State-Level Affordability of Factory-Made Cigarettes among Current US Smokers: Findings from the ITC US Survey, 2003–2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.1.1. The ITC US Survey
2.1.2. The American Community Survey
2.1.3. The Behavioral Risk Factor Surveillance System
2.2. Measures
2.2.1. Imputed Household Income
2.2.2. Cigarette Affordability
2.2.3. Covariates
2.2.4. Auxiliary Measures
- female;
- age 25–39;
- age 40–54;
- age 55+;
- black;
- Hispanic;
- from other racial groups;
- had a high school education or less; and
- employed.
2.3. Statistical Analysis
2.3.1. Small Area Estimation Models
2.3.2. Longitudinal Modeling of Temporal Trends
- a dummy indicator for smokers surveyed in Wave 7 after 1 April 2009 to control for possible differences in log(RIP) in this group;
- a variable to represent state-level cigarette excise taxes adjusted for inflation to 2015 USD; and
- a measure, , of the state-level labor force participation rate to account for varying economic conditions between states and over time.
- Model 1: a single slope model that estimated representing the wave-to-wave linear trend in log(RIP) over the entire study period;
- Model 2: a two-slope model that estimated a linear trend in log(RIP) from 2003 to 2008 () and a second linear trend from 2008 to 2015 ();
- Model 3: a three-slope model that estimated a linear trend in log(RIP) from 2003 to 2008 (), a linear trend from 2008 to 2010 (), and a final linear trend from 2010 to 2015 (); and
- Model 4: a four-slope model that estimated the first two linear trends from Model 3 as well as the linear trend from 2010 to 2013 () and the linear trend from 2013 to 2015 ().
- The first slope (“Period 1”) estimates the linear wave-to-wave change in log(RIP) from 2003 (Wave 2) to 2008–2009 (Wave 7) prior to the federal tax increase.
- The second slope (“Period 2”) estimates the linear change in log(RIP) from 2008–2009 (Wave 7) to 2010–2011 (Wave 8). This period spans the federal tax increase, the official end of the recession (June 2009), and a time of stagnant economic conditions characterized by high unemployment and reduced household income [31,32,33].
3. Results
3.1. Sample Characteristics
3.2. Self-Reported Pack Prices by State
3.3. Relative Income Price by State
3.4. Temporal Trends in Relative Income Price
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ITC | International Tobacco Control |
US | United States |
RIP | relative income price |
ACS | American Community Survey |
BRFSS | Behavioral Risk Factor Surveillance System |
CATI | computer-assisted telephone interviewing |
LME | linear mixed effects |
EBLUP | empirical best linear unbiased predictor |
ICC | intraclass correlation |
AIC | Akaike’s Information Criteria statistic |
References
- International Agency for Research on Cancer. Effectiveness of Tax and Price Policies for Tobacco Control. In IARC Handbooks of Cancer Prevention, Tobacco Control; World Health Organization: Lyon, France, 2011; Volume 14. [Google Scholar]
- Chaloupka, F.J.; Yurekli, A.; Fong, G.T. Tobacco taxes as a tobacco control strategy. Tobacco Control 2012, 21, 172–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. National Cancer Institute and World Health Organization. The Economics of Tobacco and Tobacco Control; Monograph 21 NIH Publication No. 16-CA-8029A; U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute: Bethesda, MD, USA; World Health Organization: Geneva, Switzerland, 2016.
- U.S. Department of the Treasury. Federal Excise Tax Increase and Related Provisions. Available online: https://www.ttb.gov/main_pages/schip-summary.shtml (accessed on 7 January 2019).
- Jamison, N.; Tynan, M.; MacNeil, A.; Merrit, R. Federal and state cigarette excise taxes—United States, 1995–2009. Morb. Mortal. Wkly. Rep. 2009, 58, 524–527. [Google Scholar]
- Centers for Disease Control and Prevention. CDC STATE System Tobacco Legislation—Tax. Available online: https://chronicdata.cdc.gov/Legislation/CDC-STATE-System-Tobacco-Legislation-Tax/2dwv-vfam (accessed on 27 July 2017).
- Goldman, T.R. Health Policy Brief: Tobacco Taxes. Health Affairs 2016. [Google Scholar] [CrossRef]
- Blecher, E.H.; van Walbeek, C.P. Cigarette affordability trends: An update and some methodological comments. Tobacco Control 2009, 18, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Blecher, E.H.; Ross, H.; Leon, M.E. Cigarette affordability in Europe. Tobacco Control 2013, 22, e6. [Google Scholar] [CrossRef]
- He, Y.; Shang, C.; Chaloupka, F.J. The association between cigarette affordability and consumption: An update. PLoS ONE 2018, 13, e0200665. [Google Scholar] [CrossRef] [PubMed]
- Nargis, N.; Stoklosa, M.; Drope, J.; Fong, G.T.; Quah, A.C.K.; Driezen, P.; Shang, C.; Chaloupka, F.J.; Hussain, A.K.M.G. Trend in the affordability of tobacco products in Bangladesh: Findings from the ITC Bangladesh Surveys. Tobacco Control 2018, 27. [Google Scholar] [CrossRef]
- Nargis, N.; Zheng, R.; Xu, S.S.; Fong, G.T.; Feng, G.; Jiang, Y.; Wang, Y.; Hu, X. Cigarette affordability in China, 2006–2015: Findings from International Tobacco Control China Surveys. Int. J. Environ. Res. Public Health 2019, 16, 1205. [Google Scholar] [CrossRef]
- Blecher, E.H.; van Walbeek, C.P. An international analysis of cigarette affordability. Tobacco Control 2004, 13, 339–346. [Google Scholar] [CrossRef]
- Guindon, G.E.; Tobin, S.; Yach, D. Trends and affordability of cigarette prices: Sample room for tax increases and related health gains. Tobacco Control 2002, 11, 35–43. [Google Scholar] [CrossRef]
- Kan, M. Investigating cigarette affordability in 60 cities using the cigarette price-daily income ratio. Tobacco Control 2007, 16, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Bandi, P.; Blecher, E.; Cokkinides, V.; Ross, H.; Jemal, A. Cigarette affordability in the United States. Nicotine Tob. Res. 2013, 15, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Farrelly, M.C.; Nonnemaker, J.M.; Watson, K.A. The consequences of high cigarette excise taxes for low-income smokers. PLoS ONE 2012, 7, e43838. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.E.; Fong, G.T.; Hammond, D.; Boudreau, C.; Driezen, P.; Hyland, A.; Borland, R.; Cummings, K.M.; Hastings, G.B.; Siahpush, M.; et al. Methods of the International Tobacco Control (ITC) Four Country Survey. Tobacco Control 2006, 15, iii12–iii18. [Google Scholar] [CrossRef] [PubMed]
- ITC Project. International Tobacco Control Policy Evaluation Survey (ITC): Four Country Project Wave 2–8 Technical Report; Technical Report; University of Waterloo: Waterloo, ON, Canada, 2011. [Google Scholar]
- GfK. KnowledgePanel: Recruitment and Sample Survey Methodologies. Available online: https://www.gfk.com/fileadmin/user_upload/dyna_content/US/documents/KnowledgePanel_Methodology.pdf (accessed on 18 January 2019).
- Torrieri, N. American Community Survey Design and Methodology. Available online: https://www2.census.gov/programs-surveys/acs/methodology/design_and_methodology/acs_design_methodology_report_2014.pdf (accessed on 6 June 2018).
- U.S. Bureau of the Census. American Community Survey: Handbook of Questions and Current Federal Uses. Available online: https://www.census.gov/content/dam/Census/programs-surveys/acs/operations-and-administration/2014-content-review/ACS_Federal_Uses.pdf (accessed on 11 July 2018).
- U.S. Bureau of the Census. American Community Survey: PUMS Data. Available online: https://www.census.gov/programs-surveys/acs/data/pums.html (accessed on 3 October 2016).
- Pierannunzi, C.; Town, M.; Garvin, W.; Shaw, F.E.; Balluz, L. Methodologic changes in the Behavioral Risk Factor Surveillance System in 2011 and potential effects on prevalence estimates. Morb. Mortal. Wkly. Rep. 2012, 61, 410–413. [Google Scholar]
- Silva, N.M. The Behavioral Risk Factor Surveillance System. Int. J. Aging Hum. Dev. 2014, 79, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System: Annual Survey Data. Available online: https://www.census.gov/programs-surveys/acs/data/pums.html (accessed on 3 October 2016).
- U.S. Bureau of Labor Force Statistics. Local Area Unemployment Statistics: Civilian Noninstitutional Population and Associated Rate and Ratio Measures for Model-Based Areas. Available online: https://www.bls.gov/lau/rdscnp16.htm (accessed on 28 July 2017).
- Rao, J.N.K.; Molina, I. Small Area Estimation, 2nd ed.; Wiley Series in Survey Methodology; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Molina, I.; Marhuenda, Y. Sae: An R Package for Small Area Estimation. R J. 2015, 7, 81–98. [Google Scholar] [CrossRef]
- Battese, G.E.; Harter, R.M.; Fuller, W.A. An error-components model for prediction of county crop areas using survey and satellite data. J. Am. Stat. Assoc. 1988, 83, 28–36. [Google Scholar] [CrossRef]
- U.S. Bureau of the Census. Real Gross Domestic Product per Capita [A939RX0Q048SBEA]. Available online: https://fred.stlouisfed.org/series/A939RX0Q048SBEA (accessed on 18 January 2018).
- U.S. Bureau of the Census. Civilian Unemployment Rate [UNRATE]. Available online: https://fred.stlouisfed.org/series/UNRATE (accessed on 18 January 2018).
- U.S. Bureau of the Census. Real Median Household Income in the United States [MEHOINUSA672N]. Available online: https://fred.stlouisfed.org/series/MEHOINUSA672N (accessed on 18 January 2018).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Frieden, T.R.; Mostashari, F.; Kerker, B.D.; Miller, N.; Hajat, A.; Frankel, M. Adult tobacco use levels after intensive tobacco control measures: New York City, 2002–2003. Am. J. Public Health 2005, 95, 1016–1023. [Google Scholar] [CrossRef]
- Ross, H.; Blecher, E.; Yan, L.; Hyland, A. Do cigarette prices motivate smokers to quit? New evidence from the ITC survey. Addiction 2011, 106, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Ross, H.; Kostova, D.; Stoklosa, M.; Leon, M. The impact of cigarette excise taxes on smoking cessation rates from 1994 to 2010 in Poland, Russia, and Ukraine. Nicotine Tob. Res. 2014, 16, S37–S43. [Google Scholar] [CrossRef] [PubMed]
- Tabuchi, T.; Nakamura, M.; Nakayama, T.; Miyashiro, I.; Mori, J.; Tsukuma, H. Tobacco price increase and smoking cessation in Japan, a developed country with affordable tobacco: A national population-based observational study. J. Epidemiol. 2016, 26, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, M.A.G.; Partos, T.R.; McNeill, A.; Beard, E.; Gilmore, A.; West, R.; Brown, J. Smokers’ strategies across social grades to minimise the cost of smoking in a period with annual tax increases: Evidence from a national survey in England. BMJ Open 2019, in press. [Google Scholar] [CrossRef] [PubMed]
International Tobacco Control US Survey | Survey Start/End | American Community Survey | Behavioral Risk Factor Surveillance System |
---|---|---|---|
Wave 2 | May 2003 | 2003 | 2003 |
September 2003 | |||
Wave 3 | June 2004 | 2004 | 2004 |
December 2004 | |||
Wave 4 | October 2005 | 2005 | 2005 |
January 2006 | 2006 | ||
Wave 5 | October 2006 | 2006 | 2006 |
February 2007 | 2007 | ||
Wave 6 | September 2007 | 2007 | 2007 |
February 2008 | 2008 | ||
Wave 7 | October 2008 | 2008 | 2008 |
July 2009 | 2009 | ||
Wave 8 | July 2010 | 2010 | 2010 |
June 2011 | 2011 | ||
Wave 9 | |||
9a | August 2013 | 2013 | 2013 |
October 2014 | 2014 | ||
9b | February 2015 | 2015 | 2015 |
April 2015 |
Characteristic | Wave 1 (2002) | Wave 2 (2003) | Wave 3 (2004) | Wave 4 (2005) | Wave 5 (2006) | Wave 6 (2007) | Wave 7 (2008) | Wave 8 (2010) | Wave 9 (2013) |
---|---|---|---|---|---|---|---|---|---|
(n = 1214) | (n = 655) | (n = 855) | (n = 710) | (n = 710) | (n = 666) | (n = 354) | (n = 342) | (n = 1540) | |
Mean time-in-sample (SD) | 3.63 (2.06) | 2.41 (1.91) | 2.31 (1.76) | 2.15 (1.55) | 2.13 (1.40) | 2.08 (1.11) | 1.63 (0.78) | 1.32 (0.47) | 1.00 (0.00) |
Male (%) | 501 (41.3) | 310 (47.3) | 353 (41.3) | 288 (40.6) | 292 (41.1) | 295 (44.3) | 222 (62.7) | 193 (56.4) | 766 (49.7) |
Age group (%) | |||||||||
18–24 | 132 (10.9) | 94 (14.4) | 98 (11.5) | 75 (10.6) | 56 (7.9) | 36 (5.4) | 19 (5.4) | 12 (3.5) | 92 (6.0) |
25–39 | 319 (26.3) | 171 (26.1) | 237 (27.7) | 197 (27.7) | 156 (22.0) | 107 (16.1) | 68 (19.2) | 53 (15.5) | 346 (22.5) |
40–54 | 463 (38.1) | 239 (36.5) | 318 (37.2) | 241 (33.9) | 303 (42.7) | 264 (39.6) | 146 (41.2) | 125 (36.5) | 452 (29.4) |
55+ | 300 (24.7) | 151 (23.1) | 202 (23.6) | 197 (27.7) | 195 (27.5) | 259 (38.9) | 121 (34.2) | 152 (44.4) | 650 (42.2) |
≤High school education (%) | 496 (40.9) | 245 (37.4) | 403 (47.1) | 357 (50.3) | 368 (51.8) | 304 (45.6) | 165 (46.6) | 142 (41.5) | 623 (40.5) |
Income (%) * | |||||||||
low | 421 (34.7) | 250 (38.2) | 310 (36.3) | 272 (38.3) | 271 (38.2) | 209 (31.4) | 123 (34.7) | 129 (37.7) | 592 (38.4) |
moderate | 445 (36.7) | 220 (33.6) | 317 (37.1) | 228 (32.1) | 225 (31.7) | 218 (32.7) | 97 (27.4) | 91 (26.6) | 439 (28.5) |
high | 272 (22.4) | 148 (22.6) | 191 (22.3) | 169 (23.8) | 169 (23.8) | 191 (28.7) | 87 (24.6) | 85 (24.9) | 502 (32.6) |
not reported | 76 (6.3) | 37 (5.6) | 37 (4.3) | 41 (5.8) | 45 (6.3) | 48 (7.2) | 47 (13.3) | 37 (10.8) | 7 (0.5) |
Ages of children in home (%) | |||||||||
children under 6 only † | 99 (8.2) | 68 (10.4) | 78 (9.1) | 55 (7.8) | 65 (9.2) | 30 (4.5) | 17 (4.8) | 17 (5.0) | 82 (5.3) |
children 6 to 17 only † | 268 (22.2) | 152 (23.3) | 179 (20.9) | 144 (20.3) | 147 (20.7) | 122 (18.3) | 71 (20.2) | 47 (13.9) | 273 (17.7) |
both | 115 (9.5) | 45 (6.9) | 93 (10.9) | 65 (9.2) | 55 (7.8) | 27 (4.1) | 25 (7.1) | 15 (4.4) | 81 (5.3) |
no children | 723 (60.0) | 387 (59.4) | 505 (59.1) | 445 (62.8) | 442 (62.3) | 487 (73.1) | 239 (67.9) | 260 (76.7) | 1104 (71.7) |
Race/ethnicity (%) | |||||||||
White | 965 (79.5) | 495 (75.6) | 699 (81.8) | 561 (79.0) | 567 (79.9) | 553 (83.0) | 258 (72.9) | 247 (72.2) | 1131 (73.4) |
Black | 103 (8.5) | 77 (11.8) | 66 (7.7) | 61 (8.6) | 77 (10.8) | 58 (8.7) | 39 (11.0) | 40 (11.7) | 168 (10.9) |
Hispanic | 57 (4.7) | 36 (5.5) | 35 (4.1) | 26 (3.7) | 31 (4.4) | 15 (2.3) | 12 (3.4) | 13 (3.8) | 135 (8.8) |
other | 89 (7.3) | 47 (7.2) | 55 (6.4) | 62 (8.7) | 35 (4.9) | 40 (6.0) | 45 (12.7) | 42 (12.3) | 106 (6.9) |
Employed (%) | 798 (65.7) | 414 (63.2) | 517 (60.5) | 401 (56.5) | 383 (53.9) | 340 (51.1) | 179 (50.6) | 161 (47.1) | 771 (50.1) |
Daily smoker (%) | 1103 (91.0) | 598 (91.3) | 799 (93.5) | 671 (94.5) | 684 (96.3) | 634 (95.2) | 325 (91.8) | 312 (91.2) | 1280 (83.1) |
Mean cigarettes/day (SD) | 17.06 (10.78) | 17.89 (11.02) | 17.85 (10.76) | 18.59 (11.66) | 19.67 (12.02) | 19.63 (11.47) | 16.63 (10.79) | 16.61 (11.12) | 12.91 (9.90) |
Last purchased cigarette packs (%) | 699 (57.6) | 394 (60.2) | 517 (60.5) | 413 (58.2) | 398 (56.1) | 344 (51.7) | 235 (66.4) | 213 (62.3) | 1091 (70.8) |
1-Slope Model | 2-Slope Model | 3-Slope Model | 4-Slope Model | |||||
---|---|---|---|---|---|---|---|---|
(SE) | (SE) | (SE) | (SE) | |||||
Fixed Effects | ||||||||
(Intercept) | −1.753 | (0.293) † | −3.000 | (0.294) † | −3.087 | (0.299) † | −3.184 | (0.298) † |
Gender (female vs. male) | 0.206 | (0.021) † | 0.210 | (0.021) † | 0.210 | (0.021) † | 0.207 | (0.021) † |
Age group (25–39 vs. 18–24) | −0.056 | (0.041) | −0.057 | (0.041) | −0.054 | (0.041) | −0.053 | (0.041) |
Age group (40–54 vs. 18–24) | −0.331 | (0.040) † | −0.326 | (0.040) † | −0.328 | (0.040) † | −0.328 | (0.040) † |
Age group (55+ vs. 18–24) | −0.444 | (0.041) † | −0.446 | (0.041) † | −0.439 | (0.041) † | −0.435 | (0.041) † |
Race/ethnicity (Black vs. white) | 0.672 | (0.035) † | 0.667 | (0.035) † | 0.669 | (0.035) † | 0.671 | (0.035) † |
Race/ethnicity (Hispanic vs. white) | 0.320 | (0.049) † | 0.301 | (0.049) † | 0.322 | (0.048) † | 0.334 | (0.049) † |
Race/ethnicity (other vs. white) | 0.216 | (0.040) † | 0.215 | (0.040) † | 0.210 | (0.040) † | 0.211 | (0.040) † |
High school education (vs greater) | 0.322 | (0.020) † | 0.326 | (0.020) † | 0.325 | (0.020) † | 0.324 | (0.020) † |
Employed (vs otherwise) | −0.199 | (0.014) † | −0.199 | (0.014) † | −0.193 | (0.014) † | −0.190 | (0.014) † |
Surveyed in post-tax period of 2009 | 0.035 | (0.039) | 0.101 | (0.040) ‡ | 0.173 | (0.041) † | 0.174 | (0.041) † |
State excise tax (in 2015 USD) | 0.108 | (0.013) † | 0.106 | (0.012) † | 0.089 | (0.012) † | 0.089 | (0.012) † |
Labour force participation rate | −0.032 | (0.004) † | −0.014 | (0.004) ‡ | −0.012 | (0.004) ‡ | −0.010 | (0.004) § |
Period 1 * | 0.051 | (0.003) † | 0.037 | (0.004) † | 0.032 | (0.004) † | 0.033 | (0.004) † |
Period 2 * | 0.078 | (0.011) † | 0.240 | (0.020) † | 0.230 | (0.020) † | ||
Period 3 * | −0.268 | (0.027) † | −0.193 | (0.034) † | ||||
Period 4 * | −0.173 | (0.047) † | ||||||
Random Effects | ||||||||
N respondents | 6660 | 6660 | 6660 | 6660 | ||||
N state | 51 | 51 | 51 | 51 | ||||
0.1418 | 0.1409 | 0.1392 | 0.1400 | |||||
, state:respondent | 0.5932 | 0.5952 | 0.5927 | 0.5926 | ||||
, state | 0.0204 | 0.0102 | 0.0112 | 0.0110 | ||||
ICC state:respondent | 0.7853 | 0.7976 | 0.7975 | 0.7980 | ||||
ICC state | 0.0270 | 0.0136 | 0.0151 | 0.0148 | ||||
AIC | 24,381.02 | 24,335.52 | 24,238.74 | 24,227.14 | ||||
Test of random effects () | ||||||||
state:respondent | 6098.3 † | 6108.1 † | 6157.8 † | 6168.6 † | ||||
state | 46.0 † | 28.3 † | 31.6 † | 31.1 † |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Driezen, P.; Nargis, N.; Thompson, M.E.; Cummings, K.M.; Fong, G.T.; Chaloupka, F.J.; Shang, C.; Cheng, K.-W. State-Level Affordability of Factory-Made Cigarettes among Current US Smokers: Findings from the ITC US Survey, 2003–2015. Int. J. Environ. Res. Public Health 2019, 16, 2439. https://doi.org/10.3390/ijerph16132439
Driezen P, Nargis N, Thompson ME, Cummings KM, Fong GT, Chaloupka FJ, Shang C, Cheng K-W. State-Level Affordability of Factory-Made Cigarettes among Current US Smokers: Findings from the ITC US Survey, 2003–2015. International Journal of Environmental Research and Public Health. 2019; 16(13):2439. https://doi.org/10.3390/ijerph16132439
Chicago/Turabian StyleDriezen, Pete, Nigar Nargis, Mary E. Thompson, K. Michael Cummings, Geoffrey T. Fong, Frank J. Chaloupka, Ce Shang, and Kai-Wen Cheng. 2019. "State-Level Affordability of Factory-Made Cigarettes among Current US Smokers: Findings from the ITC US Survey, 2003–2015" International Journal of Environmental Research and Public Health 16, no. 13: 2439. https://doi.org/10.3390/ijerph16132439