.; Kenzian, H.; Kerbl, R. Empfehlungen zur Regulierung von Bildschirmzeiten im Kindes- und Jugendalter. Monatsschr. Kinderheilkd. 2017, 165, 254–256. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2014, 67, 1–48. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Hiscock, R.; Bauld, L.; Amos, A.; Fidler, J.A.; Munafò, M. Socioeconomic status and smoking: A review. Ann. N. Y. Acad. Sci. 2012, 1248, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Uebergang, L.K.; Arnup, S.J.; Hiscock, H.; Care, E.; Quach, J. Sleep problems in the first year of elementary school: The role of sleep hygiene, sex and socioeconomic status. Sleep Health 2017, 3, 142–147. [Google Scholar] [CrossRef] [PubMed]
Measure | Assessment | Age (Years) | Acquisition Years | N | |
---|---|---|---|---|---|
Health outcome | BMI | E | 3–18 | 2011–2018 | 2998 |
Behavioral difficulties | Q (SR) | 10–18 | 2011–2018 | 1547 | |
Q (PR) | 3–10 | 2011–2018 | 2007 | ||
Quality of life | Q (SR) | 10–18 | 2011–2018 | 1636 | |
Critical life events | Q (SR) | 10–18 | 2011–2017 | 1559 | |
Health behavior | Nutrition | Q (SR) | 10–18 | 2016–2018 | 736 |
Q (PR) | 3–10 | 2016–2018 | 868 | ||
Sleep problems | Q (PR) | 3–10 | 2011–2015 | 943 | |
TV use | Q (SR) | 10–18 | 2011–2017 | 1486 | |
Q (PR) | 3–10 | 2011–2017 | 1828 | ||
Smoking | Q (SR) | 10–18 | 2011–2017 | 1350 | |
Alcohol consumption | Q (SR) | 10–18 | 2011–2017 | 1350 | |
Physical activity | Q (SR) | 10–18 | 2011–2017 | 1488 | |
Q (PR) | 3–10 | 2011–2017 | 1828 |
SES Indicator | N Families | Range | Mean (SD) | Classification |
---|---|---|---|---|
SES composite score | 2590 | 3–21 | 12.93 | 14% low, 57% middle, 29% high |
Education mother | 2164 | 1–7 | 3.49 | |
Occupational status mother | 2281 | 1–7 | 4.75 | |
Household equivalent income | 2548 | 1–7 | 4.33 |
Continuous Outcomes | Age (Years) | N | β(95% CI) | p |
BMI | 3–18 | 2998 | −0.26 (−0.30 to −0.22) | <0.001 |
Behavioral difficulties (SR) | 10–18 | 1547 | −0.18 (−0.23 to −0.13) | <0.001 |
Behavioral difficulties (PR) | 3–10 | 2007 | −0.27 (−0.31 to −0.22) * | <0.001 |
Quality of life (SR) | 10–18 | 1636 | 0.21 (0.16–0.26) | <0.001 |
Score healthy nutrition (SR) | 10–18 | 736 | 0.16 (0.09–0.24) | <0.001 |
Score healthy nutrition (PR) | 3–10 | 868 | 0.15 (0.08–0.23) | <0.001 |
Sleep problems (PR) | 3–10 | 943 | −0.04 (−0.11 to 0.03) | 0.620 |
Binary Outcomes | Age Range | N | OR (95% CI) | p |
Critical life events (SR) | 10–18 | 1559 | 0.93 (0.90–0.96) | <0.001 |
TV use (SR) | 10–18 | 1486 | 0.87 (0.87–0.88) | <0.001 |
TV use (PR) | 3–10 | 1828 | 0.75 (0.68–0.82) | <0.001 |
Smoking (SR) | 10–18 | 1350 | 0.93 (0.89–0.98) | 0.002 |
Alcohol consumption (SR) | 10–18 | 1350 | 1.02 (0.98–1.06) | 0.405 |
Physical activity (SR) | 10–18 | 1488 | 1.18 (1.13–1.22) | <0.001 |
Physical activity (PR) | 3–10 | 1828 | 1.16 (1.09–1.24) * | <0.001 |
Continuous Outcomes | Age (Years) | N | Maternal Education | Maternal Occupational Status | Equivalent Household Income | |||
---|---|---|---|---|---|---|---|---|
β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | |||
BMI | 3–18 | 2226 | −0.20 (−0.25 to −0.15) | <0.001 | −0.19 (−0.23 to −0.14) | <0.001 | −0.15 (−0.20 to −0.11) * | <0.001 |
Behavioral difficulties (SR) | 10–18 | 1150 | −0.12 (−0.18 to −0.06) | <0.001 | −0.12 (−0.17 to −0.06) | <0.001 | −0.14 (−0.20 to −0.08) | <0.001 |
Behavioral difficulties (PR) | 3–10 | 1525 | −0.17 (−0.22 to −0.12) | <0.001 | −0.18 (−0.23 to −0.13) | <0.001 | −0.15 (−0.20 to −0.10) * | <0.001 |
Quality of life (SR) | 10–18 | 1210 | 0.12 (0.07–0.18) | <0.001 | 0.14 (0.08–0.20) | <0.001 | 0.16 (0.11–0.22) | <0.001 |
Score healthy nutrition (SR) | 10–18 | 570 | 0.15 (0.07–0.24) | <0.001 | 0.14 (0.05–0.22) | 0.004 | 0.10 (0.01–0.18) | 0.069 |
Score healthy nutrition (PR) | 3–10 | 653 | 0.14 (0.05–0.22) | 0.005 | 0.12 (0.04–0.20) | 0.018 | 0.05 (−0.03 to 0.13) | 0.531 |
Sleep problems (PR) | 3–10 | 719 | −0.03 (−0.11 to 0.05) | 0.817 | −0.03 (−0.10 to 0.05) | 0.877 | 0.03 (−0.05 to 0.10) | 0.883 |
Binary Outcomes | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | ||
Critical life events (SR) | 10–18 | 1157 | 0.87 (0.78–0.96) | 0.005 | 0.88 (0.76–1.02) | 0.095 | 0.70 (0.57–0.86) | <0.001 |
TV use (SR) | 10–18 | 1107 | 0.75 (0.66–0.85) | <0.001 | 0.73 (0.60–0.88) | 0.001 | 0.52 (0.39–0.70) | <0.001 |
TV use (PR) | 3–10 | 1384 | 0.60 (0.51–0.69) | <0.001 | 0.49 (0.39–0.62) | <0.001 | 0.55 (0.42–0.71) | <0.001 |
Smoking (SR) | 10–18 | 992 | 0.86 (0.74–0.99) | 0.044 | 0.61 (0.47–0.79) | <0.001 | 0.77 (0.58–1.02) | 0.069 |
Alcohol consumption (SR) | 10–18 | 992 | 1.04 (0.91–1.18) | 0.540 | 1.01 (0.83–1.23) | 0.907 | 0.83 (0.64–1.07) | 0.149 |
Physical activity (SR) | 10–18 | 1108 | 1.33 (1.18–1.50) | <0.001 | 1.65 (1.38–1.98) | <0.001 | 1.83 (1.45–2.31) | <0.001 |
Physical activity (PR) | 3–10 | 1384 | 1.11 (0.99–1.25) | 0.068 | 1.57 (1.30–1.91) | <0.001 | 1.42 (1.14–1.77) * | 0.002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poulain, T.; Vogel, M.; Sobek, C.; Hilbert, A.; Körner, A.; Kiess, W. Associations Between Socio-Economic Status and Child Health: Findings of a Large German Cohort Study. Int. J. Environ. Res. Public Health 2019, 16, 677. https://doi.org/10.3390/ijerph16050677
Poulain T, Vogel M, Sobek C, Hilbert A, Körner A, Kiess W. Associations Between Socio-Economic Status and Child Health: Findings of a Large German Cohort Study. International Journal of Environmental Research and Public Health. 2019; 16(5):677. https://doi.org/10.3390/ijerph16050677
Chicago/Turabian StylePoulain, Tanja, Mandy Vogel, Carolin Sobek, Anja Hilbert, Antje Körner, and Wieland Kiess. 2019. "Associations Between Socio-Economic Status and Child Health: Findings of a Large German Cohort Study" International Journal of Environmental Research and Public Health 16, no. 5: 677. https://doi.org/10.3390/ijerph16050677
APA StylePoulain, T., Vogel, M., Sobek, C., Hilbert, A., Körner, A., & Kiess, W. (2019). Associations Between Socio-Economic Status and Child Health: Findings of a Large German Cohort Study. International Journal of Environmental Research and Public Health, 16(5), 677. https://doi.org/10.3390/ijerph16050677