Effect of Vigorous Physical Activity on Executive Control in Middle-School Students
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pessoa, L. How do emotion and motivation adirect executive control. Trends Cogn. Sci. 2009, 13, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Clair-Thompson, H.L.S.; Gathercole, S.E. Executive functions and achievements in school: Shifting, updating, inhibition and working memory. Q. J. Exp. Psychol. 2006, 59, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Buck, S.M.; Themanson, J.R.; Pontifex, M.B.; Castelli, D.M. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Dev. Pyschol. 2009, 45, 114–129. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D. Effects of acute bouts of exercise on cognition. Acta Psychol. 2003, 112, 297–324. [Google Scholar] [CrossRef]
- Tomporowski, P.D. Cognitive and behavioral responses to acute exercise in youth: A Review. Pediatric Exerc. Sci. 2003, 15, 348–359. [Google Scholar] [CrossRef]
- Grissom, J.B. Physical fitness and academic achievement. J. Exerc. Physiol. 2005, 8, 11–25. [Google Scholar]
- Welk, G.J.; Jackson, A.W.; Morrow, J.R., Jr.; Haskell, W.H.; Meredith, M.D.; Cooper, K.H. The association of health-related fitness with indicators of academic performance in Texas schools. Res. Q. Exerc. Sport 2010, 81 (Suppl. 3), S16–S23. [Google Scholar] [CrossRef]
- Travlos, A.K. High intensity physical education classes and cognitive performance in eighth grade students: An applied study. USEP 2010, 8, 302–311. [Google Scholar] [CrossRef]
- Won, J.; Wu, S.; Ji, H.; Carson Smith, J.; Park, L. Executive function and the P300 after treadmill exercise and futsal in college soccer players. Sports 2017, 5, 73. [Google Scholar] [CrossRef]
- Chen, A.-G.; Zhu, L.-N.; Xiong, X.; Li, Y. Acute aerobic exercise alters executive control network in preadolescent children. J. Sports Psychol. 2017, 26, 132–137. [Google Scholar]
- Hillman, C.H.; Pontifex, M.B.; Castelli, D.M.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Moore, R.D.; Wu, C.-T.; Kamijo, K. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics 2014, 134, e1063–e1071. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Hillman, C.H. The relation of childhood physical activity and aerobic fitness to brain function and cognition: A review. Pediatric Exerc. Sci. 2014, 26, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.L.; Tomorowski, P.D.; Boyle, C.A.; Waller, J.L.; Miller, P.H.; Naglieri, J.A.; Gregorski, M. Effects of aerobic exercise on overweight children’s cognitive functioning: A randomized controlled trial. Res. Q. Exerc. Sport 2007, 78, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Castelli, D.M.; Hillman, C.H.; Hirsch, J.; Hirsch, A.; Drollettte, E. FIT Kids: Time in target heart rate zone and cognitive performance. Prev. Med. 2011, 52, S55–S59. [Google Scholar] [CrossRef]
- Harverson, A.T.; Hannon, J.C.; Brusseau, T.A.; Podlog, L.; Papadopoulos, C.; Durrant, L.H.; Hall, M.S.; Kang, K. Acute effects of 30 min resistance and aerobic exercise on cognition in a high school sample. Res. Q. Exerc. Sport 2016, 87, 214–220. [Google Scholar] [CrossRef]
- Rabin, L.A.; Barr, W.; Burton, L. Assessment practices of clinical neuropsychologists in the United States and Canada: A survey of INS, NAN, and APA Division 40 members. Arch. Clin. Neuropsychol. 2005, 20, 33–65. [Google Scholar] [CrossRef]
- Groff, M.G.; Hubble, L.M. A factor analytic investigation of the Trail Making Test. Clin. Neuropsychol. 1981, 3, 11–13. [Google Scholar]
- Larrabee, G.J.; Curtiss, G. Construct validity of various verbal and visual memory tests. J. Clin. Exp. Neuropsychol. 1995, 17, 536–547. [Google Scholar] [CrossRef]
- Gaudino, E.A.; Geisler, M.W.; Squires, N.K. Construct validity in the Trail Making Test: What makes part B harder? J. Clin. Exp. Neuropsychol. 1995, 17, 529–535. [Google Scholar] [CrossRef]
- Arbuthnott, K.; Frank, J. Trail making test, part B as a measure of executive control: Validation using a set-switching paradigm. J. Clin. Exp. Neuropsychol. 2000, 22, 518–528. [Google Scholar] [CrossRef]
- Sánchez-Cubillo, I.; Periáñez, J.A.; Adrover-Roig, D.; Rodríguez-Sánchez, J.M.; Ríos-Lago, M.; Tirapu, J.; Barceló, F. Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 2009, 15, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, 3rd ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Reitan, R.M.; Wolfson, D. The Halstead-Retain Neuropsychological Test. Battery: Theory and Clinical Interpretation, 2nd ed.; Neuropsychology Press: Tuscon, AZ, USA, 1993. [Google Scholar]
- Dikmen, S.S.; Heaton, R.K.; Grant, I.; Tempkin, N.R. Test–retest reliability and practice effects of Expanded Halstead–Reitan Neuropsychological Test Battery. J. Int. Neuropsychol. Soc. 1999, 5, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control. Target. Heart Rate and Estimated Maximum Heart Rate; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2011. Available online: http://www.cdc.gov/physicalactivity/everyone/measuring/heartrate.html (accessed on 15 September 2011).
- Crouter, S.E.; Albright, C.; Bassett, D.R. Accuracy of polar S410 heart rate monitor to estimate energy cost of exercise. Med. Sci. Sports Exerc. 2004, 36, 1433–1439. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, T.; Bar-Or, O.; Waters, H.; Hirji, A.; Russell, S. Validity and social acceptability of the Polar Vantage XL for measuring heart rate in preschoolers. Pediatric Exerc. Sci. 1996, 8, 115–121. [Google Scholar] [CrossRef]
- Brown, L.E.; Ferrigno, V. Training for Speed, Agility and Quickness; Human Kinetics: Champaign, IL, USA, 2005. [Google Scholar]
- Stillman, C.M.; Cohen, J.; Lehman, M.E.; Erickson, K.I. Mediators of physical activity on neurocognitive function: A review at multiple levels of analysis. Front. Hum. Neurosci. 2016, 10, 626. [Google Scholar] [CrossRef] [PubMed]
- Winter, B.; Breitenstein, C.; Mooren, F.C.; Voelker, K.; Fobker, M.; Lechtermann, A.; Krueger, K.; Fromme, A.; Korsukewitz, C.; Knecht, S.; et al. High impact running improves learning. Neurobiol. Learn. Mem. 2007, 87, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.S.; Fung, D.; Tsai, H.; Chang, Y.K.; Huang, C.J.; Hung, T.M. Differences in working memory as a function of physical activity in children. Neuropsychology 2018, 32, 797–808. [Google Scholar] [CrossRef]
- Berwid, O.G.; Halperin, J.M. Emerging support for a role of exercise in attention-deficit/hyperactivity disorder intervention planning. Curr. Psychiatry Rep. 2012, 14, 543–551. [Google Scholar] [CrossRef][Green Version]
- Tsukamoto, H.; Takenaka, S.; Suga, T.; Tanaka, D.; Takeuchi, T.; Hamaoka, T.; Isaka, T.; Hashimoto, T. Impact of exercise intensity and duration on postexercise executive function. Med. Sci. Sports Exerc. 2017, 49, 774–784. [Google Scholar] [CrossRef]
- Pontifex, M.B.; Kamijo, K.; Hillman, C.H. The differential association of adiposity and fitness with cognitive control in preadolescent children. Monogr. Soc. Res. Child Dev. 2014, 79, 72–92. [Google Scholar] [CrossRef]
- Khan, N.A.; Raine, L.B.; Donovan, S.M.; Hillman, C.H. The cognitive implications of obesity and nutrition in childhood. Monogr. Soc. Res. Child Dev. 2014, 79, 51–71. [Google Scholar] [CrossRef] [PubMed]
- Huizinga, M.M. Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia 2006, 44, 2017–2036. [Google Scholar] [CrossRef] [PubMed]
- Best, J.R.; Miller, P.H.; Jones, L.L. Executive function after age 5: Changes and correlates. Dev. Rev. 2009, 29, 180–200. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Castelli, D.M.; Buck, S.M. Aerobic fitness and neurocognitive function in healthy preadolescent children. Med. Sci. Sports Exerc. 2005, 3, 1967–1974. [Google Scholar] [CrossRef]
- Alves, C.R.R.; Gualano, B.; Takao, P.P.; Avakian, P.; Fernandes, R.M.; Morine, D.; Takito, M.Y. Effects of acute physical exercise on executive functions: A comparison between aerobic and strength exercise. J. Sport Exerc. Psychol. 2012, 34, 539–549. [Google Scholar] [CrossRef]
- Tombs, M.; Tyler, K.; Johnson, P.J. The benefits of physical activity for cognitive functioning in a student population. Educ. Health 2013, 31, 91–94. [Google Scholar]
- Norton, K.; Norton, L.; Lewis, N. Effects of short-term physical activity interventions on simple and choice response time. BioMed. Res. Int. 2016, 2016, 5613767. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.M.; Szabo-Reed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef]
- Miyaki, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wagner, T.D. The unity and diversity of executive functions and their contributions to complex ‘frontal lobe’ tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- Duncan, G.J.; Dowsett, C.J.; Claessens, A.; Magnuson, K.; Huston, A.C. School readiness and later achievement. Dev. Psychol. 2007, 43, 1428–1446. [Google Scholar] [CrossRef]
- Borella, E.; Carretti, B.; Pelgrina, S. The specific role of inhibition in reading comprehension in good and poor comprehenders. J. Learn. Dis. 2010, 43, 541–552. [Google Scholar] [CrossRef] [PubMed]
Name of Exercise | Description |
---|---|
Line Jumps | The participants will jump sideways across and back over a line with both feet together. |
Ladder Run | Running through an agility ladder/set of cones, and then run down the side of the ladder/cones to repeat the process. |
Hurdles | The participant will hurdle over small 6-12-inch hurdles and then run down the side of the hurdles to repeat the process. |
Step Ups | The participant will step up and down on 18-inch-high aerobic steps. |
High Knees | The participant will lift alternate knees high into the air on the spot. |
Shuttle Drills | The participant will sprint to cones and back, 3, 5 and 10 yards away. |
Z Pattern Run | The participant will run through a set of cones arranged in a zig-zag pattern 5 yards away from each other, and then run down the side of the cones to repeat the process. |
Jump Rope | The participant will jump rope on the spot. |
Jumping Jacks | The participants will complete jumping jacks on the spot. |
Sample | Test Type | TMT-A Post SA | TMT-A Post PA | TMT-B Post SA | TMT-B Post PA | ||||
---|---|---|---|---|---|---|---|---|---|
N | Group1 | Group2 | Group1 | Group2 | Group1 | Group2 | Group1 | Group2 | |
Total Sample | 68 | 23.2 (6.4) | 20.8 (3.9) | 20.7 (6.7) | 24.5 (6.6) | 57.5 (18.8) | 48.0 (17.0) | 46.9 (15.5) | 48.7 (10.2) |
Male | 42 | 23.8 (7.0) | 21.1 (4.0) | 20.7 (7.5) | 24.1 (4.3) | 58.3 (21.7) | 50.5 (13.5) | 46.9 (17.4) | 47.5 (9.3) |
Female | 26 | 22.2 (5.4) | 20.3 (3.8) | 20.8 (5.1) | 25.3 (9.0) | 55.2 (12.6) | 44.5 (20.9) | 47.0 (12.0) | 50.5 (11.5) |
Test | Effect | F-Statistic | p-Value | Eta-Squared |
---|---|---|---|---|
TMT-A | Treatment | 1.5 | 0.226 | 0.005 |
Sex | 0.6 | 0.461 | 0.001 | |
Sex × Treatment | 2.1 | 0.155 | 0.006 | |
Order | 0.2 | 0.631 | 0.004 | |
TMT-B | Treatment | 5.1 † | 0.026 | 0.018 |
Sex | 0.5 | 0.501 | 0.002 | |
Sex × Treatment | 1.9 | 0.170 | 0.012 | |
Order | 0.1 | 0.770 | 0.014 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, D.S.; Hannon, J.C.; Gregory, B.B.; Burns, R.D. Effect of Vigorous Physical Activity on Executive Control in Middle-School Students. Int. J. Environ. Res. Public Health 2019, 16, 3949. https://doi.org/10.3390/ijerph16203949
Phillips DS, Hannon JC, Gregory BB, Burns RD. Effect of Vigorous Physical Activity on Executive Control in Middle-School Students. International Journal of Environmental Research and Public Health. 2019; 16(20):3949. https://doi.org/10.3390/ijerph16203949
Chicago/Turabian StylePhillips, David S., James C. Hannon, Bradley B. Gregory, and Ryan D. Burns. 2019. "Effect of Vigorous Physical Activity on Executive Control in Middle-School Students" International Journal of Environmental Research and Public Health 16, no. 20: 3949. https://doi.org/10.3390/ijerph16203949
APA StylePhillips, D. S., Hannon, J. C., Gregory, B. B., & Burns, R. D. (2019). Effect of Vigorous Physical Activity on Executive Control in Middle-School Students. International Journal of Environmental Research and Public Health, 16(20), 3949. https://doi.org/10.3390/ijerph16203949