Next Article in Journal
The ‘Merry-Go-Round’ of Habitual Relapse: A Qualitative Study of Relapse in Electronic Gaming Machine Problem Gambling
Next Article in Special Issue
The Neuroprotective Role of Coenzyme Q10 Against Lead Acetate-Induced Neurotoxicity Is Mediated by Antioxidant, Anti-Inflammatory and Anti-Apoptotic Activities
Previous Article in Journal
An Empirical Study on the Influence Path of Environmental Risk Perception on Behavioral Responses In China
Previous Article in Special Issue
Heavy Metals in California Women Living in a Gold Mining-Impacted Community
Open AccessArticle

Neurotoxicity, Behavior, and Lethal Effects of Cadmium, Microplastics, and Their Mixtures on Pomatoschistus microps Juveniles from Two Wild Populations Exposed under Laboratory Conditions―Implications to Environmental and Human Risk Assessment

1
ICBAS—Institute of Biomedical Sciences of the University of Porto, Department of Populations Study, Laboratory of Ecotoxicology (ECOTOX), 4050-313 Porto, Portugal
2
CIIMAR—Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), 4450-208 Matosinhos, Portugal
*
Author to whom correspondence should be addressed.
Int. J. Environ. Res. Public Health 2019, 16(16), 2857; https://doi.org/10.3390/ijerph16162857
Received: 8 May 2019 / Revised: 2 August 2019 / Accepted: 8 August 2019 / Published: 10 August 2019
(This article belongs to the Special Issue Metal Exposure and Health Risk Assessment)
  |  
PDF [590 KB, uploaded 10 August 2019]
  |  

Abstract

Microplastics (MPs) were found to modulate the toxicity of other pollutants but the knowledge on the topic is still limited. The goals of this study were to investigate the short-term toxicity of cadmium (Cd) to wild Pomatochistus microps juveniles, the potential modulation of acute Cd toxicity by 1–5 µm polyethylene MPs in this species, and possible differences of sensitivity to Cd and MPs-Cd mixtures between juveniles from two distinct wild populations. Juveniles were collected in the estuaries of Minho (M-est) and Lima (L-est) Rivers (NW Portugal). One 96 h bioassay with M-est juveniles and another one with L-est juveniles were carried out in laboratory conditions. Each bioassay had 12 treatments: control, 5 Cd concentrations, 1 MPs concentration, and 5 MPs-Cd mixtures. No significant differences in Cd-induced mortality between juveniles from distinct estuaries or between juveniles exposed to Cd alone and those exposed to MPs-Cd mixtures were found. The total 96h LC10 and LC50 of Cd alone were 2 mg/L (95% CI: 0–4 mg/L) and 8 mg/L (95% CI: 2–17 mg/L), respectively. Cd alone significantly decreased the post-exposure predatory performance (PEPP) of M-est (≥6 mg/L) and L-est juveniles (≥3 mg/L), and acetylcholinesterase (AChE) activity of M-est juveniles (13 mg/L). MPs alone (0.14 mg/L) significantly reduced the PEPP and AChE activity of L-est juveniles but not of M-est juveniles. MPs-Cd mixtures (3–13 mg/L of Cd + 0.14 mg/L of MPs) significantly inhibited the PEPP of juveniles from both estuaries and AChE of L-est estuary juveniles but not of M-est juveniles. Evidences of toxicological interactions, namely antagonism, between MPs and Cd were found. Overall, the results indicate that MPs modulated the sub-lethal toxic effects of Cd in wild P. microps juveniles, especially neurotoxicity. Moreover, the environmental conditions of the natural habitats to which juveniles were exposed during pre-developmental phases influence the sub-lethal toxicity of Cd, MPs, and their mixtures. The implications to environmental and human risk assessment are discussed and further research is needed. View Full-Text
Keywords: estuarine fish; cadmium; microplastics; behavior; neurotoxicity; inter-population variability; median lethal concentrations; environmental and human risk assessment estuarine fish; cadmium; microplastics; behavior; neurotoxicity; inter-population variability; median lethal concentrations; environmental and human risk assessment
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Miranda, T.; Vieira, L.R.; Guilhermino, L. Neurotoxicity, Behavior, and Lethal Effects of Cadmium, Microplastics, and Their Mixtures on Pomatoschistus microps Juveniles from Two Wild Populations Exposed under Laboratory Conditions―Implications to Environmental and Human Risk Assessment. Int. J. Environ. Res. Public Health 2019, 16, 2857.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top