Understanding Potential Exposure of Bicyclists on Roadways to Traffic-Related Air Pollution: Findings from El Paso, Texas, Using Strava Metro Data
Abstract
:1. Introduction
1.1. Background
1.2. Influential Factors on Bicycling
1.3. Bicycle Data Collection and Strava
1.4. Strava and Air Pollution
1.5. Study Purpose
2. Materials and Methods
2.1. Study Area
2.2. Data and Variables
2.2.1. Bicycle Count Data
2.2.2. Explanatory Variables
2.3. Data Analysis
3. Results
3.1. Spatial Patterns of Bicycling and PM2.5
3.2. Descriptive Statistics
3.3. Bicycle Model
4. Discussion
4.1. Factors Influencing Bicycle Activity of Strava Users
4.2. Potential Exposure to Traffic-Related Air Pollution
4.3. Commuting and Non-Commuting Patterns
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Zuurbier, M.; Hoek, G.; van den Hazel, P.; Brunekreef, B. Minute ventilation of cyclists, car and bus passengers: An experimental study. Environ. Health 2009, 8, 48. [Google Scholar] [CrossRef]
- Park, H.Y.; Gilbreath, S.; Barakatt, E. Respiratory outcomes of ultrafine particulate matter (UFPM) as a surrogate measure of near-roadway exposures among bicyclists. Environ. Health 2017, 16, 6. [Google Scholar] [CrossRef] [PubMed]
- Laeremans, M.; Dons, E.; Avila-Palencia, I.; Carrasco-Turigas, G.; Orjuela-Mendoza, J.P.; Anaya-Boig, E.; Cole-Hunter, T.; de Nazelle, A.; Nieuwenhuijsen, M.; Standaert, A.; et al. Black carbon reduces the beneficial effect of physical activity on lung function. Med. Sci. Sports Exerc. 2018, 50, 9. [Google Scholar] [CrossRef] [PubMed]
- Matt, F.; Cole-Hunter, T.; Donaire-Gonzalez, D.; Kubesch, N.; Martínez, D.; Carrasco-Turigas, G.; Nieuwenhuijsen, M. Acute respiratory response to traffic-related air pollution during physical activity performance. Environ. Int. 2016, 97, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Kulka, R.; Dubeau, A.; Martin, C.; Wang, D.; Dales, R. Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ. Health Perspect. 2011, 119, 1371–1378. [Google Scholar] [CrossRef]
- Cole-Hunter, T.; Weichenthal, S.; Kubesch, N.; Foraster, M.; Carrasco-Turigas, G.; Bouso, L.; Martínez, D.; Westerdahl, D.; de Nazelle, A.; Nieuwenhuijsen, M. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: A cross-over study. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Hatzopoulou, M.; Goldberg, M.S. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: A cross-over study. Part. Fibre Toxicol. 2014, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; von Klot, S.; Heier, M.; Trentinaglia, I.; Hormann, A.; Wichmann, H.E.; Lowel, H. Exposure to traffic and the onset of myocardial infarction. N. Engl. J. Med. 2004, 351, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Leclercq, B.; Kluza, J.; Antherieu, S.; Sotty, J.; Alleman, L.Y.; Perdrix, E.; Loyens, A.; Coddeville, P.; Lo Guidice, J.M.; Marchetti, P.; et al. Air pollution-derived PM2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells. Environ. Pollut. 2018, 243, 1434–1449. [Google Scholar] [CrossRef]
- Hertel, O.; Hvidberg, M.; Ketzel, M.; Storm, L.; Stausgaard, L. A proper choice of route significantly reduces air pollution exposure—A study on bicycle and bus trips in urban streets. Sci. Total Environ. 2008, 389, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Good, N.; Mölter, A.; Ackerson, C.; Bachand, A.; Carpenter, T.; Clark, M.L.; Fedak, K.M.; Kayne, A.; Koehler, K.; Moore, B.; et al. The Fort Collins commuter study: Impact of route type and transport mode on personal exposure to multiple air pollutants. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 397–404. [Google Scholar] [CrossRef] [PubMed]
- MacNaughton, P.; Melly, S.; Vallarino, J.; Adamkiewicz, G.; Spengler, J.D. Impact of bicycle route type on exposure to traffic-related air pollution. Sci. Total Environ. 2014, 490, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole-Hunter, T.; Morawska, L.; Stewart, I.; Jayaratne, R.; Solomon, C. Inhaled particle counts on bicycle commute routes of low and high proximity to motorised traffic. Atmos. Environ. 2012, 61, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Cole-Hunter, T.; Jayaratne, R.; Stewart, I.; Hadaway, M.; Morawska, L.; Solomon, C. Utility of an alternative bicycle commute route of lower proximity to motorised traffic in decreasing exposure to ultra-fine particles, respiratory symptoms and airway inflammation—A structured exposure experiment. Environ. Health 2013, 12, 29. [Google Scholar] [CrossRef]
- Heinen, E.; van Wee, B.; Maat, K. Commuting by bicycle: An overview of the literature. Transp. Rev. 2010, 30, 59–96. [Google Scholar] [CrossRef]
- Buehler, R.; Dill, J. Bikeway networks: A review of effects on cycling. Transp. Rev. 2015, 36, 9–27. [Google Scholar] [CrossRef]
- Braun, L.M.; Rodriguez, D.A.; Cole-Hunter, T.; Ambros, A.; Donaire-Gonzalez, D.; Jerrett, M.; Mendez, M.A.; Nieuwenhuijsen, M.J.; de Nazelle, A. Short-term planning and policy interventions to promote cycling in urban centers: Findings from a commute mode choice analysis in Barcelona, Spain. Transp. Res. Part A Policy Pract. 2016, 89, 164–183. [Google Scholar] [CrossRef] [Green Version]
- Cole-Hunter, T.; Donaire-Gonzalez, D.; Curto, A.; Ambros, A.; Valentin, A.; Garcia-Aymerich, J.; Martínez, D.; Braun, L.M.; Mendez, M.; Jerrett, M.; et al. Objective correlates and determinants of bicycle commuting propensity in an urban environment. Transp. Res. Part D Transp. Environ. 2015, 40, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Sener, I.N.; Eluru, N.; Bhat, C.R. An analysis of bicycle route choice preferences in Texas, US. Transportation 2009, 36, 511–539. [Google Scholar] [CrossRef] [Green Version]
- Caviedes, A.; Figliozzi, M. Modeling the impact of traffic conditions and bicycle facilities on cyclists’ on-road stress levels. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 488–499. [Google Scholar] [CrossRef]
- Curto, A.; Curto, A.; de Nazelle, A.; Donaire-Gonzalez, D.; Cole-Hunter, T.; Garcia-Aymerich, J.; Martínez, D.; Anaya, E.; Rodríguez, D.; Jerrett, M.; et al. Private and public modes of bicycle commuting: A perspective on attitude and perception. Eur. J. Public Health 2016, 26, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Bigazzi, A.Y.; Gehrke, S.R. Joint consideration of energy expenditure, air quality, and safety by cyclists. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 652–664. [Google Scholar] [CrossRef]
- Hankey, S.; Lindsey, G.; Wang, X.; Borah, J.; Hoff, K.; Utecht, B.; Xu, Z. Estimating use of non-motorized infrastructure: Models of bicycle and pedestrian traffic in Minneapolis, MN. Landsc. Urban Plan. 2012, 107, 307–316. [Google Scholar] [CrossRef]
- Hood, J.; Sall, E.; Charlton, B. A GPS-based bicycle route choice model for San Francisco, California. Transp. Lett. Int. J. Transp. Res. 2011, 3, 63–75. [Google Scholar] [CrossRef]
- Broach, J.; Dill, J.; Gliebe, J. Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transp. Res. Part A Policy Pract. 2012, 46, 1730–1740. [Google Scholar] [CrossRef]
- Hankey, S.; Lindsey, G. Facility-demand models of peak period pedestrian and bicycle traffic comparison of fully specified and reduced-form models. Transp. Res. Rec. 2016, 2586, 48–58. [Google Scholar] [CrossRef]
- Zimmermann, M.; Mai, T.; Frejinger, E. Bike route choice modeling using GPS data without choice sets of paths. Transp. Res. Part C Emerg. Technol. 2017, 75, 183–196. [Google Scholar] [CrossRef]
- Jestico, B.; Nelson, T.; Winters, M. Mapping ridership using crowdsourced cycling data. J. Transp. Geogr. 2016, 52, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Anowar, S.; Eluru, N.; Hatzopoulou, M. Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution? Transp. Res. Part A 2017, 105, 66–78. [Google Scholar] [CrossRef]
- Cole-Hunter, T.; Morawska, L.; Solomon, C. Bicycle commuting and exposure to air pollution: A questionnaire-based investigation of perceptions, symptoms and risk management strategies. J. Phys. Act. Health 2015, 12, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.; Sener, I.N.; Martin, M.; Das, S.; Shipp, E.; Hampshire, R.; Fitzpatrick, K.; Molnar, L.; Wijesundera, R.; Colety, M.; et al. Synthesis of Methods for Estimating Pedestrian and Bicyclist Exposure to Risk at Areawide Levels and on Specific Transportation Facilities; FHWA 2017 Report SA-17-041; U.S. Department of Transportation: Washington, DC, USA, 2017.
- Lee, K.; Sener, I.N. Emerging Data Mining for Pedestrian and Bicyclist Monitoring: A Literature Review Report. Technical Report, Prepared for the Safety through Disruption (Safe-D) National University Transportation Center (UTC) Program; Texas A&M Transportation Institute: Austin, TX, USA, 2017. [Google Scholar]
- Selala, M.K.; Musakwa, W. The potential of Strava data to contribute in non-motorised transport (NMT) planning in Johannesburg. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B2, 587–594. [Google Scholar] [CrossRef]
- Heesch, K.C.; James, B.; Washington, T.L.; Zunig, K.; Burke, M. Evaluation of the veloway 1: A natural experiment of new bicycle infrastructure in Brisbane, Australia. J. Transp. Health 2016, 3, 366–376. [Google Scholar] [CrossRef]
- Sanders, R.L.; Frackelton, A.; Gardner, S.; Schneider, R.; Hintse, M. Ballpark method for estimating pedestrian and bicyclist exposure in Seattle, Washington: Potential option for resource-constrained cities in an age of big data. J. Transp. Res. Rec. Board 2017, 2605, 32–44. [Google Scholar] [CrossRef]
- Saha, D.; Alluri, P.; Gan, A.; Wu, W. Spatial analysis of macro-level bicycle crashes using the class of conditional autoregressive models. Accid. Anal. Prev. 2018, 118, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Du, Y.; Wang, Y.; Zhuang, L. Examining associations of environmental characteristics with recreational cycling behaviour by street-level strava data. Int. J. Environ. Res. Public Health 2017, 14, 644. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Mobasheri, A. Utilizing crowdsourced data for studies of cycling and air pollution exposure: A case study using strava data. Int. J. Environ. Res. Public Health 2017, 14, 274. [Google Scholar] [CrossRef]
- Sun, Y.; Mobasheri, A.; Zhuang, L. Exploiting crowdsourced geographic information and GIS for assessment of air pollution exposure during active travel. J. Transp. Health 2017, 6, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Texas Commission on Environmental Quality. The TCEQ’s Air Quality Programs in The Border Region. 2018. Available online: https://www.tceq.texas.gov/border/air-quality.html (accessed on 19 October 2018).
- American Lung Association. State of The Air 2014. Available online: http://www.stateoftheair.org/2014/states/texas/el-paso-48141.html (accessed on 19 October 2018).
- Li, W.W.; Orquiz, R.; Pingitore, N.E., Jr.; Garcia, J.H.; Espino, T.T.; Gardea-Torresdey, J.; Chow, J.; Watson, J.G. Analysis of temporal and spatial dichotomous PM air samples in the El Paso-Cd. Juarez air quality basin. J. Air Waste Manag. Assoc. 2011, 51, 1511–1560. [Google Scholar] [CrossRef]
- Sener, I.N.; Lee, R.J. Active travel behavior in a border region of Texas and New Mexico: Motivators, deterrents, and characteristics. J. Phys. Act. Health 2017, 14, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Sener, I.N.; Lee, R.J.; Simek, C.; Alfredo Sánchez, A.; Aldrete, R.M. Examining multimodal transportation in the El Paso, Texas, region: Regional transportation survey results. Transp. Res. Rec. 2017, 2654, 55–64. [Google Scholar] [CrossRef]
- Healthy Paso del Norte. Adults Engaging in Physical Activity. Available online: http://www.healthypasodelnorte.org/index.php?module=indicators&controller=index&action=view&indicatorId=48&localeId=2645 (accessed on 19 October 2018).
- Healthy Paso del Norte. Adults Who Are Overweight or Obese. Available online: http://www.healthypasodelnorte.org/indicators/index/view?indicatorId=56&localeId=2645 (accessed on 19 October 2018).
- Strava Metro. Frequently Asked Questions. Available online: https://metro.strava.com/faq/ (accessed on 21 December 2018).
- U.S.Census Bureau. American Community Survey. Available online: https://www.census.gov/programs-surveys/acs/ (accessed on 1 September 2018).
- Flahive, P. Big Data Sheds Light on Where Cyclists Go. KSTX-San Antonio. 17 October 2017. Available online: http://www.tpr.org/post/big-data-sheds-light-where-cyclists-go (accessed on 31 October 2018).
- Griffin, G.P.; Jiao, J. Where does bicycling for health happen? Analysing volunteered geographic information through place and plexus. J. Transp. Health 2015, 2, 238–247. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.; Li, P.; Liu, J.; Long, K. How does air pollution influence cycling behaviour? Evidence from Beijing. Transp. Res. Part D 2018, 63, 826–838. [Google Scholar] [CrossRef]
- Hankey, S.; Marshall, J.D. On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM2.5, and particle size. Atmos. Environ. 2015, 122, 65–73. [Google Scholar] [CrossRef]
- Boss, D.; Nelson, T.; Winters, M.; Ferster, C.J. Using crowdsourced data to monitor change in spatial patterns of bicycle ridership. J. Transp. Health 2018, 9, 226–233. [Google Scholar] [CrossRef]
- Ward, M.D.; Gleditsch, K.S. Spatially lagged dependent variables. In Spatial Regression Models; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2008; pp. 35–64. ISBN 9781412954150. [Google Scholar]
- Vega, S.H.; Elhorst, P. On spatial econometric models, spillover effects, and W. In Proceedings of the 53rd Congress of the European Regional Science Association, Palermo, Italy, 27–31 August 2013. [Google Scholar]
- Stata Statistical Software: Release 15; StataCorp, LLC: College Station, TX, USA, 2017.
- Carroll, J.K.; Moorhead, A.; Bond, M.; LeBlanc, W.G.; Petrella, R.J.; Fiscella, K. Who uses mobile phone health apps and does use matter? A secondary data analytics approach. J. Med. Internet Res. 2017, 19. [Google Scholar] [CrossRef]
- Battelle and Texas A&M Transportation Institute. MAP-21 Air Quality and Congestion Mitigation Measure Outcomes Assessment Study. FHWA-HEP-15-002; U.S. Department of Transportation: Washington, WA, USA, 2014. Available online: http://www.fhwa.dot.gov/environment/air_quality/cmaq/research/outcomes_assessment/index.cfm (accessed on 31 October 2018).
- De Hartog, J.J.; Boogaard, H.; Nijland, H.; Hoek, G. Do the health benefits of cycling outweigh the risks? Environ. Health Perspect. 2010, 118, 1109–1116. [Google Scholar] [CrossRef]
- Tainio, M.; de Nazelle, A.J.; Götschi, T.; Kahlmeier, S.; Rojas-Rueda, D.; Nieuwenhuijsen, M.J.; de Sá, T.H.; Kelly, P.; Woodcock, J. Can air pollution negate the health benefits of cycling and walking? Prev. Med. 2016, 87, 233–236. [Google Scholar] [CrossRef] [Green Version]
Category | Summary |
---|---|
Rider Ids 1 | 4459 |
Activities 2 | 67,824 (100.0%) |
Commute | 14,259 (21.0%) |
Non-commute | 53,565 (79.0%) |
Average distance | 32.2 km |
Median distance | 26.0 km |
Average time | 118 min (16.4 km/h) |
Median time | 102 min (15.4 km/h) |
Age | Male | Female | Total |
---|---|---|---|
<25 | 202 (6.0%) | 47 (6.1%) | 249 (6.0%) |
25–34 | 663 (19.7%) | 161 (20.7%) | 824 (19.9%) |
35–44 | 797 (23.7%) | 184 (23.7%) | 981 (23.7%) |
45–54 | 659 (19.6%) | 142 (18.3%) | 801 (19.3%) |
55–64 | 258 (7.7%) | 44 (5.7%) | 302 (7.3%) |
65+ | 65 (1.9%) | 8 (1.0%) | 73 (1.8%) |
Blank age | 721 (21.4%) | 190 (24.5%) | 911 (22.0%) |
Total | 3365 (81.3%) | 776 (18.7%) | 4141 (100.0%) 1 |
Category | Variable Descriptions | Continuous | Categorical | ||||
---|---|---|---|---|---|---|---|
Mean | STD | Min. | Max. | Obs. (%) | |||
Bicycle count | Annual bicycle counts for analytic sample (N = 3501 street segments) | 321.42 | 452.24 | 1 | 4371 | — | |
Roadway characteristics | Posted speed limit | 48 km/h (30 mph) or less | — | — | — | — | 1293 (36.9%) |
56 km/h (35 mph) | — | — | — | — | 592 (17.0%) | ||
64 km/h (40 mph) | — | — | — | — | 731 (20.9%) | ||
72 km/h (45 mph) | — | — | — | — | 646 (18.5%) | ||
80 km/h (50 mph or over) | — | — | — | — | 237 (6.8%) | ||
Roadway type | Principal arterial | — | — | — | — | 1358 (38.8%) | |
Minor arterial | — | — | — | — | 993 (28.4%) | ||
Collector | — | — | — | — | 1089 (31.1%) | ||
Local street | — | — | — | — | 61 (1.7%) | ||
Segment length (m) | 366.51 | 327.11 | 31.15 | 3661.98 | — | ||
Bicycle infrastructure characteristics | Planned bike facilities | — | — | — | — | 1954 (55.8%) | |
Existing bike facilities | No bike facility | — | — | — | — | 2837 (81.0%) | |
Bike lane | — | — | — | — | 309 (8.8%) | ||
Shared lane marking | — | — | — | — | 52 (1.5%) | ||
Buffered bike lane | — | — | — | — | 128 (3.7%) | ||
Off-street path | — | — | — | — | 175 (5.0%) | ||
Topographical attributes | Elevation (m) | 1183.49 | 48.11 | 1117.06 | 1599.75 | — | |
Segment slope (%) | 1.79 | 2.03 | 0.10 | 30.43 | — | ||
Park within 61 m (200 ft) | — | — | — | — | 385 (10.0%) | ||
District | West Franklin Mt. | — | — | — | — | 369 (10.5%) | |
East Franklin Mt. | — | — | — | — | 371 (10.6%) | ||
South Franklin Mt. | — | — | — | — | 529 (15.1%) | ||
Downtown area | — | — | — | — | 817 (23.3%) | ||
East downtown | — | — | — | — | 452 (12.9%) | ||
East El Paso | — | — | — | — | 225 (6.4%) | ||
South El Paso | — | — | — | — | 319 (9.1%) | ||
East-South El Paso | — | — | — | — | 419 (12.0%) | ||
Neighborhood demographics | Age/gender | People aged 25–34 (%) | 0.14 | 0.06 | 0.01 | 0.41 | — |
People aged 35–44 (%) | 0.12 | 0.05 | 0 | 0.27 | — | ||
People aged 45–54 (%) | 0.12 | 0.05 | 0 | 0.34 | — | ||
Male (%) | 0.49 | 0.08 | 0.26 | 0.84 | — | ||
Race/ethnicity | Hispanic (%) | 0.80 | 0.17 | 0.16 | 1 | — | |
White (%) | 0.14 | 0.12 | 0 | 0.65 | — | ||
African American (%) | 0.03 | 0.05 | 0 | 0.35 | — | ||
Asian (%) | 0.01 | 0.03 | 0 | 0.19 | — | ||
Socio-economics | Median household income ($10,000) | 4.34 | 2.30 | 0.95 | 14.29 | — | |
Below poverty level (%) | 0.24 | 0.19 | 0 | 0.81 | — | ||
College graduate/above (%) | 0.51 | 0.20 | 0.02 | 0.95 | — | ||
Single unit housing (%) | 0.60 | 0.30 | 0 | 1 | |||
Employment density (per sq. km) | 669.39 | 468.27 | 4.95 | 3146.70 | — | ||
Retail job density (per sq. km) | 169.61 | 352.76 | 0 | 3543.27 | — | ||
Emission exposure measures | Bus frequency (times per day) | 26.24 | 47.58 | 0 | 873 | — | |
Bus routes (count) | 1.21 | 1.73 | 0 | 22 | — | ||
PM 2.5 (gram/min/km) | 33.52 | 48.18 | 2.3 × 10−3 | 766.25 | — |
Category | Variable Name | Estimate | T-Stat. | |
---|---|---|---|---|
Roadway characteristics | Posted speed limit | 48 km/h (30 mph) or less | −0.327 | −5.56 |
56 km/h (35 mph) | −0.481 | −7.22 | ||
64 km/h (40 mph) | −0.298 | −4.84 | ||
Roadway type | Collector | −0.569 | −10.39 | |
Local street | −1.361 | −8.05 | ||
Bicycle infrastructure characteristics | Planned bike facilities | 0.678 | 12.44 | |
Existing bike facilities | Off-street path | 1.474 | 13.54 | |
Buffered bike lane | 1.340 | 11.16 | ||
Shared lane marking | 1.047 | 6.10 | ||
Bike lane | 0.886 | 10.19 | ||
Topographical attributes | Elevation (100 m) | 0.402 | 6.77 | |
Segment slope (%) | 0.017 | 1.85 | ||
District | West Franklin Mt. | 0.424 | 4.93 | |
East Franklin Mt. | −0.796 | −8.84 | ||
East downtown | −0.492 | −6.59 | ||
South El Paso | −0.585 | −6.67 | ||
East-South El Paso | −0.697 | −8.50 | ||
Neighborhood demographics | Age | People aged 35–44 (%) | 0.702 | 1.75 |
People aged 45–54 (%) | 2.030 | 4.23 | ||
Ethnicity | Hispanic (%) | 0.465 | 2.72 | |
Socioeconomics | Median household income ($10,000) | 0.096 | 7.06 | |
Retail job density (1000 per sq. km) | −0.259 | −3.94 | ||
Emission exposure measures | Bus frequency (100 times per day) | 0.339 | 7.32 | |
(Natural log of) PM2.5 (gram/min/km) | 0.146 | 9.11 | ||
Constant | −1.496 | −2.13 | ||
Spatial terms | Spatial error | 0.900 | 12.06 | |
Spatial lag parameter of bike counts | 0.381 | 4.62 | ||
Spatial lag parameter of bus frequency | −0.532 | −3.41 | ||
Spatial lag parameter of elevation | −0.123 | −3.60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Sener, I.N. Understanding Potential Exposure of Bicyclists on Roadways to Traffic-Related Air Pollution: Findings from El Paso, Texas, Using Strava Metro Data. Int. J. Environ. Res. Public Health 2019, 16, 371. https://doi.org/10.3390/ijerph16030371
Lee K, Sener IN. Understanding Potential Exposure of Bicyclists on Roadways to Traffic-Related Air Pollution: Findings from El Paso, Texas, Using Strava Metro Data. International Journal of Environmental Research and Public Health. 2019; 16(3):371. https://doi.org/10.3390/ijerph16030371
Chicago/Turabian StyleLee, Kyuhyun, and Ipek N. Sener. 2019. "Understanding Potential Exposure of Bicyclists on Roadways to Traffic-Related Air Pollution: Findings from El Paso, Texas, Using Strava Metro Data" International Journal of Environmental Research and Public Health 16, no. 3: 371. https://doi.org/10.3390/ijerph16030371