Evaluating Latent Tuberculosis Infection Test Performance Using Latent Class Analysis in a TB and HIV Endemic Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Test Outcomes
2.2. Latent Class Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dheda, C.; Barry, C.E., 3rd; Maartens, G. Tuberculosis. Lancet 2016, 387, 1211–1226. [Google Scholar] [CrossRef]
- World Health Organization. Latent Tuberculosis Infection: Updated and Consolidated Guidelines for Programmatic Management; World Health Organization: Geneva, Switzerland, 2018; License: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Department of Health. South Africa. National Tuberculosis Management Guidelines 2014. Available online: https://www.health-e.org.za/wp-content/uploads/2014/06/NTCP_Adult_TB-Guidelines-27.5.2014.pdf (accessed on 24 July 2019).
- Shisana, O.; Hall, E.; Chavea, J.; Schwabe, C. HIV/AIDS prevalence South African health workers. S. Afr. Med. J. 2004, 94, 846–850. [Google Scholar] [PubMed]
- Kranzer, K.; Bekker, L.G.; van Schaik, N.; Thebus, L.; Dawson, M.; Caldwell, J.; Hausler, H.; Grant, R.; Wood, R. Community health care workers in South Africa are at increased risk for tuberculosis. S. Afr. Med. J. 2010, 100, 224. [Google Scholar] [CrossRef] [PubMed]
- Connelly, D.; Veriava, Y.; Roberts, S.; Tsotetsi, J.; Jordan, A.; DeSilva, E.; Rosen, S.; DeSilva, B.M. Prevalence of HIV infection and median CD4 counts among health care workers in South Africa. S. Afr. Med. J. 2007, 97, 115–120. [Google Scholar] [PubMed]
- Van Rie, A.; McCarthy, K.; Scott, L.; Dow, A.; Venter, W.D.; Stevens, W.S. Prevalence, risk factors and risk perception of tuberculosis infection among medical students and healthcare workers in Johannesburg, South Africa. S. Afr. Med. J. 2013, 103, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Grobler, L.; Mehtar, S.; Dheda, K.; Adams, S.; Babatunde, S.; van der Walt, M.; Osman, M. The epidemiology of tuberculosis in health care workers in South Africa: A systematic review. BMC Health Serv. Res. 2016, 16, 416. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.; Ehrlich, R.; Baatjies, R.; van Zyl-Smit, R.N.; Said-Hartley, Q.; Dawson, R.; Dheda, K. Incidence of occupational latent tuberculosis infection in South African healthcare workers. Eur. Respir. J. 2015, 45, 1364–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claassens, M.M.; van Schalkwyk, C.; du Toit, E.; Roest, E.; Lombard, C.J.; Enarson, D.A.; Beyers, N.; Borgdorff, M.W. Tuberculosis in healthcare workers and infection control measures at primary healthcare facilities in South Africa. PLoS ONE 2013, 8, e76272. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.; Jarand, J.; Loveday, M.; Padayatchi, N.; Zelnick, J.; Werner, L.; Naidoo, K.; Master, I.; Osburn, G.; Kvasnovsky, C.; et al. High incidence of hospital admissions with multidrug-resistant and extensively drug-resistant tuberculosis among South African health care workers. Ann. Intern. Med. 2010, 153, 516–522. [Google Scholar] [CrossRef]
- Pai, M.; Denkinger, C.M.; Kik, S.V.; Rangaka, M.X.; Zwerling, A.; Oxlade, O.; Metcalfe, J.Z.; Cattamanchi, A.; Dowdy, D.W.; Dheda, K.; et al. Gamma Interferon Release Assays for detection of Mycobacterium tuberculosis Infection. Clin. Microbiol. Rev. 2014, 27, 3–20. [Google Scholar] [CrossRef]
- Doan, T.N.; Eisen, D.P.; Rose, M.T.; Slack, A.; Stearnes, G.; Mc Bryde, E.S. Interferon-gamma release assays for the diagnosis of latent TB infection: A latent-class analysis. PLoS ONE 2017, 12, e0188631. [Google Scholar] [CrossRef] [PubMed]
- Girardi, E.; Angeletti, C.; Puro, V.; Sorrentino, R.; Magnavita, N.; Vincenti, D.; Carrara, S.; Butera, O.; Ciufoli, A.M.; Squarcione, S.; et al. Estimating diagnostic accuracy of tests for latent tuberculosis infection without a gold standard among healthcare workers. Eurosurveillance 2009, 14, 19373. [Google Scholar] [PubMed]
- Stout, J.E.; Wu, Y.; Ho, C.S.; Pettit, A.C.; Feng, P.-J.; Katz, D.J.; Ghosh, S.; Venkatappa, T.; Luo, R. Evaluating latent tuberculosis infection diagnostics using latent class analysis. Thorax 2018, 73, 1062–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apriani, L.; McAllister, S.; Sharples, K.; Alisjahbana, B.; Ruslami, R.; Hill, P.C.; Menzies, D. Latent Tuberculosis infection in health care workers in low and middle-income countries: An updated systematic review. Eur. Respir. J. 2019. [Google Scholar] [CrossRef] [PubMed]
- Garone, D.; Hilderbrand, K.; Boulle, A.M.; Coetzee, D.; Goemaere, E.; Van Cutsem, G.; Besada, D. Review: Khayelitsha 2001–2011: 10 years of primary care HIV and TB programmes. S. Afr. J. HIV Med. 2011, 12, 33–38. [Google Scholar] [CrossRef]
- Van Zyl-Smit, R.N.; Pai, M.; Peprah, K.; Meldau, R.; Kieck, J.; Juritz, J.; Badri, M.; Zumla, A.; Sechi, L.A.; Bateman, E.D.; et al. Within-subject variability and boosting of T-cell interferon-gamma responses after tuberculin skin testing. Am. J. Respir. Crit. Care Med. 2009, 180, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Van Zyl-Smit, R.N.; Zwerling, A.; Dheda, K.; Pai, M. Within-subject variability of interferon-g assay results for tuberculosis and boosting effect of tuberculin skin testing: A systematic review. PLoS ONE 2009, 12. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.; Dendukuri, N.; Wang, L.; Joshi, R.; Kalantri, S.; Rieder, H.L. Improving the estimation of tuberculosis infection prevalence using T-cell based assay and mixture models. Int. J. Tuberc. Lung. Dis. 2008, 12, 895–902. [Google Scholar]
- Dendukuri, N.; Joseph, L. Bayesian Approaches to Modeling the Conditional Dependence between Multiple Diagnostic Tests. Biometrics 2001, 57, 158–167. [Google Scholar] [CrossRef]
- Dendukuri, N.; Hadgu, A.; Wang, L. Modeling conditional dependence between diagnostic tests: A multiple latent variable model. Stat. Med. 2009, 28, 441–461. [Google Scholar] [CrossRef]
- Joseph, L.; Gyorkos, T.; Coupal, L. Bayesian Estimation of Disease Prevalence and the parameters of Diagnostic Tests in the Absence of a Gold Standard. Am. J. Epidemiol. 1995, 141, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.; Zwerling, A.; Menzies, D. Systematic Review: T-cell-based Assays for the Diagnosis of Latent Tuberculosis Infection: An update. Ann. Intern. Med. 2008, 149, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Lunn, D.J.; Thomas, A.; Best, N.; Speigelhalter, D. WinBUGS-a Bayesian modelling framework: Concepts, structure and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Mahomed, H.; Hughes, E.J.; Hawkridge, T.; Minnies, D.; Simon, E.; Little, F.; Hanekom, W.A.; Geiter, L.; Hussey, G.D. Comparison of Mantoux skin test with three generations of a whole blood IFN-gamma assay for tuberculosis infection. Int. J. Tuberc. Lung Dis. 2006, 10, 310–316. [Google Scholar] [PubMed]
- Middelkoop, K.; Bekker, L.G.; Myer, L.; Dawson, R.; Wood, R. Rates of tuberculosis transmission to children and adolescents in a community with a high prevalence of HIV infection among adults. Clin. Infect. Dis. 2008, 47, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.; Liang, H.; Wu, H.; Middelkoop, K.; Oni, T.; Rangaka, M.; Wilkinson, R.; Bekker, L.; Lawn, S.D. Changing prevalence of tuberculosis infection with increasing age in high-burden township in South Africa. Int. J. Tuberc. Lung Dis. 2010, 14, 406–412. [Google Scholar]
- Farhat, M.; Greenaway, C.; Pai, M.; Menzies, D. False-positive tuberculin skin tests: What is the absolute effect of BCG and nontuberculous mycobacteria? Int. J. Tuberc. Lung Dis. 2006, 10, 1192–1204. [Google Scholar]
- Bugiani, M.; Borracino, A.; Migliore, E.; Carosso, A.; Piccioni, P.; Cavallero, M.; Caria, E.; Salamina, G.; Arossa, W. Tuberculin reactivity in adult BCG-vaccinated subjects: A cross sectional study. Int. J. Tuberc. Lung Dis. 2003, 7, 320–326. [Google Scholar]
- Bierrenbach, A.L.; Floyd, S.; Cunha, S.C.; Dourado, I.; Barreto, M.L.; Pereira, S.M.; Hijjar, M.A.; Rodrigues, L.C. A comparison of dual skin test with mycobacterial antigens and tuberculin skin test alone in estimating prevalence of Mycobacterium tuberculosis infection in population surveys. Int. J. Tuberc. Lung Dis. 2003, 7, 312–319. [Google Scholar]
- Rangaka, M.X.; Wilkinson, K.A.; Glynn, J.R.; Ling, D.; Menzies, D.; Mwansa-Kambafwile, J.; Wilkinson, R.J.; Pai, M. Predictive value of interferon-γ release assays for incident active tuberculosis: A systematic review and meta-analysis. Lancet Infect. Dis. 2012, 12, 45–55. [Google Scholar] [CrossRef]
- Zwerling, A.; van den Hof, S.; Scholten, J.; Cobelens, F.; Menzies, D.; Pai, M. Interferon-gamma release assays for tuberculosis screening of healthcare workers: A systematic review. Thorax 2012, 67, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Rangaka, M.X.; Wilkinson, K.A.; Seldon, R.; Van Cutsem, G.; Meintjes, G.A.; Morroni, C.; Mouton, P.; Diwakar, L.; Connell, T.G.; Maartens, G.; et al. Effect of HIV-1 infection on T-Cell-based and skin test detection of tuberculosis infection. Am. J. Respir. Crit. Care Med. 2007, 175, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Dorman, S.E.; Belknap, R.; Graviss, E.A.; Reves, R.; Schluger, N.; Weinfurter, P.; Wang, Y.; Cronin, W.; Hirsch-Moverman, Y.; Teeter, L.D.; et al. Interferon-gamma release assays and tuberculin skin testing for diagnosis of latent tuberculosis infection in healthcare workers in the United States. Am. J. Respir. Crit. Care Med. 2014, 189, 77–87. [Google Scholar] [PubMed]
- Zwerling, A.; Benedetti, A.; Cojocariu, M.; McIntosh, F.; Pietrangelo, F.; Behr, M.A.; Schwartzman, K.; Menzies, D.; Pai, M. Repeat IGRA testing in Canadian health workers: Conversions or unexplained variability? PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Slater, M.L.; Welland, G.; Pai, M.; Parsonnet, J.; Banaei, N. Challenges with QuantiFERON-TB Gold Assay for Large-Scale, Routine Screening of US Healthcare Workers. Am. J. Respir. Crit. Care Med. 2013, 188, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.S.; Tomford, J.W.; Teixeira, L.; Fraser, T.G.; van Duin, D.; Yen-Lieberman, B.; Gordon, S.M.; Miranda, C. Challenges of interferon-gamma release assay conversions in serial testing of health-care workers in a TB control program. Chest 2012, 142, 55–62. [Google Scholar] [CrossRef]
- Tudor, C.; van der Walt, M.L.; Margot, B.; Dorman, S.E.; Pan, W.K.; Yenokyan, G.; Farley, J.E. Occupational Risk Factors for Tuberculosis Among HCWs. Clin. Infect. Dis. 2016, 62, S255. [Google Scholar] [CrossRef]
- Adams, S.; Ehrlich, R.; Baatjies, R.; Dendukuri, N.; Wang, Z.; Dheda, K. Predictors of discordant latent tuberculosis infection test results amongst South African health care workers. BMC Infect. Dis. 2019, 19. [Google Scholar] [CrossRef]
- Churchyard, G.J.; Chaisson, R.E.; Maartens, G.; Getahun, H. Tuberculosis preventive therapy: An underutilized strategy to reduce individual risk of TB and contribute to TB control. S. Afr. Med. J. 2014, 104, 339–343. [Google Scholar] [CrossRef]
- Churchyard, G.J.; Fielding, K.L.; Grant, A.D. A trial of mass isoniazid preventive therapy for tuberculosis control. N. Engl. J. Med. 2014, 370, 1662–1663. [Google Scholar] [CrossRef]
Test Characteristic | Prior Distribution Range (95% CrI) | ||
---|---|---|---|
TST | QFT-GIT | TSPOT.TB | |
Sensitivity | 71–82 | 63–78 | 86–93 |
Specificity | 46–73 | 94–98 | 86–100 |
Participant Characteristics | Number (%) of Participants |
---|---|
Gender | |
Male | 134 (26%) |
Female | 371 (74%) |
Age | |
<30 years | 126 (25%) |
31–40 years | 136 (27%) |
41–50 years | 134 (27%) |
>50 years | 109 (22%) |
History BCG vaccination | |
Yes | 423 (84%) |
No | 26 (5%) |
Do not know | 56 (11%) |
Vaccination scar | 398 (79%) |
HIV positive | |
Symptom screen positive | 22 (11%) |
Chest radiograph | 131 (26%) |
- Normal/other | 381 (77%) |
- Inactive TB | 78 (16%) |
- Suspect active TB | 37 (7%) |
Ever treated for TB | 65 (13%) |
Currently on TB treatment | 2 (0.4%) 5 (1%) |
Newly diagnosed with TB | |
* Median TST reading (IQR) | 18 mm (13–22) |
TST Positive (N = 484) | 405 (84%) (95% CI 80–87%) |
QFT-GIT positive (N = 496) | 324 (65%) (95% CI 61–70%) |
TSPOT-TB positive (N = 465) | 277 (60%) (95% CI 55–64%) |
TST Versus IGRAS | ||
---|---|---|
QFT-GIT (N = 482) | TSPOT.TB (N = 450) | |
Positive TST and positive IGRA assay | 293 | 249 |
Negative TST and negative IGRA assay | 53 | 55 |
Positive TST and Negative IGRA assay | 112 | 126 |
Negative TST and positive IGRA assay | 24 | 20 |
Agreement (%) | 71.8 | 67.6 |
Kappa (95% CI) | 0.28 (0.20–0.36) | 0.25 (0.18–0.33) |
LTBI Test | Sensitivity % (95% CrI) | Specificity % (95% CrI) | PPV% (95% CrI) | NPV% (95% CrI) |
---|---|---|---|---|
TST | 93 (90–96) | 57 (43–71) | 90 (80–95) | 65 (50–79) |
QFT-GIT | 80 (73–90) | 96 (94–98) | 99 (98–99) | 54 (35–79) |
T-SPOT.TB | 74 (67–83) | 95 (89–99) | 98 (96–100) | 47 (30–69) |
TST or QFT-GIT * | 99 (98–99) | 56 (42–69) | 90 (81–95) | 90 (80–97) |
LTBI Test | Sensitivity % (95% CrI) | Specificity % (95% CrI) | PPV% (95% CrI) | NPV% (95% CrI) |
---|---|---|---|---|
TST | 86 (83–89) | 49 (40–59) | 84 (78–90) | 53 (43–62) |
QFT-GIT | 82 (78–86) | 96 (94–98) | 98 (97–99) | 63 (50–73) |
T-SPOT.TB | 83 (79–87) | 97 (93–99) | 99 (97–100) | 65 (51–76) |
TST or QFT-GIT * | 98 (97–99) | 47 (38–57) | 85 (80–91) | 86 (78–91) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, S.; Ehrlich, R.; Baatjies, R.; Dendukuri, N.; Wang, Z.; Dheda, K. Evaluating Latent Tuberculosis Infection Test Performance Using Latent Class Analysis in a TB and HIV Endemic Setting. Int. J. Environ. Res. Public Health 2019, 16, 2912. https://doi.org/10.3390/ijerph16162912
Adams S, Ehrlich R, Baatjies R, Dendukuri N, Wang Z, Dheda K. Evaluating Latent Tuberculosis Infection Test Performance Using Latent Class Analysis in a TB and HIV Endemic Setting. International Journal of Environmental Research and Public Health. 2019; 16(16):2912. https://doi.org/10.3390/ijerph16162912
Chicago/Turabian StyleAdams, Shahieda, Rodney Ehrlich, Roslynn Baatjies, Nandini Dendukuri, Zhuoyu Wang, and Keertan Dheda. 2019. "Evaluating Latent Tuberculosis Infection Test Performance Using Latent Class Analysis in a TB and HIV Endemic Setting" International Journal of Environmental Research and Public Health 16, no. 16: 2912. https://doi.org/10.3390/ijerph16162912
APA StyleAdams, S., Ehrlich, R., Baatjies, R., Dendukuri, N., Wang, Z., & Dheda, K. (2019). Evaluating Latent Tuberculosis Infection Test Performance Using Latent Class Analysis in a TB and HIV Endemic Setting. International Journal of Environmental Research and Public Health, 16(16), 2912. https://doi.org/10.3390/ijerph16162912