Association of lncRNA CCAT2 and CASC8 Gene Polymorphisms with Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Demographic Information
2.3. Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA A Cancer J. Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blechacz, B.; Mishra, L. Hepatocellular carcinoma biology. Recent Results Cancer Res 2013, 190, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sherman, M. Hepatocellular carcinoma: Epidemiology, surveillance, and diagnosis. Semin. Liver Dis. 2010, 30, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet 2012, 379, 1245–1255. [Google Scholar] [CrossRef]
- Gao, J.; Xie, L.; Yang, W.S.; Zhang, W.; Gao, S.; Wang, J.; Xiang, Y.B. Risk factors of hepatocellular carcinoma—Current status and perspectives. Asian Pac. J. Cancer Prev. 2012, 13, 743–752. [Google Scholar] [CrossRef]
- Miki, D.; Ochi, H.; Hayes, C.N.; Aikata, H.; Chayama, K. Hepatocellular carcinoma: Towards personalized medicine. Cancer Sci. 2012, 103, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Nahon, P.; Zucman-Rossi, J. Single nucleotide polymorphisms and risk of hepatocellular carcinoma in cirrhosis. J. Hepatol. 2012, 57, 663–674. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.; Xiong, W.J.; Jing, J.C.; Feng, Z.; Qu, L.S.; Shen, X.Z. Evaluation of the association studies of single nucleotide polymorphisms and hepatocellular carcinoma: A systematic review. J. Cancer Res. Clin. Oncol. 2011, 137, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef]
- Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci. 2016, 73, 2491–2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, A.M.; Chang, H.Y. Long Noncoding RNAs in Cancer Pathways. Cancer Cell 2016, 29, 452–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, A.; Singhal, U.; Chinnaiyan, A.M. Long noncoding RNAs in cancer: From function to translation. Trends Cancer 2015, 1, 93–109. [Google Scholar] [CrossRef]
- Ling, H.; Spizzo, R.; Atlasi, Y.; Nicoloso, M.; Shimizu, M.; Redis, R.S.; Nishida, N.; Gafa, R.; Song, J.; Guo, Z.; et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013, 23, 1446–1461. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Taheri, M. Colon Cancer-Associated Transcripts 1 and 2: Roles and functions in human cancers. J. Cell. Physiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Shaker, O.G.; Senousy, M.A.; Elbaz, E.M. Association of rs6983267 at 8q24, HULC rs7763881 polymorphisms and serum lncRNAs CCAT2 and HULC with colorectal cancer in Egyptian patients. Sci. Rep. 2017, 7, 16246. [Google Scholar] [CrossRef]
- Wokolorczyk, D.; Gliniewicz, B.; Sikorski, A.; Zlowocka, E.; Masojc, B.; Debniak, T.; Matyjasik, J.; Mierzejewski, M.; Medrek, K.; Oszutowska, D.; et al. A range of cancers is associated with the rs6983267 marker on chromosome 8. Cancer Res. 2008, 68, 9982–9986. [Google Scholar] [CrossRef]
- Gong, W.J.; Yin, J.Y.; Li, X.P.; Fang, C.; Xiao, D.; Zhang, W.; Zhou, H.H.; Li, X.; Liu, Z.Q. Association of well-characterized lung cancer lncRNA polymorphisms with lung cancer susceptibility and platinum-based chemotherapy response. Tumour Biol. 2016, 37, 8349–8358. [Google Scholar] [CrossRef]
- Shah, M.Y.; Ferracin, M.; Pileczki, V.; Chen, B.; Redis, R.; Fabris, L.; Zhang, X.; Ivan, C.; Shimizu, M.; Rodriguez-Aguayo, C.; et al. Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Res. 2018, 28, 432–447. [Google Scholar] [CrossRef]
- Hu, R.; Zhong, P.; Xiong, L.; Duan, L. Long Noncoding RNA Cancer Susceptibility Candidate 8 Suppresses the Proliferation of Bladder Cancer Cells via Regulating Glycolysis. DNA Cell Biol. 2017, 36, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Tenesa, A.; Farrington, S.M.; Prendergast, J.G.; Porteous, M.E.; Walker, M.; Haq, N.; Barnetson, R.A.; Theodoratou, E.; Cetnarskyj, R.; Cartwright, N.; et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat. Genet. 2008, 40, 631–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Thyagarajan, B.; Gross, M.D.; Goodman, M.; Sun, Y.V.; Bostick, R.M. Genetic variants at chromosome 8q24, colorectal epithelial cell proliferation, and risk for incident, sporadic colorectal adenomas. Mol. Carcinog. 2014, 53, E187–E192. [Google Scholar] [CrossRef] [PubMed]
- Schafmayer, C.; Buch, S.; Volzke, H.; von Schonfels, W.; Egberts, J.H.; Schniewind, B.; Brosch, M.; Ruether, A.; Franke, A.; Mathiak, M.; et al. Investigation of the colorectal cancer susceptibility region on chromosome 8q24.21 in a large German case-control sample. Int. J. Cancer 2009, 124, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Yeager, M.; Orr, N.; Hayes, R.B.; Jacobs, K.B.; Kraft, P.; Wacholder, S.; Minichiello, M.J.; Fearnhead, P.; Yu, K.; Chatterjee, N.; et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 2007, 39, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Bahari, G.; Naderi, M.; Sadeghi Bojd, S.; Taheri, M. Association of lnc-LAMC2-1:1 rs2147578 and CASC8 rs10505477 Polymorphisms with Risk of Childhood Acute Lymphoblastic Leukemia. Asian Pac. J. Cancer Prev. 2016, 17, 4985–4989. [Google Scholar] [CrossRef]
- Hu, L.; Chen, S.H.; Lv, Q.L.; Sun, B.; Qu, Q.; Qin, C.Z.; Fan, L.; Guo, Y.; Cheng, L.; Zhou, H.H. Clinical Significance of Long Non-Coding RNA CASC8 rs10505477 Polymorphism in Lung Cancer Susceptibility, Platinum-Based Chemotherapy Response, and Toxicity. Int. J. Environ. Res. Public Health 2016, 13, 545. [Google Scholar] [CrossRef]
- Vauthey, J.N.; Lauwers, G.Y.; Esnaola, N.F.; Do, K.A.; Belghiti, J.; Mirza, N.; Curley, S.A.; Ellis, L.M.; Regimbeau, J.M.; Rashid, A.; et al. Simplified staging for hepatocellular carcinoma. J. Clin. Oncol. 2002, 20, 1527–1536. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Sulem, P.; Gudbjartsson, D.F.; Masson, G.; Petursdottir, V.; Hardarson, S.; Gudjonsson, S.A.; Johannsdottir, H.; Helgadottir, H.T.; Stacey, S.N.; et al. A common variant at 8q24.21 is associated with renal cell cancer. Nat. Commun. 2013, 4, 2776. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Nangia-Makker, P.; Farhana, L.; Majumdar, A.P.N. A novel mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells. Mol. Cancer 2017, 16, 155. [Google Scholar] [CrossRef]
- Xie, P.; Cao, H.; Li, Y.; Wang, J.; Cui, Z. Knockdown of lncRNA CCAT2 inhibits endometrial cancer cells growth and metastasis via sponging miR-216b. Cancer Biomark. 2017, 21, 123–133. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Li, Y.; Yan, S.; Dang, H.; Yue, H.; Ling, J.; Chen, F.; Zhao, Y.; Gou, L.; et al. Long noncoding RNA CCAT2 promotes hepatocellular carcinoma proliferation and metastasis through up-regulation of NDRG1. Exp. Cell. Res. 2019, 379, 19–29. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, B.; Zhang, F.; Wang, A.; Du, X.; Hu, P.; Zhu, Y.; Fang, Z. Long non-coding RNA CCAT2 is associated with poor prognosis in hepatocellular carcinoma and promotes tumor metastasis by regulating Snail2-mediated epithelial-mesenchymal transition. Onco Targets Ther. 2017, 10, 1191–1198. [Google Scholar] [CrossRef]
- Chen, F.; Bai, G.; Li, Y.; Feng, Y.; Wang, L. A positive feedback loop of long noncoding RNA CCAT2 and FOXM1 promotes hepatocellular carcinoma growth. Am. J. Cancer Res. 2017, 7, 1423–1434. [Google Scholar]
- Wang, B.G.; Xu, Q.; Lv, Z.; Fang, X.X.; Ding, H.X.; Wen, J.; Yuan, Y. Association of twelve polymorphisms in three onco-lncRNA genes with hepatocellular cancer risk and prognosis: A case-control study. World J. Gastroenterol. 2018, 24, 2482–2490. [Google Scholar] [CrossRef]
- Cooper, D.N. Functional intronic polymorphisms: Buried treasure awaiting discovery within our genes. Hum. Genom. 2010, 4, 284–288. [Google Scholar] [CrossRef]
- Vaz-Drago, R.; Custodio, N.; Carmo-Fonseca, M. Deep intronic mutations and human disease. Hum. Genet. 2017, 136, 1093–1111. [Google Scholar] [CrossRef]
Variable | Controls (n = 1195) | Patients (n = 397) | p Value |
---|---|---|---|
Age (years) | |||
Mean ± S.D. | 59.4 ± 7.1 | 63.1 ± 11.3 | p < 0.001 * |
<50 | 120 (10.0%) | 49 (12.3%) | p < 0.001 * |
50–59 | 358 (30.0%) | 104 (26.2%) | |
60–69 | 700 (58.6%) | 125 (31.5%) | |
≥70 | 17 (1.4%) | 119 (30.0%) | |
Gender | |||
Male | 836 (70%) | 276 (69.5%) | |
Female | 359 (30%) | 121 (30.5%) | p = 0.870 |
Cigarette smoking | |||
No | 726 (60.8%) | 239 (60.2%) | |
Yes | 469 (39.2%) | 158 (39.8%) | p = 0.845 |
Alcohol drinking | |||
No | 1027 (85.9%) | 256 (64.5%) | |
Yes | 168 (14.1%) | 141 (35.5%) | p < 0.001 * |
HBsAg | |||
Negative | 1049 (87.8%) | 227 (57.2%) | |
Positive | 146 (12.2%) | 170 (42.8%) | p < 0.001 * |
Anti-HCV | |||
Negative | 1142 (95.6%) | 219 (55.2%) | |
Positive | 53 (4.4%) | 178 (44.8%) | p < 0.001 * |
Stage | |||
I + II | 278 (70%) | ||
III + IV | 119 (30%) | ||
Tumor T status | |||
T1 + T2 | 283 (71.3%) | ||
T3 + T4 | 114 (28.7%) | ||
Lymph node status | |||
N0 | 385 (97%) | ||
N1 + N2 + N3 | 12 (3%) | ||
Metastasis | |||
M0 | 378 (95.2%) | ||
M1 | 19 (4.8%) | ||
Child-Pugh grade | |||
A | 321 (80.9%) | ||
B or C | 76 (19.1%) | ||
Liver cirrhosis | |||
Negative | 68 (17.1%) | ||
Positive | 329 (82.9%) |
Variable | Controls (n = 1195) n (%) | Patients (n = 397) n (%) | OR (95% CI) | AOR (95% CI) a | Pc |
---|---|---|---|---|---|
rs3843549 | |||||
AA | 898 (75.1%) | 291 (73.3%) | 1.000 (reference) | 1.000 (reference) | |
AG | 275 (23%) | 96 (24.2%) | 1.077 (0.825–1.407) | 1.130 (0.835–1.528) | |
GG | 22 (1.8%) | 10 (2.5%) | 1.403 (0.657–2.997) | 1.417 (0.585–3.429) | |
AG + GG | 297 (24.9%) | 106 (26.7%) | 1.101 (0.851–1.426) | 1.150 (0.859–1.541) | |
rs6983267 | |||||
TT | 416 (34.8%) | 118 (29.7%) | 1.000 (reference) | 1.000 (reference) | |
TG | 588 (49.2%) | 196 (49.4%) | 1.175 (0.906–1.525) | 1.205 (0.896–1.620) | |
GG | 191 (16%) | 83 (20.9%) | 1.532 (1.103–2.129) | 1.627 (1.120–2.265) | 0.033# |
TG + GG | 779 (65.2%) | 279 (70.3%) | 1.263 (0.987–1.615) | 1.309 (0.9891.731) | |
rs13281615 | |||||
AA | 310 (25.9%) | 112 (28.2%) | 1.000 (reference) | 1.000 (reference) | |
AG | 600 (50.2%) | 195 (49.1%) | 0.900 (0.687–1.178) | 0.787 (0.578–1.070) | |
GG | 285 (23.8%) | 90 (22.7%) | 0.874 (0.634–1.205) | 0.735 (0.509–1.062) | |
AG + GG | 885 (74.1%) | 285 (71.8%) | 0.891 (0.691–1.149) | 0.770 (0.576–1.030) |
Genotypic Frequencies | ||||
---|---|---|---|---|
Variable | AA (%) (n = 155) | AG + GG (%) (n = 56) | OR (95% CI) | p Value |
Clinical Stage | ||||
Stage I/II | 103 (66.5%) | 45 (80.4%) | 1.000 (reference) | |
Stage III/IV | 52 (33.5%) | 11 (19.6%) | 0.484 (0.231–1.014) | p = 0.054 |
Tumor size | ||||
≤T2 | 103 (66.5%) | 46 (82.1%) | 1.000 (reference) | |
>T2 | 52 (33.5%) | 10 (17.9%) | 0.431 (0.201–0.921) | p = 0.030 * |
Lymph node metastasis | ||||
Negative | 150 (96.8%) | 54 (96.4%) | 1.000 (reference) | |
Positive | 5 (3.2%) | 2 (3.6%) | 1.111 (0.209–5.897) | p = 0.902 |
Distant metastasis | ||||
Negative | 148 (95.5%) | 54 (96.4%) | 1.000 (reference) | |
Positive | 7 (4.5%) | 2 (3.6%) | 0.783 (0.158–3.887) | p = 0.765 |
Vascular invasion | ||||
No | 126 (81.3%) | 50 (89.3%) | 1.000 (reference) | |
Yes | 29 (18.7%) | 6 (10.7%) | 0.521 (0.204–1.332) | p = 0.174 |
Child-Pugh grade | ||||
A | 120 (77.4%) | 47 (83.9%) | 1.000 (reference) | |
B or C | 35 (22.6%) | 9 (16.1%) | 0.657 (0.293–1.471) | p = 0.306 |
HBsAg | ||||
Negative | 75 (48.4%) | 28 (50%) | 1.000 (reference) | |
Positive | 80 (51.6%) | 28 (50%) | 0.938 (0.509–1.728) | p = 0.836 |
Anti-HCV | ||||
Negative | 96 (61.9%) | 31 (55.4%) | 1.000 (reference) | |
Positive | 59 (38.1%) | 25 (44.6%) | 1.312 (0.707–2.436) | p = 0.389 |
Liver cirrhosis | ||||
Negative | 24 (15.5%) | 4 (7.1%) | 1.000 (reference) | |
Positive | 131 (84.5%) | 52 (92.9%) | 2.382 (0.788–7.199) | p = 0.124 |
Genotypic Frequencies | ||||
---|---|---|---|---|
Variable | AA (%) (n = 202) | AG + GG (%) (n = 74) | OR (95% CI) | p Value |
Clinical Stage | ||||
Stage I/II | 133 (65.8%) | 57 (77%) | 1.000 (reference) | |
Stage III/IV | 69 (34.2%) | 17 (23%) | 0.575 (0.311–1.063) | p = 0.078 |
Tumor size | ||||
≤T2 | 132 (65.3%) | 59 (79.7%) | 1.000 (reference) | |
>T2 | 70 (34.7%) | 15 (20.3%) | 0.479 (0.254–0.906) | p = 0.024 * |
Lymph node metastasis | ||||
Negative | 194 (96%) | 72 (97.3%) | 1.000 (reference) | |
Positive | 8 (4%) | 2 (2.7%) | 0.674 (0.14–3.247) | p = 0.622 |
Distant metastasis | ||||
Negative | 190 (94.1%) | 72 (97.3%) | 1.000 (reference) | |
Positive | 12 (5.9%) | 2 (2.7%) | 0.44 (0.096–2.014) | p = 0.290 |
Vascular invasion | ||||
No | 167 (82.7%) | 67 (90.5%) | 1.000 (reference) | |
Yes | 35 (17.3%) | 7 (9.5%) | 0.499 (0.211-1.178) | p = 0.112 |
Child-Pugh grade | ||||
A | 162 (80.2%) | 63 (85.1%) | 1.000 (reference) | |
B or C | 40 (19.8%) | 11 (14.9%) | 0.707 (0.341–1.464) | p = 0.351 |
HBsAg | ||||
Negative | 102 (50.5%) | 42 (56.8%) | 1.000 (reference) | |
Positive | 100 (49.5%) | 32 (43.2%) | 0.777 (0.455–1.329) | p = 0.357 |
Anti-HCV | ||||
Negative | 128 (63.4%) | 37 (50%) | 1.000 (reference) | |
Positive | 74 (36.6%) | 37 (50%) | 1.73 (1.01–2.963) | p = 0.046 * |
Liver cirrhosis | ||||
Negative | 40 (19.8%) | 10 (13.5%) | 1.000 (reference) | |
Positive | 162 (80.2%) | 64 (86.5%) | 1.58 (0.746–3.349) | p = 0.232 |
Genotypic Frequencies | ||||
---|---|---|---|---|
Variable | AA (%) (n = 96) | AG + GG (%) (n = 45) | OR (95% CI) | p Value |
Clinical Stage | ||||
Stage I/II | 66 (68.8%) | 36 (80%) | 1.000 (reference) | |
Stage III/IV | 30 (31.3%) | 9 (20%) | 0.550 (0.235–1.285) | p = 0.167 |
Tumor size | ||||
≤T2 | 65 (67.7%) | 37 (82.2%) | 1.000 (reference) | |
>T2 | 31 (32.3%) | 8 (17.8%) | 0.453 (0.189–1.088) | p = 0.077 |
Lymph node metastasis | ||||
Negative | 92 (95.8%) | 43 (95.6%) | 1.000 (reference) | |
Positive | 4 (4.2%) | 2 (4.4%) | 1.070 (0.189–6.068) | p = 0.939 |
Distant metastasis | ||||
Negative | 88 (91.7%) | 44 (97.8%) | 1.000 (reference) | |
Positive | 8 (8.3%) | 1 (2.2%) | 0.250 (0.030–2.062) | p = 0.198 |
Vascular invasion | ||||
No | 75 (78.1%) | 42 (93.3%) | 1.000 (reference) | |
Yes | 21 (21.9%) | 3 (6.7%) | 0.255 (0.072–0.906) | p = 0.035 * |
Child-Pugh grade | ||||
A | 71 (74%) | 40 (88.9%) | 1.000 (reference) | |
B or C | 25 (26%) | 5 (11.1%) | 0.355 (0.126–0.9998) | p = 0.04995 * |
HBsAg | ||||
Negative | 54 (56.3%) | 29 (64.4%) | 1.000 (reference) | |
Positive | 42 (43.8%) | 16 (35.6%) | 0.709 (0.341–1.474) | p = 0.358 |
Anti-HCV | ||||
Negative | 57 (59.4%) | 20 (44.4%) | 1.000 (reference) | |
Positive | 39 (40.6%) | 25 (55.6%) | 1.827 (0.893–3.736) | p = 0.099 |
Liver cirrhosis | ||||
Negative | 16 (16.7%) | 5 (11.1%) | 1.000 (reference) | |
Positive | 80 (83.3%) | 40 (88.9%) | 1.600 (0.547–4.681) | p = 0.391 |
Genotypic Frequencies | ||||
---|---|---|---|---|
Variable | AA (%) (n = 70) | AG+GG (%) (n = 169) | OR (95% CI) | p Value |
Clinical Stage | ||||
Stage I/II | 54 (77.1%) | 116 (68.6%) | 1.000 (reference) | |
Stage III/IV | 16 (22.9%) | 53 (31.4%) | 1.542 (0.809–2.941) | p = 0.189 |
Tumor size | ||||
≤T2 | 55 (78.6%) | 120 (71%) | 1.000 (reference) | |
>T2 | 15 (21.4%) | 49 (29%) | 1.497 (0.773–2.898) | p = 0.231 |
Lymph node metastasis | ||||
Negative | 68 (97.1%) | 164 (97%) | 1.000 (reference) | |
Positive | 2 (2.9%) | 5 (3%) | 1.037 (0.196–5.474) | p = 0.966 |
Distant metastasis | ||||
Negative | 68 (97.1%) | 159 (94.1%) | 1.000 (reference) | |
Positive | 2 (2.9%) | 10 (5.9%) | 2.138 (0.456–10.02) | p = 0.335 |
Vascular invasion | ||||
No | 61 (87.1%) | 140 (82.8%) | 1.000 (reference) | |
Yes | 9 (12.9%) | 29 (17.2%) | 1.404 (0.627–3.144) | p = 0.409 |
Child-Pugh grade | ||||
A | 51 (72.9%) | 143 (84.6%) | 1.000 (reference) | |
B or C | 19 (27.1%) | 26 (15.4%) | 0.488 (0.249–0.956) | p = 0.037 * |
HBsAg | ||||
Negative | 45 (64.3%) | 92 (54.4%) | 1.000 (reference) | |
Positive | 25 (35.7%) | 77 (45.6%) | 1.507 (0.848–2.677) | p = 0.162 |
Anti-HCV | ||||
Negative | 35 (50%) | 97 (57.4%) | 1.000 (reference) | |
Positive | 35 (50%) | 72 (42.6%) | 0.742 (0.424–1.298) | p = 0.296 |
Liver cirrhosis | ||||
Negative | 10 (14.3%) | 32 (18.9%) | 1.000 (reference) | |
Positive | 60 (85.7%) | 137 (81.1%) | 0.714 (0.330–1.544) | p = 0.392 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, E.-R.; Hsieh, M.-J.; Chiang, W.-L.; Hsueh, K.-C.; Yang, S.-F.; Su, S.-C. Association of lncRNA CCAT2 and CASC8 Gene Polymorphisms with Hepatocellular Carcinoma. Int. J. Environ. Res. Public Health 2019, 16, 2833. https://doi.org/10.3390/ijerph16162833
Wu E-R, Hsieh M-J, Chiang W-L, Hsueh K-C, Yang S-F, Su S-C. Association of lncRNA CCAT2 and CASC8 Gene Polymorphisms with Hepatocellular Carcinoma. International Journal of Environmental Research and Public Health. 2019; 16(16):2833. https://doi.org/10.3390/ijerph16162833
Chicago/Turabian StyleWu, Edie-Rosmin, Ming-Ju Hsieh, Whei-Ling Chiang, Kuan-Chun Hsueh, Shun-Fa Yang, and Shih-Chi Su. 2019. "Association of lncRNA CCAT2 and CASC8 Gene Polymorphisms with Hepatocellular Carcinoma" International Journal of Environmental Research and Public Health 16, no. 16: 2833. https://doi.org/10.3390/ijerph16162833
APA StyleWu, E.-R., Hsieh, M.-J., Chiang, W.-L., Hsueh, K.-C., Yang, S.-F., & Su, S.-C. (2019). Association of lncRNA CCAT2 and CASC8 Gene Polymorphisms with Hepatocellular Carcinoma. International Journal of Environmental Research and Public Health, 16(16), 2833. https://doi.org/10.3390/ijerph16162833