Multidimensional Health Groups and Healthcare Utilization Among Elderly Chinese: Based on the 2014 CLHLS Dataset
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Population
2.2. Measures
2.2.1. Need Factors
2.2.2. Predisposing and Enabling Factors
2.2.3. Healthcare Utilization
2.3. Statistical Analyses
3. Results
3.1. Multidimensional Health Groups of Elderly Adults
3.2. Healthcare Utilization Among Different Health Groups
3.3. The Effects of Health Groups and Other Influencing Factors on Healthcare Utilization
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations; Department of Economic Social Affairs; Population Division. World Population Ageing 2017. Available online: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Report.pdf (accessed on 10 June 2019).
- Prince, M.J.; Wu, F.; Guo, Y.F.; Robledo, L.M.G.; O’Donnell, M.; Sullivan, R.; Yusuf, S. The burden of disease in older people and implications for health policy and practice. Lancet 2015, 385, 549–562. [Google Scholar] [CrossRef]
- Rocca, W.A.; Boyd, C.M.; Grossardt, B.R.; Bobo, W.V.; Rutten, L.J.F.; Roger, V.L.; Ebbert, J.O.; Therneau, T.M.; Yawn, B.P.; St Sauver, J.L. Prevalence of multimorbidity in a geographically defined American population: Patterns by age, sex, and race/ethnicity. Mayo. Clin. Proc. 2014, 89, 1336–1349. [Google Scholar] [CrossRef] [PubMed]
- Chou, K.L.; Chi, I. Factors associated with the use of publicly funded services by Hong Kong Chinese older adults. Soc. Sci. Med. 2004, 58, 1025–1035. [Google Scholar] [CrossRef]
- Fried, T.R.; Bradley, E.H.; Williams, C.S.; Tinetti, M.E. Functional disability and health care expenditures for older persons. Arch. Int. Med. 2001, 161, 2602–2607. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Wu, B. Changes of health status and institutionalization among older adults in China. J. Aging Health 2015, 27, 1223–1246. [Google Scholar] [CrossRef]
- Liu, L.-F.; Tian, W.-H.; Yao, H.-P. Utilization of health care services by elderly people with National Health Insurance in Taiwan: The heterogeneous health profile approach. Health Policy 2012, 108, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.X.; Zahner, G.E.P.; Roman, G.C.; Liu, X.H.; Wu, C.B.; Hong, Z.; Hong, X.; Tang, M.N.; Zhou, B. Socio-demographic variation of dementia subtypes in China: Methodology and results of a prevalence study in Beijing, Chengdu, Shanghai, and Xian. Neuroepidemiology 2006, 27, 177–187. [Google Scholar] [CrossRef]
- World Health Organization. Constitution of the World Health Organization. Available online: https://www.who.int/governance/eb/who_constitution_en.pdf (accessed on 10 June 2019).
- Cacioppo, J.T.; Cacioppo, S. Social relationships and health: The toxic effects of perceived social isolation. Soc. Pers. Psychol. Compass 2014, 8, 58–72. [Google Scholar] [CrossRef]
- Czaja, S.J.; Boot, W.R.; Charness, N.; Rogers, W.A.; Sharit, J. Improving social support for older adults through technology: Findings from the PRISM randomized controlled trial. Gerontologist 2018, 58, 467–477. [Google Scholar] [CrossRef]
- Jung, T.; Wickrama, K.A.S. An introduction to latent class growth analysis and growth mixture modeling. Soc. Pers. Psychol. Compass 2008, 2, 302–317. [Google Scholar] [CrossRef]
- Laursen, B.; Hoff, E. Person-centered and variable-centered approaches to longitudinal data. Merrill-Palmer Q. 2006, 52, 377–389. [Google Scholar] [CrossRef]
- Muthen, B.; Muthen, L.K. Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcohol.-Clin. Exp. Res. 2000, 24, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Lafortune, L.; Béland, F.; Bergman, H.; Ankri, J. Health state profiles and service utilization in community-living elderly. Med. Care 2009, 47, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Hastings, S.N.; Horney, C.; Landerman, L.R.; Sanders, L.L.; Hocker, M.B.; Schmader, K.E. Exploring patterns of health service use in older emergency department patients. Acad. Emerg. Med. 2010, 17, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Beeber, A.S.; Thorpe, J.M.; Clipp, E.C. Community-based service use by elders with dementia and their caregivers—A latent class analysis. Nurs. Res. 2008, 57, 312–321. [Google Scholar] [CrossRef]
- Fisher, K.; Griffith, L.; Gruneir, A.; Panjwani, D.; Gandhi, S.; Sheng, L.; Gafni, A.; Chris, P.; Markle-Reid, M.; Ploeg, J. Comorbidity and its relationship with health service use and cost in community-living older adults with diabetes: A population-based study in Ontario, Canada. Diabetes Res. Clin. Pr. 2016, 122, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.F.; Lim, Z.Y.; Choe, R.; Seetharaman, S.; Merchant, R. Screening for frailty and sarcopenia among older persons in medical outpatient clinics and its associations with healthcare burden. J. Am. Med. Directors Assoc. 2017, 18, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.W.; Chi, I. Correlates of physician visits among older adults in China: The effects of family support. J. Aging Health 2011, 23, 933–953. [Google Scholar] [CrossRef]
- Zeng, Y.; Poston, D.L.; Vlosky, D.A.; Gu, D. Healthy Longevity in China: Demographic, Socioeconomic, and Psychological Dimensions; Springer Science & Business Media: Berlin, Germany, 2008; Volume 20. [Google Scholar]
- Andersen, R.M. Revisiting the behavioral model and access to medical care: does it matter? J. Health Soc. Behav. 1995, 1–10. [Google Scholar] [CrossRef]
- Chei, C.L.; Raman, P.; Yin, Z.X.; Shi, X.M.; Zeng, Y.; Matchar, D.B. Vitamin D levels and cognition in elderly adults in China. J. Am. Geriatr. Soc. 2014, 62, 2125–2129. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.L. Social network types and the health of older adults: Exploring reciprocal associations. Soc. Sci. Med. 2015, 130, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.M.; Lanza, S.T. Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 718. [Google Scholar]
- Nylund, K.L.; Asparoutiov, T.; Muthen, B.O. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct. Equation Model.-a Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Liu, L.F.; Tian, W.H.; Yao, H.P. The heterogeneous health latent classes of elderly people and their socio-demographic characteristics in Taiwan. Arch. Gerontol. Geriatr. 2014, 58, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Davies, N. Reducing inequalities in healthcare provision for older adults. Nurs. Stand. 2011, 25, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Cornwell, E.Y.; Waite, L.J. Social disconnectedness, perceived isolation, and health among older adults. J. Health Soc. Behav. 2009, 50, 31–48. [Google Scholar] [CrossRef]
- World Health Organization. Active Ageing: A Policy Framework. Available online: https://extranet.who.int/agefriendlyworld/wp-content/uploads/2014/06/WHO-Active-Ageing-Framework.pdf (accessed on 10 June 2019).
- Li, X.; Zhang, W. The impacts of health insurance on health care utilization among the older people in China. Soc. Sci. Med. 2013, 85, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Hu, H.Y.; Li, C.P.; Fang, Y.T.; Huang, N.; Chou, Y.J. The association between functional disability and acute care utilization among the elderly in Taiwan. Arch. Gerontol. Geriatr. 2013, 57, 177–183. [Google Scholar] [CrossRef]
- Paez, K.A.; Zhao, L.; Hwang, W. Rising out-of-pocket spending for chronic conditions: A ten-year trend. Health Aff. 2009, 28, 15–25. [Google Scholar] [CrossRef]
- Hung, W.W.; Ross, J.S.; Boockvar, K.S.; Siu, A.L. Recent trends in chronic disease, impairment and disability among older adults in the United States. BMC Geriatr. 2011, 11. [Google Scholar] [CrossRef]
- Bahler, C.; Huber, C.A.; Brungger, B.; Reich, O. Multimorbidity, health care utilization and costs in an elderly community-dwelling population: A claims data based observational study. BMC Health Serv. Res. 2015, 15. [Google Scholar] [CrossRef]
- Xiao, N.; Long, Q.; Tang, X.; Tang, S. A community-based approach to non-communicable chronic disease management within a context of advancing universal health coverage in China: Progress and challenges. BMC Public Health 2014, 14. [Google Scholar] [CrossRef]
- Yu, J.H.; Shah, B.M.; Ip, E.J.; Chan, J. A Markov model of the cost-effectiveness of pharmacist care for diabetes in prevention of cardiovascular diseases: Evidence from kaiser permanente Northern California. J. Managed Care Pharm. 2013, 19, 102–114. [Google Scholar] [CrossRef]
- Avila-Funes, J.A.; Pina-Escudero, S.D.; Aguilar-Navarro, S.; Gutierrez-Robledo, L.M.; Ruiz-Arregui, L.; Amieva, H. Cognitive impairment and low physical activity are the components of frailty more strongly associated with disability. J. Nutr. Health Aging 2011, 15, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Mehta, K.M.; Yaffe, K.; Covinsky, K.E. Cognitive impairment, depressive symptoms, and functional decline in older people. J. Am. Geriatr. Soc. 2002, 50, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.H.; Theoharides, C. Health-Seeking Behavior and hospital choice in China’s new cooperative medical system. Health Econ. 2009, 18, S47–S64. [Google Scholar] [CrossRef]
- Zhan, H.J. Socialization or social structure: Investigating predictors of attitudes toward filial responsibility among Chinese urban youth from one- and multiple-child families. Int. J. Aging Hum. Dev. 2004, 59, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Glass, A.P.; Gao, Y.; Luo, J. China: Facing a long-term care challenge on an unprecedented scale. Glob. Public Health 2013, 8, 725–738. [Google Scholar] [CrossRef]
- Howdon, D.; Rice, N. Health care expenditures, age, proximity to death and morbidity: Implications for an ageing population. J. Health Econ. 2018, 57, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Hazra, N.C.; Rudisill, C.; Gulliford, M.C. Determinants of health care costs in the senior elderly: Age, comorbidity, impairment, or proximity to death? Eur. J. Health Econ. 2018, 19, 831–842. [Google Scholar] [CrossRef] [PubMed]
- de Meijer, C.; Koopmanschap, M.; d’ Uva, T.B.; van Doorslaer, E. Determinants of long-term care spending: Age, time to death or disability? J. Health Econ. 2011, 30, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.Y.; Lin, W.C. The new cooperative medical scheme in rural China: Does more coverage mean more service and better health? Health Econ. 2009, 18, S25–S46. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.G.; Liu, H.; Zhang, Y.; Shen, K.; Zeng, Y. The impact of health insurance on health outcomes and spending of the elderly: Evidence from China’s new cooperative medical scheme. Health Econ. 2015, 24, 672–691. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Tang, S.; Liu, Y.; Zhao, Y.; Escobar, M.L.; de Ferranti, D.; Wagstaff, A.; Lindelow, M. Reform of how health care is paid for in China: Challenges and opportunities. Lancet 2009, 374, 292. [Google Scholar] [CrossRef]
- He, A.J.; Wu, S.L. Towards universal health coverage via social health insurance in China: Systemic fragmentation, reform imperatives, and policy alternatives. Appl. Health Econ. Health Policy 2017, 15, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.Y.; Fang, H.; Liu, X.Y.; Yuan, B.B.; Xu, J. Consolidating the social health insurance schemes in China: Towards an equitable and efficient health system. Lancet 2015, 386, 1484–1492. [Google Scholar] [CrossRef]
- Yip, W.; Hsiao, W.C. Market watch—The Chinese health system at a crossroads. Health Aff. 2008, 27, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xie, P. Outpatient workload in China. Lancet 2013, 381, 1983–1984. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, Y.J.; Ren, J.P.; Sun, L.Q.; Liu, C.J. Inequality in the distribution of health resources and health services in China: Hospitals versus primary care institutions. Int. J. Equity Health 2017, 16. [Google Scholar] [CrossRef]
Variables | N | % |
---|---|---|
Need factors | ||
Physiologic health status | ||
Number of chronic conditions | ||
0 | 824 | 41.7 |
1 | 722 | 36.6 |
≥2 | 428 | 21.7 |
ADLs difficulties | 212 | 10.7 |
IADLs difficulties | ||
0–2 | 1399 | 70.8 |
3–4 | 242 | 12.3 |
≥5 | 333 | 16.9 |
Psychological health status | ||
Cognitive problem | 93 | 4.7 |
Depressive symptom | 283 | 14.3 |
Social health status | ||
Lacking structural relationship | 864 | 43.8 |
Lacking functional relationship | 995 | 50.4 |
Predisposing factors | ||
Age | ||
65–79 | 920 | 46.6 |
≥80 | 1054 | 53.4 |
Gender | ||
Female | 936 | 47.4 |
Male | 1038 | 52.6 |
Marital status | ||
Not in marriage | 975 | 49.4 |
In marriage | 999 | 50.6 |
Education | ||
Illiterate | 918 | 46.5 |
Literate or primary school | 747 | 37.8 |
Junior high and above | 309 | 15.7 |
Occupation before 60 | ||
Agriculture | 1394 | 70.6 |
Professional/managerial | 164 | 8.3 |
Others | 416 | 21.1 |
Enabling factors | ||
Residence area | ||
Rural area | 943 | 47.8 |
Urban area | 1031 | 52.2 |
Living status | ||
Alone | 380 | 19.3 |
With others | 1594 | 80.7 |
Household income | ||
Lower than 7000 yuan | 488 | 24.7 |
7000–20,000 yuan | 385 | 19.5 |
20,000–40,000 yuan | 501 | 25.4 |
Higher than 40,000 yuan | 600 | 30.4 |
Health insurance | ||
UE-BMI | 266 | 13.5 |
UR-BMI | 160 | 8.1 |
NRCMS | 1370 | 69.4 |
Indexes | 2 Groups | 3 Groups | 4 Groups | 5 Groups |
---|---|---|---|---|
BIC | 24,102.99 | 24,088.81 | 24,065.84 | 24,104.05 |
aBIC | 24,042.62 | 23,996.66 | 23,941.92 | 23,948.36 |
cAIC | 24,121.99 | 24,117.81 | 24,104.84 | 24,153.05 |
Variables | Sample Proportion (N = 2981) | Lacking Socialization (N = 311) | High Comorbidity (N = 498) | Severe Disability (N = 231) | Relative Health (N = 1941) |
---|---|---|---|---|---|
Physiologic health status | |||||
Number of chronic conditions | |||||
0 | 0.416 | 0.633 | 0.186 | 0.355 | 0.472 |
1 | 0.377 | 0.334 | 0.415 | 0.363 | 0.374 |
≥2 | 0.207 | 0.033 | 0.399 | 0.282 | 0.154 |
ADLs difficulties | 0.107 | 0.036 | 0.166 | 0.750 | 0.000 |
IADLs difficulties | |||||
0–2 | 0.708 | 0.360 | 0.519 | 0.000 | 1.000 |
3–4 | 0.127 | 0.324 | 0.328 | 0.000 | 0.000 |
≥5 | 0.165 | 0.316 | 0.153 | 1.000 | 0.000 |
Psychological health status | |||||
Cognitive problem | 0.051 | 0.091 | 0.045 | 0.260 | 0.011 |
Depressive symptom | 0.136 | 0.037 | 0.290 | 0.216 | 0.078 |
Social health status | |||||
Lacking structural relationship | 0.433 | 0.810 | 0.430 | 0.797 | 0.277 |
Lacking functional relationship | 0.535 | 0.766 | 0.380 | 0.604 | 0.534 |
Health Groups and Nonparametric Tests | Users | Expenditure (CNY) | ||||||
---|---|---|---|---|---|---|---|---|
Outpatient | Inpatient | Outpatient | Inpatient | |||||
N | % | N | % | Mean | Std Dev | Mean | Std Dev | |
Overall | 1468 | 74.4 | 566 | 28.7 | 2272.11 | 5208.59 | 9165.38 | 13,787.25 |
Lacking Socialization | 142 | 66.4 | 37 | 17.3 | 1143.66 | 1692.30 | 9521.08 | 11,635.56 |
High Comorbidity | 283 | 84.0 | 143 | 42.4 | 3653.75 | 7770.13 | 10513.50 | 14,576.89 |
Severe Disability | 124 | 82.1 | 66 | 43.7 | 3467.64 | 7616.05 | 8646.97 | 9834.12 |
Relative Health | 919 | 72.3 | 320 | 25.2 | 1859.70 | 3930.25 | 8628.73 | 14,350.34 |
χ2 test | <0.001 | <0.001 | ||||||
Shapiro–Wilk test | <0.001 | <0.001 | ||||||
Levene’s Test | <0.001 | 0.76 | ||||||
Kruskal–Wallis Test | <0.001 | 0.07 | ||||||
Steel Dwass test | LS < RH < HC, SD |
Variables | Part 1 | Part 2 | ||||||
---|---|---|---|---|---|---|---|---|
Outpatient | Inpatient | Outpatient | Inpatient | |||||
OR | p-Value | OR | p-Value | OR | p-Value | OR | p-Value | |
Need factors | ||||||||
Health group | ||||||||
Relative Health | ref | ref | ref | ref | ||||
Lacking Socialization | 0.869 | 0.43 | 0.769 | 0.21 | 0.061 | 0.64 | 0.529 | 0.020 |
High Comorbidity | 1.968 | <0.001 | 2.264 | <0.001 | 0.586 | <0.001 | 0.104 | 0.41 |
Severe Disability | 1.895 | 0.006 | 2.707 | <0.001 | 0.612 | <0.001 | 0.155 | 0.38 |
Predisposing factors | ||||||||
Age | ||||||||
65–79 | ref | ref | ref | ref | ||||
≥80 | 0.724 | 0.008 | 0.751 | 0.015 | −0.245 | 0.002 | 0.015 | 0.90 |
Gender | ||||||||
Female | ref | ref | ref | ref | ||||
Male | 0.817 | 0.10 | 0.942 | 0.61 | −0.166 | 0.036 | −0.142 | 0.24 |
Marital status | ||||||||
Not in marriage | ref | ref | ref | ref | ||||
In marriage | 1.041 | 0.77 | 1.120 | 0.39 | 0.204 | 0.024 | 0.233 | 0.08 |
Education | ||||||||
Illiterate | ref | ref | ref | ref | ||||
Literate or primary school | 0.880 | 0.32 | 0.980 | 0.87 | 0.107 | 0.21 | 0.188 | 0.14 |
Junior high and above | 0.641 | 0.019 | 0.864 | 0.43 | 0.015 | 0.91 | 0.079 | 0.68 |
Main occupation before age 60 | ||||||||
Agriculture | ref | ref | ref | ref | ||||
Professional/managerial | 1.140 | 0.61 | 1.369 | 0.19 | 0.540 | 0.001 | 0.258 | 0.27 |
Others | 1.232 | 0.20 | 1.254 | 0.13 | 0.325 | 0.001 | 0.130 | 0.39 |
Enabling factors | ||||||||
Residence area | ||||||||
Rural area | ref | ref | ref | ref | ||||
Urban area | 1.141 | 0.25 | 1.135 | 0.26 | 0.215 | 0.005 | 0.062 | 0.59 |
Living status | ||||||||
Alone | ref | ref | ref | ref | ||||
With others | 1.086 | 0.60 | 0.940 | 0.70 | −0.082 | 0.44 | 0.034 | 0.83 |
Household income | ||||||||
Lower than 7000 yuan | ref | ref | ref | ref | ||||
7000–20,000 yuan | 0.948 | 0.73 | 0.949 | 0.74 | 0.131 | 0.23 | −0.156 | 0.33 |
20,000–40,000 yuan | 1.051 | 0.75 | 0.982 | 0.91 | 0.172 | 0.10 | 0.164 | 0.30 |
Higher than 40,000 yuan | 1.192 | 0.28 | 1.014 | 0.93 | 0.188 | 0.08 | 0.131 | 0.41 |
Health Insurance | ||||||||
UE-BMI | 1.203 | 0.45 | 0.957 | 0.83 | −0.195 | 0.17 | 0.099 | 0.62 |
UR-BMI | 1.145 | 0.62 | 0.951 | 0.83 | −0.131 | 0.41 | 0.065 | 0.78 |
NRCMS | 0.883 | 0.54 | 0.951 | 0.79 | −0.504 | <0.001 | −0.573 | 0.003 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, L.; Luo, J.; Shia, B.-C.; Fang, Y. Multidimensional Health Groups and Healthcare Utilization Among Elderly Chinese: Based on the 2014 CLHLS Dataset. Int. J. Environ. Res. Public Health 2019, 16, 3884. https://doi.org/10.3390/ijerph16203884
Ye L, Luo J, Shia B-C, Fang Y. Multidimensional Health Groups and Healthcare Utilization Among Elderly Chinese: Based on the 2014 CLHLS Dataset. International Journal of Environmental Research and Public Health. 2019; 16(20):3884. https://doi.org/10.3390/ijerph16203884
Chicago/Turabian StyleYe, Linglong, Jiecheng Luo, Ben-Chang Shia, and Ya Fang. 2019. "Multidimensional Health Groups and Healthcare Utilization Among Elderly Chinese: Based on the 2014 CLHLS Dataset" International Journal of Environmental Research and Public Health 16, no. 20: 3884. https://doi.org/10.3390/ijerph16203884
APA StyleYe, L., Luo, J., Shia, B.-C., & Fang, Y. (2019). Multidimensional Health Groups and Healthcare Utilization Among Elderly Chinese: Based on the 2014 CLHLS Dataset. International Journal of Environmental Research and Public Health, 16(20), 3884. https://doi.org/10.3390/ijerph16203884