The Impact of Haze Pollution on Regional Eco-Economic Treatment Efficiency in China: An Environmental Regulation Perspective
Abstract
:1. Introduction
2. Literature Review
3. Data and Methods
3.1. Measuring the Regional Eco-Economic Treatment Efficiency
3.2. Analysis of Regional Eco-Economic Treatment Efficiency
3.3. Specifications of the Dynamic Threshold Model
3.4. Variables and Data Sources
4. Empirical Results and Discussions
4.1. Results of Threshold Effect Tests
4.2. Estimation Results of the Dynamic Threshold Model
5. Discussion
6. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pan, S.; Du, S.; Wang, X.; Zhang, X.; Xia, L.; Jiaping, L.; Pei, F.; Wei, Y. Analysis and interpretation of the particulate matter (PM10 and PM2.5) concentrations at the subway stations in Beijing, China. Sustain. Cities Soc. 2019, 45, 366–377. [Google Scholar] [CrossRef]
- Breen, M.; Seppanen, C.; Isakov, V.; Arunachalam, S.; Breen, M.; Samet, J.; Tong, H. Development of TracMyAir Smartphone Application for Modeling Exposures to Ambient PM2.5 and Ozone. Int. J. Environ. Res. Public Health 2019, 16, 3468. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Huang, H. Image Haze Removal via Reference Retrieval and Scene Prior. IEEE Trans. Image Process. 2018, 27, 4395–4409. [Google Scholar] [CrossRef] [PubMed]
- Rohde, R.A.; Muller, R.A. Air Pollution in China: Mapping of Concentrations and Sources. PLoS ONE 2015, 10, e0135749. [Google Scholar] [CrossRef]
- Liu, H.; Fang, C.; Zhang, X.; Wang, Z.; Bao, C.; Li, F. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. J. Clean. Prod. 2017, 165, 323–333. [Google Scholar] [CrossRef]
- Hou, J.; Teo, T.S.; Zhou, F.; Lim, M.K.; Chen, H. Does industrial green transformation successfully facilitate a decrease in carbon intensity in China? An environmental regulation perspective. J. Clean. Prod. 2018, 184, 1060–1071. [Google Scholar] [CrossRef]
- Wang, P.; Na Xing, L.; Li, F. Exploration of the Governmental Responsibility in Environmental Pollution Liability Insurance. Adv. Mater. Res. 2014, 962, 2040–2045. [Google Scholar] [CrossRef]
- Sinn, H.-W. Public policies against global warming: A supply side approach. Int. Tax Public Financ. 2008, 15, 360–394. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H. New evolutionary game model of the regional governance of haze pollution in China. Appl. Math. Model. 2018, 63, 577–590. [Google Scholar] [CrossRef]
- Hao, Y.; Peng, H.; Temulun, T.; Liu, L.-Q.; Mao, J.; Lu, Z.-N.; Chen, H. How harmful is air pollution to economic development? New evidence from PM2.5 concentrations of Chinese cities. J. Clean. Prod. 2018, 172, 743–757. [Google Scholar] [CrossRef]
- Li, C.K.; Luo, J.-H.; Soderstrom, N.S. Market response to expected regulatory costs related to haze. J. Account. Public Policy 2017, 36, 201–219. [Google Scholar] [CrossRef]
- Shen, L.; Wang, Y. Supervision mechanism for pollution behavior of Chinese enterprises based on haze governance. J. Clean. Prod. 2018, 197, 571–582. [Google Scholar] [CrossRef]
- Yang, J.; Guo, H.; Liu, B.; Shi, R.; Zhang, B.; Ye, W. Environmental regulation and the Pollution Haven Hypothesis: Do environmental regulation measures matter? J. Clean. Prod. 2018, 202, 993–1000. [Google Scholar] [CrossRef]
- Ma, X.; Xue, T.; Waqas, A.; Wang, J. Study on the impact of regional innovation on the level of carbon pressure under the constraints of environmental regulations. Chin. J. Manag. 2019, 16, 85–95. (In Chinese) [Google Scholar]
- Hillman, J.; Axon, S.; Morrissey, J. Social enterprise as a potential niche innovation breakout for low carbon transition. Energy Policy 2018, 117, 445–456. [Google Scholar] [CrossRef]
- Yuan, S.; Guo, H. Bringing the government’s leading role into full play in ecological governance. People Trib. 2018, 26, 80–81. (In Chinese) [Google Scholar]
- Guttman, D.; Young, O.; Jing, Y.; Bramble, B.; Bu, M.; Chen, C.; Fürst, K.; Hu, T.; Li, Y.; Logan, K.; et al. Environmental governance in China: Interactions between the state and “nonstate actors”. J. Environ. Manag. 2018, 220, 126–135. [Google Scholar] [CrossRef]
- Wang, S.; Xing, J.; Zhao, B.; Jang, C.; Hao, J. Effectiveness of national air pollution control policies on the air quality in metropolitan areas of China. J. Environ. Sci. 2014, 26, 13–22. [Google Scholar] [CrossRef]
- Jiang, J.; Li, S.; Hu, J.; Huang, J. A modeling approach to evaluating the impacts of policy-induced land management practices on non-point source pollution: A case study of the Liuxi River watershed, China. Agric. Water Manag. 2014, 131, 1–16. [Google Scholar] [CrossRef]
- Jiang, X.; Hong, C.; Zheng, Y.; Zheng, B.; Guan, D.; Gouldson, A.; Zhang, Q.; He, K. To what extent can China’s near-term air pollution control policy protect air quality and human health? A case study of the Pearl River Delta region. Environ. Res. Lett. 2015, 10, 104–116. [Google Scholar] [CrossRef]
- Li, X.; Qiao, Y.; Shi, L. The aggregate effect of air pollution regulation on CO2 mitigation in China’s manufacturing industry: An econometric analysis. J. Clean. Prod. 2017, 142, 976–984. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, S.; Jia, Z.; Ge, L.; Mei, L.; Sui, X.; Wang, X.; Li, B.; Wang, J.; Wu, S. Influence of Industrialization and Environmental Protection on Environmental Pollution: A Case Study of Taihu Lake, China. Int. J. Environ. Res. Public Health 2018, 15, 2628. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.-Y.; He, L.-Y. Are Chinese Green Transport Policies Effective? A New Perspective from Direct Pollution Rebound Effect, and Empirical Evidence from the Road Transport Sector. Sustainability 2017, 9, 429. [Google Scholar] [CrossRef]
- Que, W.; Zhang, Y.; Liu, S.; Yang, C. The spatial effect of fiscal decentralization and factor market segmentation on environmental pollution. J. Clean. Prod. 2018, 184, 402–413. [Google Scholar] [CrossRef]
- Chen, S.M.; He, L.Y. Welfare loss of China’s air pollution: How to make personal vehicle transportation policy. China Econ. Rev. 2014, 31, 106–118. [Google Scholar] [CrossRef]
- Tang, E.; Liu, F.; Zhang, J.; Yu, J. A model to analyze the environmental policy of resource reallocation and pollution control based on firms’ heterogeneity. Resour. Policy 2014, 39, 88–91. [Google Scholar] [CrossRef]
- Huang, S.K.; Kuo, L.; Chou, K.-L. The impacts of government policies on green utilization diffusion and social benefits—A case study of electric motorcycles in Taiwan. Energy Policy 2018, 119, 473–486. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Wen, X.-W.; Wang, B.; Nie, P.-Y. Agricultural pollution and regulation: How to subsidize agriculture? J. Clean. Prod. 2017, 164, 258–264. [Google Scholar] [CrossRef]
- Auffhammer, M.; Kellogg, R. Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality. Am. Econ. Rev. 2011, 101, 2687–2722. [Google Scholar] [CrossRef]
- Zheng, S.; Yi, H.; Li, H. The impacts of provincial energy and environmental policies on air pollution control in China. Renew. Sustain. Energy Rev. 2015, 49, 386–394. [Google Scholar] [CrossRef]
- Willis, K.; Maureaud, C.; Wilcox, C.; Hardesty, B.D. How successful are waste abatement campaigns and government policies at reducing plastic waste into the marine environment? Mar. Policy 2017, 137, 1–11. [Google Scholar] [CrossRef]
- Vagnoni, E.; Moradi, A. Local government’s contribution to low carbon mobility transitions. J. Clean. Prod. 2018, 176, 486–502. [Google Scholar] [CrossRef]
- Zhong, M.; Li, M.; Du, W. Can environmental regulation force industrial structure adjustment: An empirical analysis based on provincial panel data. China Popul. Resour. Environ. 2015, 25, 107–115. (In Chinese) [Google Scholar]
- Li, H.; Fang, K.; Yang, W.; Wang, D.; Hong, X. Regional environmental efficiency evaluation in China: Analysis based on the Super-SBM model with undesirable outputs. Math. Comput. Model. 2013, 58, 1018–1031. [Google Scholar] [CrossRef]
- Hou, J.; Chen, H.; Xu, J. External Knowledge Sourcing and Green Innovation Growth with Environmental and Energy Regulations: Evidence from Manufacturing in China. Sustainability 2017, 9, 342. [Google Scholar] [CrossRef]
- Kuosmanen, T.K. Measurement and analysis of eco-efficiency. An economist’s perspective. J. Ind. Ecol. 2010, 9, 15–18. [Google Scholar] [CrossRef]
- Kharel, G.; Charmondusit, K. Eco-efficiency evaluation of iron rod industry in Nepal. J. Clean. Prod. 2008, 16, 1379–1387. [Google Scholar] [CrossRef]
- Wu, J.; Li, M.; Zhu, Q.; Zhou, Z.; Liang, L. Energy and environmental efficiency measurement of China’s industrial sectors: A DEA model with non-homogeneous inputs and outputs. Energy Econ. 2018, 78, 468–480. [Google Scholar] [CrossRef]
- Kenneth, L.R. Environmental efficiency measurement and the materials balance condition reconsidered. Eur. J. Oper. Res. 2016, 250, 342–346. [Google Scholar] [Green Version]
- Yang, L.; Wang, K.L.; Geng, J.C. China’s regional ecological energy efficiency and energy saving and pollution abatement potentials: An empirical analysis using epsilon-based measure model. J. Clean. Prod. 2018, 194, 300–308. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econ. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Tang, D.; Kong, Y.; Liu, D.; Yang, Y. A spatial econometric analysis of impact of FDI on urban haze pollution: Case of the Pearl River delta region. Manag. Rev. 2016, 28, 11–24. (In Chinese) [Google Scholar]
- Levinson, A. Environmental regulations and manufacturers’ location choices: Evidence from the Census of Manufactures. J. Public Econ. 2004, 62, 5–29. [Google Scholar] [CrossRef]
- Stern, D.I.; Zha, D. Economic growth and particulate pollution concentrations in China. Environ. Econ. Policy Stud. 2016, 18, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Sing, T.F. Air pollution, economic spillovers, and urban growth in China. Ann. Reg. Sci. 2017, 58, 321–340. [Google Scholar] [CrossRef]
- Wanlley, W. The contribution of environmental regulations to slowdown in productivity growth. J. Environ. Manag. 1994, 8, 381–390. [Google Scholar]
- Yu, F.; Guo, Y.; Le-Nguyen, K.; Barnes, S.J.; Zhang, W. The impact of government subsidies and enterprises’ R&D investment: A panel data study from renewable energy in China. Energy Policy 2016, 89, 106–113. [Google Scholar]
Variable | Mean | Median | S.D. | Min | Max |
---|---|---|---|---|---|
ETE | 0.379 | 0.218 | 0.382 | 0.043 | 1.453 |
REG | 1.455 | 1.305 | 0.705 | 0.450 | 3.810 |
HAZ | 0.053 | 0.020 | 0.059 | 0.000 | 0.199 |
URB | 0.548 | 0.526 | 0.131 | 0.340 | 0.893 |
ENE | 0.101 | 0.085 | 0.050 | 0.038 | 0.240 |
IND | 0.467 | 0.487 | 0.081 | 0.213 | 0.577 |
INO | 9.573 | 9.683 | 1.484 | 6.219 | 12.430 |
FDI | 14.324 | 14.785 | 1.540 | 10.878 | 16.770 |
Threshold | Critical Mass | |||||
---|---|---|---|---|---|---|
F-value | P-value | Bootstrap times | 1% | 5% | 10% | |
Single Threshold | 6.257** | 0.028 | 500 | 9.980 | 4.646 | 3.617 |
Double Threshold | 2.261 | 0.116 | 500 | 9.850 | 4.504 | 2.682 |
Triple Threshold | 2.739 | 0.208 | 500 | 18.860 | 8.456 | 5.961 |
Model | Threshold Estimators | 95% Confidence Intervals |
---|---|---|
Single Threshold | 0.810 | [0.600,3.010] |
Double Threshold | 2.955 | [0.600,3.400] |
0.720 | [0.600,2.660] | |
Triple Threshold | 0.600 | [0.600,2.660] |
Coef. | Std.Err. | z | P > |z| | 95% Conf. Interval | ||
---|---|---|---|---|---|---|
L1. | 0.214 *** | 0.015 | 14.01 | 0.000 | 0.184 | 0.244 |
L2. | 0.181 *** | 0.013 | 13.56 | 0.000 | 0.155 | 0.207 |
URB | 0.664 *** | 0.095 | 6.95 | 0.000 | 0.477 | 0.851 |
ENE | −0.845 *** | 0.223 | −3.79 | 0.000 | −1.282 | −0.408 |
IND | −0.738 *** | 0.092 | −7.98 | 0.000 | −0.919 | −0.557 |
FDI | −0.011 | 0.018 | −0.62 | 0.537 | −0.047 | 0.024 |
INO | −0.090 *** | 0.014 | −6.36 | 0.000 | −0.117 | −0.062 |
HAZ(REG ≤ 0.810) | 1.168 *** | 0.241 | 4.85 | 0.000 | 0.696 | 1.640 |
HAZ(REG > 0.810) | −0.105 *** | 0.031 | -3.39 | 0.001 | −0.166 | −0.044 |
_cons | 1.260 *** | 0.079 | 16.01 | 0.000 | 1.106 | 1.415 |
Order | z | Prob > z |
---|---|---|
AR (1) | −2.34 | 0.019 |
AR (2) | 1.12 | 0.264 |
Year | REG ≤ 0.810 | REG > 0.810 | ||
---|---|---|---|---|
Province | Number | Province | Number | |
2009 | Fujian, Henan, Guangdong, Sichuan, and Guizhou | 5 | Beijing, Tianjin, Hebei, Shanxi, Neimenggu, Liaoning, Jilin, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Shandong, Hubei, Hunan, Guangxi, Hainan, Chongqing, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang | 25 |
2010 | Shanghai, Henan, Hunan, Sichuan, and Guizhou | 5 | Beijing, Tianjin, Hebei, Shanxi, Neimenggu, Liaoning, Jilin, Heilongjiang, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Hubei, Guangdong, Guangxi, Hainan, Chongqing, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang | 25 |
2011 | Shanghai, Zhejiang, Henan, Hunan, Guangdong, and Sichuan | 6 | Beijing, Tianjin, Hebei, Shanxi, Neimenggu, Liaoning, Jilin, Heilongjiang, Jiangsu, Anhui, Fujian, Jiangxi, Shandong, Hubei, Guangxi, Hainan, Chongqing, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang | 24 |
2012 | Shanghai, Henan, Guangdong, and Sichuan | 4 | Beijing, Tianjin, Hebei, Shanxi, Neimenggu, Liaoning, Jilin, Heilongjiang, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Hubei, Hunan, Guangxi, Hainan, Chongqing, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang | 26 |
2013 | Jilin and Guangdong | 2 | Beijing, Tianjin, Hebei, Shanxi, Neimenggu, Liaoning, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangxi, Hainan, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang | 28 |
2014 | Jilin, Fujian, Hunan, Guangdong, and Hainan | 5 | Beijing, Tianjin, Hebei, Shanxi, Neimenggu, Liaoning, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Shandong, Henan, Hubei, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang | 25 |
2015 | Tianjin, Jilin, Henan, Guangdong, Hainan, and Sichuan | 6 | Beijing, Hebei, Shanxi, Neimenggu, Liaoning, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Hubei, Hunan, Guangxi, Chongqing, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang | 24 |
2016 | Tianjin, Liaoning, Jilin, Shanghai, Fujian, Hunan, Guangdong, Hainan, and Chongqing | 9 | Beijing, Hebei, Shanxi, Neimenggu, Heilongjiang, Jiangsu, Zhejiang, Anhui, Jiangxi, Shandong, Henan, Hubei, Guangxi, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang | 21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; An, Y.; Song, H.; Chen, J. The Impact of Haze Pollution on Regional Eco-Economic Treatment Efficiency in China: An Environmental Regulation Perspective. Int. J. Environ. Res. Public Health 2019, 16, 4059. https://doi.org/10.3390/ijerph16214059
Hou J, An Y, Song H, Chen J. The Impact of Haze Pollution on Regional Eco-Economic Treatment Efficiency in China: An Environmental Regulation Perspective. International Journal of Environmental Research and Public Health. 2019; 16(21):4059. https://doi.org/10.3390/ijerph16214059
Chicago/Turabian StyleHou, Jian, Yifang An, Hongfeng Song, and Jiancheng Chen. 2019. "The Impact of Haze Pollution on Regional Eco-Economic Treatment Efficiency in China: An Environmental Regulation Perspective" International Journal of Environmental Research and Public Health 16, no. 21: 4059. https://doi.org/10.3390/ijerph16214059
APA StyleHou, J., An, Y., Song, H., & Chen, J. (2019). The Impact of Haze Pollution on Regional Eco-Economic Treatment Efficiency in China: An Environmental Regulation Perspective. International Journal of Environmental Research and Public Health, 16(21), 4059. https://doi.org/10.3390/ijerph16214059