Association of lncRNA CCAT2 and CASC8 Gene Polymorphisms with Hepatocellular Carcinoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Demographic Information
2.3. Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA A Cancer J. Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef] [PubMed]
- Blechacz, B.; Mishra, L. Hepatocellular carcinoma biology. Recent Results Cancer Res 2013, 190, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sherman, M. Hepatocellular carcinoma: Epidemiology, surveillance, and diagnosis. Semin. Liver Dis. 2010, 30, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet 2012, 379, 1245–1255. [Google Scholar] [CrossRef]
- Gao, J.; Xie, L.; Yang, W.S.; Zhang, W.; Gao, S.; Wang, J.; Xiang, Y.B. Risk factors of hepatocellular carcinoma—Current status and perspectives. Asian Pac. J. Cancer Prev. 2012, 13, 743–752. [Google Scholar] [CrossRef]
- Miki, D.; Ochi, H.; Hayes, C.N.; Aikata, H.; Chayama, K. Hepatocellular carcinoma: Towards personalized medicine. Cancer Sci. 2012, 103, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Nahon, P.; Zucman-Rossi, J. Single nucleotide polymorphisms and risk of hepatocellular carcinoma in cirrhosis. J. Hepatol. 2012, 57, 663–674. [Google Scholar] [CrossRef]
- Jin, F.; Xiong, W.J.; Jing, J.C.; Feng, Z.; Qu, L.S.; Shen, X.Z. Evaluation of the association studies of single nucleotide polymorphisms and hepatocellular carcinoma: A systematic review. J. Cancer Res. Clin. Oncol. 2011, 137, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef]
- Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci. 2016, 73, 2491–2509. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.M.; Chang, H.Y. Long Noncoding RNAs in Cancer Pathways. Cancer Cell 2016, 29, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Singhal, U.; Chinnaiyan, A.M. Long noncoding RNAs in cancer: From function to translation. Trends Cancer 2015, 1, 93–109. [Google Scholar] [CrossRef]
- Ling, H.; Spizzo, R.; Atlasi, Y.; Nicoloso, M.; Shimizu, M.; Redis, R.S.; Nishida, N.; Gafa, R.; Song, J.; Guo, Z.; et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013, 23, 1446–1461. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Taheri, M. Colon Cancer-Associated Transcripts 1 and 2: Roles and functions in human cancers. J. Cell. Physiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Shaker, O.G.; Senousy, M.A.; Elbaz, E.M. Association of rs6983267 at 8q24, HULC rs7763881 polymorphisms and serum lncRNAs CCAT2 and HULC with colorectal cancer in Egyptian patients. Sci. Rep. 2017, 7, 16246. [Google Scholar] [CrossRef]
- Wokolorczyk, D.; Gliniewicz, B.; Sikorski, A.; Zlowocka, E.; Masojc, B.; Debniak, T.; Matyjasik, J.; Mierzejewski, M.; Medrek, K.; Oszutowska, D.; et al. A range of cancers is associated with the rs6983267 marker on chromosome 8. Cancer Res. 2008, 68, 9982–9986. [Google Scholar] [CrossRef]
- Gong, W.J.; Yin, J.Y.; Li, X.P.; Fang, C.; Xiao, D.; Zhang, W.; Zhou, H.H.; Li, X.; Liu, Z.Q. Association of well-characterized lung cancer lncRNA polymorphisms with lung cancer susceptibility and platinum-based chemotherapy response. Tumour Biol. 2016, 37, 8349–8358. [Google Scholar] [CrossRef]
- Shah, M.Y.; Ferracin, M.; Pileczki, V.; Chen, B.; Redis, R.; Fabris, L.; Zhang, X.; Ivan, C.; Shimizu, M.; Rodriguez-Aguayo, C.; et al. Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Res. 2018, 28, 432–447. [Google Scholar] [CrossRef]
- Hu, R.; Zhong, P.; Xiong, L.; Duan, L. Long Noncoding RNA Cancer Susceptibility Candidate 8 Suppresses the Proliferation of Bladder Cancer Cells via Regulating Glycolysis. DNA Cell Biol. 2017, 36, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Tenesa, A.; Farrington, S.M.; Prendergast, J.G.; Porteous, M.E.; Walker, M.; Haq, N.; Barnetson, R.A.; Theodoratou, E.; Cetnarskyj, R.; Cartwright, N.; et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat. Genet. 2008, 40, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Thyagarajan, B.; Gross, M.D.; Goodman, M.; Sun, Y.V.; Bostick, R.M. Genetic variants at chromosome 8q24, colorectal epithelial cell proliferation, and risk for incident, sporadic colorectal adenomas. Mol. Carcinog. 2014, 53, E187–E192. [Google Scholar] [CrossRef] [PubMed]
- Schafmayer, C.; Buch, S.; Volzke, H.; von Schonfels, W.; Egberts, J.H.; Schniewind, B.; Brosch, M.; Ruether, A.; Franke, A.; Mathiak, M.; et al. Investigation of the colorectal cancer susceptibility region on chromosome 8q24.21 in a large German case-control sample. Int. J. Cancer 2009, 124, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Yeager, M.; Orr, N.; Hayes, R.B.; Jacobs, K.B.; Kraft, P.; Wacholder, S.; Minichiello, M.J.; Fearnhead, P.; Yu, K.; Chatterjee, N.; et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 2007, 39, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Bahari, G.; Naderi, M.; Sadeghi Bojd, S.; Taheri, M. Association of lnc-LAMC2-1:1 rs2147578 and CASC8 rs10505477 Polymorphisms with Risk of Childhood Acute Lymphoblastic Leukemia. Asian Pac. J. Cancer Prev. 2016, 17, 4985–4989. [Google Scholar] [CrossRef]
- Hu, L.; Chen, S.H.; Lv, Q.L.; Sun, B.; Qu, Q.; Qin, C.Z.; Fan, L.; Guo, Y.; Cheng, L.; Zhou, H.H. Clinical Significance of Long Non-Coding RNA CASC8 rs10505477 Polymorphism in Lung Cancer Susceptibility, Platinum-Based Chemotherapy Response, and Toxicity. Int. J. Environ. Res. Public Health 2016, 13, 545. [Google Scholar] [CrossRef]
- Vauthey, J.N.; Lauwers, G.Y.; Esnaola, N.F.; Do, K.A.; Belghiti, J.; Mirza, N.; Curley, S.A.; Ellis, L.M.; Regimbeau, J.M.; Rashid, A.; et al. Simplified staging for hepatocellular carcinoma. J. Clin. Oncol. 2002, 20, 1527–1536. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Sulem, P.; Gudbjartsson, D.F.; Masson, G.; Petursdottir, V.; Hardarson, S.; Gudjonsson, S.A.; Johannsdottir, H.; Helgadottir, H.T.; Stacey, S.N.; et al. A common variant at 8q24.21 is associated with renal cell cancer. Nat. Commun. 2013, 4, 2776. [Google Scholar] [CrossRef]
- Yu, Y.; Nangia-Makker, P.; Farhana, L.; Majumdar, A.P.N. A novel mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells. Mol. Cancer 2017, 16, 155. [Google Scholar] [CrossRef]
- Xie, P.; Cao, H.; Li, Y.; Wang, J.; Cui, Z. Knockdown of lncRNA CCAT2 inhibits endometrial cancer cells growth and metastasis via sponging miR-216b. Cancer Biomark. 2017, 21, 123–133. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Li, Y.; Yan, S.; Dang, H.; Yue, H.; Ling, J.; Chen, F.; Zhao, Y.; Gou, L.; et al. Long noncoding RNA CCAT2 promotes hepatocellular carcinoma proliferation and metastasis through up-regulation of NDRG1. Exp. Cell. Res. 2019, 379, 19–29. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, B.; Zhang, F.; Wang, A.; Du, X.; Hu, P.; Zhu, Y.; Fang, Z. Long non-coding RNA CCAT2 is associated with poor prognosis in hepatocellular carcinoma and promotes tumor metastasis by regulating Snail2-mediated epithelial-mesenchymal transition. Onco Targets Ther. 2017, 10, 1191–1198. [Google Scholar] [CrossRef]
- Chen, F.; Bai, G.; Li, Y.; Feng, Y.; Wang, L. A positive feedback loop of long noncoding RNA CCAT2 and FOXM1 promotes hepatocellular carcinoma growth. Am. J. Cancer Res. 2017, 7, 1423–1434. [Google Scholar]
- Wang, B.G.; Xu, Q.; Lv, Z.; Fang, X.X.; Ding, H.X.; Wen, J.; Yuan, Y. Association of twelve polymorphisms in three onco-lncRNA genes with hepatocellular cancer risk and prognosis: A case-control study. World J. Gastroenterol. 2018, 24, 2482–2490. [Google Scholar] [CrossRef]
- Cooper, D.N. Functional intronic polymorphisms: Buried treasure awaiting discovery within our genes. Hum. Genom. 2010, 4, 284–288. [Google Scholar] [CrossRef]
- Vaz-Drago, R.; Custodio, N.; Carmo-Fonseca, M. Deep intronic mutations and human disease. Hum. Genet. 2017, 136, 1093–1111. [Google Scholar] [CrossRef]
Variable | Controls (n = 1195) | Patients (n = 397) | p Value |
---|---|---|---|
Age (years) | |||
Mean ± S.D. | 59.4 ± 7.1 | 63.1 ± 11.3 | p < 0.001 * |
<50 | 120 (10.0%) | 49 (12.3%) | p < 0.001 * |
50–59 | 358 (30.0%) | 104 (26.2%) | |
60–69 | 700 (58.6%) | 125 (31.5%) | |
≥70 | 17 (1.4%) | 119 (30.0%) | |
Gender | |||
Male | 836 (70%) | 276 (69.5%) | |
Female | 359 (30%) | 121 (30.5%) | p = 0.870 |
Cigarette smoking | |||
No | 726 (60.8%) | 239 (60.2%) | |
Yes | 469 (39.2%) | 158 (39.8%) | p = 0.845 |
Alcohol drinking | |||
No | 1027 (85.9%) | 256 (64.5%) | |
Yes | 168 (14.1%) | 141 (35.5%) | p < 0.001 * |
HBsAg | |||
Negative | 1049 (87.8%) | 227 (57.2%) | |
Positive | 146 (12.2%) | 170 (42.8%) | p < 0.001 * |
Anti-HCV | |||
Negative | 1142 (95.6%) | 219 (55.2%) | |
Positive | 53 (4.4%) | 178 (44.8%) | p < 0.001 * |
Stage | |||
I + II | 278 (70%) | ||
III + IV | 119 (30%) | ||
Tumor T status | |||
T1 + T2 | 283 (71.3%) | ||
T3 + T4 | 114 (28.7%) | ||
Lymph node status | |||
N0 | 385 (97%) | ||
N1 + N2 + N3 | 12 (3%) | ||
Metastasis | |||
M0 | 378 (95.2%) | ||
M1 | 19 (4.8%) | ||
Child-Pugh grade | |||
A | 321 (80.9%) | ||
B or C | 76 (19.1%) | ||
Liver cirrhosis | |||
Negative | 68 (17.1%) | ||
Positive | 329 (82.9%) |
Variable | Controls (n = 1195) n (%) | Patients (n = 397) n (%) | OR (95% CI) | AOR (95% CI) a | Pc |
---|---|---|---|---|---|
rs3843549 | |||||
AA | 898 (75.1%) | 291 (73.3%) | 1.000 (reference) | 1.000 (reference) | |
AG | 275 (23%) | 96 (24.2%) | 1.077 (0.825–1.407) | 1.130 (0.835–1.528) | |
GG | 22 (1.8%) | 10 (2.5%) | 1.403 (0.657–2.997) | 1.417 (0.585–3.429) | |
AG + GG | 297 (24.9%) | 106 (26.7%) | 1.101 (0.851–1.426) | 1.150 (0.859–1.541) | |
rs6983267 | |||||
TT | 416 (34.8%) | 118 (29.7%) | 1.000 (reference) | 1.000 (reference) | |
TG | 588 (49.2%) | 196 (49.4%) | 1.175 (0.906–1.525) | 1.205 (0.896–1.620) | |
GG | 191 (16%) | 83 (20.9%) | 1.532 (1.103–2.129) | 1.627 (1.120–2.265) | 0.033# |
TG + GG | 779 (65.2%) | 279 (70.3%) | 1.263 (0.987–1.615) | 1.309 (0.9891.731) | |
rs13281615 | |||||
AA | 310 (25.9%) | 112 (28.2%) | 1.000 (reference) | 1.000 (reference) | |
AG | 600 (50.2%) | 195 (49.1%) | 0.900 (0.687–1.178) | 0.787 (0.578–1.070) | |
GG | 285 (23.8%) | 90 (22.7%) | 0.874 (0.634–1.205) | 0.735 (0.509–1.062) | |
AG + GG | 885 (74.1%) | 285 (71.8%) | 0.891 (0.691–1.149) | 0.770 (0.576–1.030) |
Genotypic Frequencies | ||||
---|---|---|---|---|
Variable | AA (%) (n = 155) | AG + GG (%) (n = 56) | OR (95% CI) | p Value |
Clinical Stage | ||||
Stage I/II | 103 (66.5%) | 45 (80.4%) | 1.000 (reference) | |
Stage III/IV | 52 (33.5%) | 11 (19.6%) | 0.484 (0.231–1.014) | p = 0.054 |
Tumor size | ||||
≤T2 | 103 (66.5%) | 46 (82.1%) | 1.000 (reference) | |
>T2 | 52 (33.5%) | 10 (17.9%) | 0.431 (0.201–0.921) | p = 0.030 * |
Lymph node metastasis | ||||
Negative | 150 (96.8%) | 54 (96.4%) | 1.000 (reference) | |
Positive | 5 (3.2%) | 2 (3.6%) | 1.111 (0.209–5.897) | p = 0.902 |
Distant metastasis | ||||
Negative | 148 (95.5%) | 54 (96.4%) | 1.000 (reference) | |
Positive | 7 (4.5%) | 2 (3.6%) | 0.783 (0.158–3.887) | p = 0.765 |
Vascular invasion | ||||
No | 126 (81.3%) | 50 (89.3%) | 1.000 (reference) | |
Yes | 29 (18.7%) | 6 (10.7%) | 0.521 (0.204–1.332) | p = 0.174 |
Child-Pugh grade | ||||
A | 120 (77.4%) | 47 (83.9%) | 1.000 (reference) | |
B or C | 35 (22.6%) | 9 (16.1%) | 0.657 (0.293–1.471) | p = 0.306 |
HBsAg | ||||
Negative | 75 (48.4%) | 28 (50%) | 1.000 (reference) | |
Positive | 80 (51.6%) | 28 (50%) | 0.938 (0.509–1.728) | p = 0.836 |
Anti-HCV | ||||
Negative | 96 (61.9%) | 31 (55.4%) | 1.000 (reference) | |
Positive | 59 (38.1%) | 25 (44.6%) | 1.312 (0.707–2.436) | p = 0.389 |
Liver cirrhosis | ||||
Negative | 24 (15.5%) | 4 (7.1%) | 1.000 (reference) | |
Positive | 131 (84.5%) | 52 (92.9%) | 2.382 (0.788–7.199) | p = 0.124 |
Genotypic Frequencies | ||||
---|---|---|---|---|
Variable | AA (%) (n = 202) | AG + GG (%) (n = 74) | OR (95% CI) | p Value |
Clinical Stage | ||||
Stage I/II | 133 (65.8%) | 57 (77%) | 1.000 (reference) | |
Stage III/IV | 69 (34.2%) | 17 (23%) | 0.575 (0.311–1.063) | p = 0.078 |
Tumor size | ||||
≤T2 | 132 (65.3%) | 59 (79.7%) | 1.000 (reference) | |
>T2 | 70 (34.7%) | 15 (20.3%) | 0.479 (0.254–0.906) | p = 0.024 * |
Lymph node metastasis | ||||
Negative | 194 (96%) | 72 (97.3%) | 1.000 (reference) | |
Positive | 8 (4%) | 2 (2.7%) | 0.674 (0.14–3.247) | p = 0.622 |
Distant metastasis | ||||
Negative | 190 (94.1%) | 72 (97.3%) | 1.000 (reference) | |
Positive | 12 (5.9%) | 2 (2.7%) | 0.44 (0.096–2.014) | p = 0.290 |
Vascular invasion | ||||
No | 167 (82.7%) | 67 (90.5%) | 1.000 (reference) | |
Yes | 35 (17.3%) | 7 (9.5%) | 0.499 (0.211-1.178) | p = 0.112 |
Child-Pugh grade | ||||
A | 162 (80.2%) | 63 (85.1%) | 1.000 (reference) | |
B or C | 40 (19.8%) | 11 (14.9%) | 0.707 (0.341–1.464) | p = 0.351 |
HBsAg | ||||
Negative | 102 (50.5%) | 42 (56.8%) | 1.000 (reference) | |
Positive | 100 (49.5%) | 32 (43.2%) | 0.777 (0.455–1.329) | p = 0.357 |
Anti-HCV | ||||
Negative | 128 (63.4%) | 37 (50%) | 1.000 (reference) | |
Positive | 74 (36.6%) | 37 (50%) | 1.73 (1.01–2.963) | p = 0.046 * |
Liver cirrhosis | ||||
Negative | 40 (19.8%) | 10 (13.5%) | 1.000 (reference) | |
Positive | 162 (80.2%) | 64 (86.5%) | 1.58 (0.746–3.349) | p = 0.232 |
Genotypic Frequencies | ||||
---|---|---|---|---|
Variable | AA (%) (n = 96) | AG + GG (%) (n = 45) | OR (95% CI) | p Value |
Clinical Stage | ||||
Stage I/II | 66 (68.8%) | 36 (80%) | 1.000 (reference) | |
Stage III/IV | 30 (31.3%) | 9 (20%) | 0.550 (0.235–1.285) | p = 0.167 |
Tumor size | ||||
≤T2 | 65 (67.7%) | 37 (82.2%) | 1.000 (reference) | |
>T2 | 31 (32.3%) | 8 (17.8%) | 0.453 (0.189–1.088) | p = 0.077 |
Lymph node metastasis | ||||
Negative | 92 (95.8%) | 43 (95.6%) | 1.000 (reference) | |
Positive | 4 (4.2%) | 2 (4.4%) | 1.070 (0.189–6.068) | p = 0.939 |
Distant metastasis | ||||
Negative | 88 (91.7%) | 44 (97.8%) | 1.000 (reference) | |
Positive | 8 (8.3%) | 1 (2.2%) | 0.250 (0.030–2.062) | p = 0.198 |
Vascular invasion | ||||
No | 75 (78.1%) | 42 (93.3%) | 1.000 (reference) | |
Yes | 21 (21.9%) | 3 (6.7%) | 0.255 (0.072–0.906) | p = 0.035 * |
Child-Pugh grade | ||||
A | 71 (74%) | 40 (88.9%) | 1.000 (reference) | |
B or C | 25 (26%) | 5 (11.1%) | 0.355 (0.126–0.9998) | p = 0.04995 * |
HBsAg | ||||
Negative | 54 (56.3%) | 29 (64.4%) | 1.000 (reference) | |
Positive | 42 (43.8%) | 16 (35.6%) | 0.709 (0.341–1.474) | p = 0.358 |
Anti-HCV | ||||
Negative | 57 (59.4%) | 20 (44.4%) | 1.000 (reference) | |
Positive | 39 (40.6%) | 25 (55.6%) | 1.827 (0.893–3.736) | p = 0.099 |
Liver cirrhosis | ||||
Negative | 16 (16.7%) | 5 (11.1%) | 1.000 (reference) | |
Positive | 80 (83.3%) | 40 (88.9%) | 1.600 (0.547–4.681) | p = 0.391 |
Genotypic Frequencies | ||||
---|---|---|---|---|
Variable | AA (%) (n = 70) | AG+GG (%) (n = 169) | OR (95% CI) | p Value |
Clinical Stage | ||||
Stage I/II | 54 (77.1%) | 116 (68.6%) | 1.000 (reference) | |
Stage III/IV | 16 (22.9%) | 53 (31.4%) | 1.542 (0.809–2.941) | p = 0.189 |
Tumor size | ||||
≤T2 | 55 (78.6%) | 120 (71%) | 1.000 (reference) | |
>T2 | 15 (21.4%) | 49 (29%) | 1.497 (0.773–2.898) | p = 0.231 |
Lymph node metastasis | ||||
Negative | 68 (97.1%) | 164 (97%) | 1.000 (reference) | |
Positive | 2 (2.9%) | 5 (3%) | 1.037 (0.196–5.474) | p = 0.966 |
Distant metastasis | ||||
Negative | 68 (97.1%) | 159 (94.1%) | 1.000 (reference) | |
Positive | 2 (2.9%) | 10 (5.9%) | 2.138 (0.456–10.02) | p = 0.335 |
Vascular invasion | ||||
No | 61 (87.1%) | 140 (82.8%) | 1.000 (reference) | |
Yes | 9 (12.9%) | 29 (17.2%) | 1.404 (0.627–3.144) | p = 0.409 |
Child-Pugh grade | ||||
A | 51 (72.9%) | 143 (84.6%) | 1.000 (reference) | |
B or C | 19 (27.1%) | 26 (15.4%) | 0.488 (0.249–0.956) | p = 0.037 * |
HBsAg | ||||
Negative | 45 (64.3%) | 92 (54.4%) | 1.000 (reference) | |
Positive | 25 (35.7%) | 77 (45.6%) | 1.507 (0.848–2.677) | p = 0.162 |
Anti-HCV | ||||
Negative | 35 (50%) | 97 (57.4%) | 1.000 (reference) | |
Positive | 35 (50%) | 72 (42.6%) | 0.742 (0.424–1.298) | p = 0.296 |
Liver cirrhosis | ||||
Negative | 10 (14.3%) | 32 (18.9%) | 1.000 (reference) | |
Positive | 60 (85.7%) | 137 (81.1%) | 0.714 (0.330–1.544) | p = 0.392 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, E.-R.; Hsieh, M.-J.; Chiang, W.-L.; Hsueh, K.-C.; Yang, S.-F.; Su, S.-C. Association of lncRNA CCAT2 and CASC8 Gene Polymorphisms with Hepatocellular Carcinoma. Int. J. Environ. Res. Public Health 2019, 16, 2833. https://doi.org/10.3390/ijerph16162833
Wu E-R, Hsieh M-J, Chiang W-L, Hsueh K-C, Yang S-F, Su S-C. Association of lncRNA CCAT2 and CASC8 Gene Polymorphisms with Hepatocellular Carcinoma. International Journal of Environmental Research and Public Health. 2019; 16(16):2833. https://doi.org/10.3390/ijerph16162833
Chicago/Turabian StyleWu, Edie-Rosmin, Ming-Ju Hsieh, Whei-Ling Chiang, Kuan-Chun Hsueh, Shun-Fa Yang, and Shih-Chi Su. 2019. "Association of lncRNA CCAT2 and CASC8 Gene Polymorphisms with Hepatocellular Carcinoma" International Journal of Environmental Research and Public Health 16, no. 16: 2833. https://doi.org/10.3390/ijerph16162833
APA StyleWu, E.-R., Hsieh, M.-J., Chiang, W.-L., Hsueh, K.-C., Yang, S.-F., & Su, S.-C. (2019). Association of lncRNA CCAT2 and CASC8 Gene Polymorphisms with Hepatocellular Carcinoma. International Journal of Environmental Research and Public Health, 16(16), 2833. https://doi.org/10.3390/ijerph16162833