Gender Differences in the Association between Frailty, Cognitive Impairment, and Self-Care Behaviors Among Older Adults with Atrial Fibrillation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Measurements
2.2.1. Sociodemographic and Clinical Characteristics
2.2.2. Frailty
2.2.3. Cognitive Function
2.2.4. Self-Care Behaviors
2.3. Ethical Considerations and Data Collection
2.4. Data Analysis
3. Results
3.1. Patients’ Sociodemographic and Clinical Characteristics
3.2. Differences in Cognitive Function and Self-Care Behaviors by Gender and Frailty Status
3.3. Frailty and Cognitive Impairment as Predictors of Self-Care Behaviors by Gender
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Conen, D. Epidemiology of atrial fibrillation. Eur. Heart J. 2018, 39, 1323–1324. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, C.; Niiranen, T.J.; Ojeda, F.M.; Gianfagna, F.; Blankenberg, S.; Njølstad, I.; Vartiainen, E.; Sans, S.; Pasterkamp, G.; Hughes, M.; et al. Sex differences and similarities in atrial fibrillation epidemiology, risk factors, and mortality in community cohorts: Results from the biomarCaRE consortium (Biomarker for Cardiovascular Risk Assessment in Europe). Circulation 2017, 136, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Choi, E.K.; Han, K.D.; Lee, H.; Choe, W.S.; Lee, S.R.; Cha, M.J.; Lim, W.H.; Kim, Y.J.; Oh, S. Mortality and causes of death in patients with atrial fibrillation: A nationwide population-based study. PLoS ONE 2018, 13, e0209687. [Google Scholar] [CrossRef] [PubMed]
- Emdin, C.A.; Wong, C.X.; Hsiao, A.J.; Altman, D.G.; Peters, S.A.; Woodward, M.; Odutayo, A.A. Atrial fibrillation as risk factor for cardiovascular disease and death in women compared with men: Systematic review and meta-analysis of cohort studies. BMJ 2016, 352, h7013. [Google Scholar] [CrossRef] [PubMed]
- Singh-Manoux, A.; Fayosse, A.; Sabia, S.; Canonico, M.; Bobak, M.; Elbaz, A.; Kivimäki, M.; Dugravot, A. Atrial fibrillation as a risk factor for cognitive decline and dementia. Eur. Heart J. 2017, 38, 2612–2618. [Google Scholar] [CrossRef]
- Silva, R.M.F.L.D.; Miranda, C.M.; Liu, T.; Tse, G.; Roever, L. Atrial fibrillation and risk of dementia: Epidemiology, mechanisms, and effect of anticoagulation. Front. Neurosci. 2019, 13, 18. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.; Rahman, F.; Schnabel, R.B.; Yin, X.; Benjamin, E.J.; Christophersen, I.E. Atrial fibrillation in women: Epidemiology, pathophysiology, presentation, and prognosis. Nat. Rev. Cardiol. 2016, 13, 321–332. [Google Scholar] [CrossRef]
- Gordon, E.H.; Peel, N.M.; Samanta, M.; Theou, O.; Howlett, S.E.; Hubbard, R.E. Sex differences in frailty: A systematic review and meta-analysis. Exp. Gerontol. 2017, 89, 30–40. [Google Scholar] [CrossRef]
- Buchner, D.M.; Wagner, E.H. Preventing frail health. Clin. Geriatr. Med. 1992, 8, 1–18. [Google Scholar] [CrossRef]
- Kim, S.W.; Yoon, S.J.; Choi, J.Y.; Kang, M.G.; Cho, Y.; Oh, I.Y.; Kim, C.H.; Kim, K.I. Clinical implication of frailty assessment in older patients with atrial fibrillation. Arch. Gerontol. Geriatr. 2017, 70, 1–7. [Google Scholar] [CrossRef]
- Magnani, J.W.; Wang, N.; Benjamin, E.J.; Garcia, M.E.; Bauer, D.C.; Butler, J.; Ellinor, P.T.; Kritchevsky, S.; Marcus, G.M.; Newman, A.; et al. Atrial fibrillation and declining physical performance in older adults: The health, aging, and body composition study. Circ. Arrhythmia Electrophysiol. 2016, 9, e003525. [Google Scholar] [CrossRef] [PubMed]
- Polidoro, A.; Stefanelli, F.; Ciacciarelli, M.; Pacelli, A.; Di Sanzo, D.; Alessandri, C. Frailty in patients affected by atrial fibrillation. Arch. Gerontol. Geriatr. 2013, 57, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Villani, E.R.; Tummolo, A.M.; Palmer, K.; Gravina, E.M.; Vetrano, D.L.; Bernabei, R.; Onder, G.; Acampora, N. Frailty and atrial fibrillation: A systematic review. Eur. J. Intern. Med. 2018, 56, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Riegel, B.; Moser, D.K.; Buck, H.G.; Dickson, V.V.; Dunbar, S.B.; Lee, C.S.; Lennie, T.A.; Lindenfeld, J.; Mitchell, J.E.; Treat-Jacobson, D.J.; et al. Self-care for the prevention and management of cardiovascular disease and stroke: A scientific statement for healthcare professionals from the american heart association. J. Am. Heart Assoc. 2017, 6, e006997. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, C.; Ward, A.; Perera, R.; Bankhead, C.; Fuller, A.; Stevens, R.; Bradford, K.; Tyndel, S.; Alonso-Coello, P.; Ansell, J.; et al. Self-monitoring of oral anticoagulation: Systematic review and meta-analysis of individual patient data. Lancet 2012, 379, 322–334. [Google Scholar] [CrossRef]
- McCabe, P.J.; Schad, S.; Hampton, A.; Holland, D.E. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. Heart Lung 2008, 37, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Uchmanowicz, I.; Jankowska-Polańska, B.; Mazur, G.; Sivarajan Froelicher, E. Cognitive deficits and self-care behaviors in elderly adults with heart failure. Clin. Interv. Aging 2017, 12, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Moser, D.K.; Lennie, T.A.; Riegel, B.; Chung, M.L. Gender differences in and factors related to self-care behaviors: A cross-sectional, correlational study of patients with heart failure. Int. J. Nurs. Stud. 2008, 45, 1807–1815. [Google Scholar] [CrossRef]
- Ferguson, C.; Inglis, S.C.; Newton, P.J.; Middleton, S.; Macdonald, P.S.; Davidson, P.M. Multi-morbidity, frailty and self-care: Important considerations in treatment with anticoagulation drugs. Outcomes of the AFASTER study. Eur. J. Cardiovasc. Nurs. 2016, 16, 113–124. [Google Scholar] [CrossRef]
- McCabe, P.J. Self-management of atrial fibrillation: A new frontier for nursing research. Prog. Cardiovasc. Nurs. 2008, 23, 37–40. [Google Scholar] [CrossRef]
- Toback, M.; Clark, N. The association between cognitive impairment and unsuccessful self-management in patients with heart failure. Can. J. Cardiol. 2015, 31, S328–S329. [Google Scholar] [CrossRef]
- Borges, M.K.; Canevelli, M.; Cesari, M.; Aprahamian, I. Frailty as a predictor of cognitive disorders: A systematic review and meta-analysis. Front. Med. 2019, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Furtado, G.E.; Caldo, A.; Rieping, T.; Filaire, E.; Hogervorst, E.; Teixeira, A.M.B.; Ferreira, J.P. Physical frailty and cognitive status over-60 age populations: A systematic review with meta-analysis. Arch. Gerontol. Geriatr. 2018, 78, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Davidson, P.M.; Daly, J.; Hancock, K.; Moser, D.; Chang, E.; Cockburn, J. Perceptions and experiences of heart disease: A literature review and identification of a research agenda in older women. Eur. J. Cardiovasc. Nurs. 2003, 2, 255–264. [Google Scholar] [CrossRef]
- Dellafiore, F.; Arrigoni, C.; Pittella, F.; Conte, G.; Magon, A.; Caruso, R. Paradox of self-care gender differences among Italian patients with chronic heart failure: Findings from a real-world cross-sectional study. BMJ Open 2018, 8, e021966. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V. Sex and gender differences in health. Science & society series on sex and science. EMBO Rep. 2012, 13, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Lip, G.Y.H.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J.G.M. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The Euro heart survey on atrial fibrillation. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef]
- Pisters, R.; Lane, D.A.; Nieuwlaat, R.; de Vos, C.B.; Crijns, H.J.G.M.; Lip, G.Y.H. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: The Euro heart survey. Chest 2010, 138, 1093–1100. [Google Scholar] [CrossRef]
- Lip, G.Y.H.; Frison, L.; Halperin, J.L.; Lane, D. Comparative analysis of the HAS-BLED score with other bleeding risk scores, using estimates of net reclassification improvement and integrated discrimination improvement. J. Am. Coll. Cardiol. 2011, 58, 1398–1399. [Google Scholar] [CrossRef]
- PolIi, D.; Lip, G.Y.H.; Antonucci, E.; Grifoni, E.; Lane, D. Stroke risk stratification in a “Real-world” elderly anticoagulated atrial fibrillation population. J. Cardiovasc. Electrophysiol. 2011, 22, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.W.; Yoo, H.J.; Park, S.Y.; Kim, S.W.; Choi, J.Y.; Yoon, S.J.; Kim, C.H.; Kim, K.I. The Korean version of the FRAIL scale: Clinical feasibility and validity of assessing the frailty status of Korean elderly. Korean J. Intern. Med. 2016, 31, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Malmstrom, T.K.; Miller, D.K. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged African Americans. J. Nutr. Health Aging 2012, 16, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Teng, E.L.; Chui, H.C. The modified mini-mental state (3MS) examination. J. Clin. Psychiatry 1987, 48, 314–318. [Google Scholar] [PubMed]
- Sohn, E.H.; Lee, A.Y.; Park, H.J. The Validity and Reliability of the Korean Modified Mini-Mental State (K-3MS) Examination. J. Korean Neurol. Associ. 2003, 21, 346–356. [Google Scholar]
- Baek, K.H.; Son, Y.J. Relationships between symptom experience and quality of life in patients with atrial fibrillation. J. Korean Acad. Funder. Nurs. 2008, 15, 485–494. [Google Scholar]
- Annoni, G.; Mazzola, P. Real-world characteristics of hospitalized frail elderly patients with atrial fibrillation: Can we improve the current prescription of anticoagulants? J. Geriatr. Cardiol. 2016, 13, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.W.; Kim, S.W.; Ahn, S.; Lim, J.Y.; Han, J.W.; Kim, T.H.; Kim, K.W.; Kim, K.I.; Kim, C.H. Prevalence and outcomes of frailty in Korean elderly population: Comparisons of a multidimensional frailty index with two phenotype models. PLoS ONE 2014, 9, e87958. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, H.; Gu, H.; Zhao, X. Gender-associated factors for frailty and their impact on hospitalization and mortality among community-dwelling older adults: A cross-sectional population-based study. PeerJ 2018, 6, e4326. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Cumming, R.G.; Hilmer, S.N. The impact of frailty on mortality, length of stay and re-hospitalisation in older patients with atrial fibrillation. Heart Lung Circ. 2016, 25, 551–557. [Google Scholar] [CrossRef]
- Madhavan, M.; Holmes, D.N.; Piccini, J.P.; Ansell, J.E.; Fonarow, G.C.; Hylek, E.M.; Kowey, P.R.; Mahaffey, K.W.; Thomas, L.; Peterson, E.D.; et al. Association of frailty and cognitive impairment with benefits of oral anticoagulation in patients with atrial fibrillation. Am. Heart J. 2019, 211, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.A.; Choudhury, K.R.; Rathakrishnan, B.G.; Marks, D.M.; Petrella, J.R.; Doraiswamy, P.M. Marked gender differences in progression of mild cognitive impairment over 8 years. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2015, 1, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Son, Y.J. Gender differences in the impact of cognitive function on health literacy among older adults with heart failure. Int. J. Environ. Res. Public. Health 2018, 15, 2711. [Google Scholar] [CrossRef]
- Hanlon, P.; Nicholl, B.I.; Jani, B.D.; Lee, D.; McQueenie, R.; Mair, F.S. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: A prospective analysis of 493 737 UK Biobank participants. Lancet Public Health 2018, 3, e323–e332. [Google Scholar] [CrossRef]
- Alimohammadian, M.; Majidi, A.; Yaseri, M.; Ahmadi, B.; Islami, F.; Derakhshan, M.; Delavari, A.; Amani, M.; Feyz-Sani, A.; Poustchi, H.; et al. Multimorbidity as an important issue among women: Results of a gender difference investigation in a large population-based cross-sectional study in West Asia. BMJ Open 2017, 7, e013548. [Google Scholar] [CrossRef]
- Lee, J.M.; Kim, T.H.; Cha, M.J.; Park, J.; Park, J.K.; Kang, K.W.; Shim, J.; Uhm, J.S.; Kim, J.; Park, H.W.; et al. Gender-related Differences in Management of Nonvalvular Atrial Fibrillation in an Asian Population. Korean Circ. J. 2018, 48, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, S.; Nieuwlaat, R.; Tarantini, F.; de Vos, C.B.; Werter, C.J.; Le Heuzey, J.Y.; Marchionni, N.; Crijns, H.J. Characteristics, management and prognosis of elderly patients in the Euro heart survey on atrial fibrillation. Aging Clin. Exp. Res. 2012, 24, 517–523. [Google Scholar] [CrossRef]
- Gasparova, I.; Kubatka, P.; Opatrilova, R.; Caprnda, M.; Filipova, S.; Rodrigo, L.; Malan, L.; Mozos, I.; Rabajdova, M.; Nosal, V.; et al. Perspectives and challenges of antioxidant therapy for atrial fibrillation. Naunyn. Schmiedebergs. Arch. Pharmacol. 2017, 390, 1–14. [Google Scholar] [CrossRef]
- Myburgh, C.; Huisman, H.W.; Mels, C.M.C. Cardiovascular reactivity and oxidative stress in young and older adults: The African-PREDICT and SABPA studies. Blood Pressure 2019, 28, 1–10. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Cheng, C.; Li, G.; Xie, J.; Shen, M.; Chen, Q.; Li, W.; He, W.; Qiu, P.; et al. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B 2019, 9, 335–350. [Google Scholar] [CrossRef]
Characteristics | Total (n = 298) | Men (n = 184) | Women (n = 114) | ||||||
---|---|---|---|---|---|---|---|---|---|
Robust (n = 74) | Prefrail (n = 89) | Frail (n = 21) | p | Robust (n = 28) | Prefrail (n = 54) | Frail (n = 32) | p | ||
n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | |||
Age (years) * | 72.11 (7.51) | 69.47 (7.22) | 71.78 (7.33) † | 74.05 (6.57) †‡ | 0.019 | 71.00 (7.56) | 73.65 (6.93) | 76.28 (7.93) † | 0.024 |
60–69 | 119 (39.9) | 42 (56.8) | 35 (39.3) | 4 (19.0) | 0.016 | 15 (53.6) | 16 (29.6) | 7 (21.9) | 0.037 |
70–79 | 122 (40.9) | 25 (33.8) | 38 (42.5) | 12 (57.1) | 6 (21.4) | 27 (50.0) | 14 (43.8) | ||
≥80 | 57 (19.1) | 7 (9.5) | 16 (18.0) | 5 (23.8) | 7 (25.0) | 11 (20.4) | 11 (25.4) | ||
Educational level | |||||||||
Below middle school | 169 (56.7) | 30 (40.5) | 35 (39.3) | 15 (71.4) | 0.023 | 19 (67.9) | 43 (79.6) | 27 (84.4) | 0.283 |
Above high school | 129 (43.3) | 44 (59.5) | 54 (60.7) | 6 (28.6) | 9 (32.1) | 11 (20.4) | 5 (15.6) | ||
Family type | |||||||||
Live alone | 57 (19.1) | 6 (8.1) | 12 (13.5) | 5 (23.8) | 0.147 | 5 (17.9) | 14 (25.9) | 15 (46.9) | 0.034 |
Live with family | 241 (80.9) | 68 (91.9) | 77 (86.5) | 16 (76.2) | 23 (82.1) | 40 (74.1) | 17 (53.1) | ||
Job (yes) * | 72 (24.2) | 30 (40.5) | 22 (24.7) | 4 (19.0) | 0.047 | 5 (17.9) | 10 (18.5) | 1 (3.1) | 0.086 |
Monthly income (KRW) | |||||||||
<1,000,000 | 136 (45.6) | 19 (25.7) | 44 (49.4) | 15 (71.4) | < 0.001 | 7 (25.0) | 27 (50.0) | 24 (75.0) | 0.001 |
≥1,000,000 | 162 (54.4) | 55 (74.3) | 45 (50.6) | 6 (28.6) | 21 (75.0) | 27 (50.0) | 8 (25.0) | ||
BMI (kg/m2) ** | 24.38 (2.94) | 24.37 (2.31) | 24.53 (2.79) | 23.37 (4.08) | 0.232 | 24.14 (3.38) | 24.62 (3.17) | 24.47 (3.03) | 0.811 |
Underweight (< 20) | 18 (6.0) | 3 (4.1) | 3 (3.5) | 3 (15.8) | 0.132 | 2 (7.7) | 4 (7.8) | 3 (9.7) | 0.990 |
Normal (20–25) | 166 (55.7) | 45 (60.8) | 50 (58.1) | 13 (68.4) | 15 (57.7) | 27 (52.9) | 16 (51.6) | ||
Overweight (> 25) | 103 (34.6) | 26 (35.1) | 33 (38.4) | 3 (15.8) | 9 (34.6) | 20 (39.2) | 12 (38.7) |
Characteristics | Total (N = 298) | Men (n = 184) | Women (n = 114) | ||||||
---|---|---|---|---|---|---|---|---|---|
Robust (n = 74) | Prefrail (n = 89) | Frail (n = 21) | p | Robust (n = 28) | Prefrail (n = 54) | Frail (n = 32) | p | ||
n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | |||
Year after diagnosis of atrial fibrillation (AF) | 7.96 (6.22) | 9.29 (7.82) | 7.63 (5.60) | 7.02 (5.15) | 0.184 | 7.36 (4.72) | 8.13 (6.21) | 6.70 (5.29) | 0.513 |
Type of AF* | |||||||||
Paroxysmal | 184 (61.7) | 43 (58.1) | 49 (55.1) | 12 (56.5) | 0.980 | 19 (67.9) | 41 (75.9) | 20 (62.5) | 0.412 |
Persistent | 105 (35.2) | 28 (37.8) | 36 (40.4) | 9 (42.9) | 8 (28.6) | 13 (24.1) | 11 (34.4) | ||
Permanent | 9 (3.0) | 3 (4.1) | 4 (4.5) | 0 (0.0) | 1 (3.6) | 0 (0.0) | 1 (3.1) | ||
CHA2DS2-VASc * | |||||||||
Low and intermediate risk (0–1) | 36 (12.1) | 20 (27.0) | 10 (11.2) | 2 (9.5) | 0.021 | 2 (7.1) | 2 (3.7) | 0 (0.0) | 0.268 |
High stroke risk (≥ 2) | 262 (87.9) | 54 (73.0) | 79 (88.8) | 19 (90.5) | 26 (92.9) | 52 (96.3) | 32 (100.0) | ||
HAS-BLED score * | |||||||||
Low and intermediate risk (0–2) | 71 (23.8) | 28 (37.8) | 18 (20.2) | 3 (14.3) | 0.017 | 10 (35.7) | 7 (13.0) | 5 (15.6) | 0.039 |
High bleeding risk (≥ 3) | 227 (76.2) | 46 (62.2) | 71 (79.8) | 18 (85.7) | 18 (64.3) | 47 (87.0) | 27 (84.4) | ||
Comorbidities | |||||||||
Hypertension (yes) * | 229 (76.8) | 45 (60.8) | 72 (80.9) | 19 (90.5) | 0.003 | 23 (82.1) | 45 (83.3) | 25 (78.1) | 0.831 |
Diabetes mellitus (yes) | 81 (27.2) | 14 (18.9) | 23 (25.8) | 7 (33.3) | 0.329 | 7 (25.0) | 17 (31.5) | 13 (40.6) | 0.426 |
Coronary artery disease (yes) | 92 (30.9) | 23 (31.1) | 24 (27.0) | 9 (42.9) | 0.359 | 8 (28.6) | 16 (29.6) | 12 (37.5) | 0.694 |
Heart failure (yes) | 115 (38.6) | 19 (25.7) | 35 (39.3) | 14 (66.7) | 0.002 | 9 (32.1) | 20 (37.0) | 18 (56.3) | 0.115 |
Stroke (yes) * | 62 (20.8) | 12 (16.2) | 21 (23.6) | 7 (33.3) | 0.205 | 5 (17.9) | 14 (25.9) | 3 (9.4) | 0.187 |
Renal failure (yes) * | 9 (3.0) | 0 (0.0) | 5 (5.6) | 3 (14.3) | 0.010 | 0 (0.0) | 0 (0.0) | 1 (3.1) | 0.526 |
Medications | |||||||||
Aspirin (yes) | 131 (44.0) | 44 (59.5) | 37 (41.6) | 9 (42.9) | 0.063 | 12 (42.9) | 16 (29.6) | 13 (40.6) | 0.402 |
Warfarin (yes) | 104 (34.9) | 23 (31.1) | 34 (38.2) | 6 (28.6) | 0.536 | 14 (50.0) | 20 (37.0) | 7 (21.9) | 0.075 |
NOAC (yes) | 86 (28.9) | 22 (29.7) | 23 (25.8) | 6 (28.6) | 0.855 | 6 (21.4) | 17 (31.5) | 12 (37.5) | 0.398 |
Lab data ** | |||||||||
Hb (mg/dL) | 13.53 ± 1.83 | 14.47 ± 1.29 | 13.86 ± 1.86 † | 12.93 ± 2.48 †‡ | 0.002 | 13.01 ± 1.44 | 12.65 ± 1.46 | 12.75 ± 2.00 | 0.651 |
Hct (%) | 40.05 ± 5.26 | 42.14 ± 4.87 | 40.95 ± 5.20 | 38.64 ± 6.46 † | 0.026 | 38.80 ± 4.27 | 37.93 ± 4.28 | 38.31 ± 5.58 | 0.732 |
PT (sec) | 18.44 ± 9.18 | 17.16 ± 7.45 | 19.82 ± 11.43 | 17.92 ± 9.18 | 0.233 | 19.41 ± 8.90 | 19.25 ± 8.34 | 15.63 ± 6.59 | 0.102 |
PTT (sec) | 35.10 ± 10.55 | 34.88 ± 9.74 | 35.37 ± 9.26 | 33.91 ± 7.36 | 0.818 | 36.76 ± 15.40 | 35.22 ± 13.17 | 34.16 ± 8.52 | 0.765 |
INR | 1.67 ± 0.85 | 1.54 ± 0.66 | 1.76 ± 1.01 | 1.79 ± 1.17 | 0.271 | 1.79 ± 0.78 | 1.70 ± 0.74 | 1.43 ± 0.63 | 0.134 |
Variables | Total (n = 298) | Men (n = 184) | Women (n = 114) | ||||||
---|---|---|---|---|---|---|---|---|---|
Robust (n = 74) | Prefrail (n = 89) | Frail (n = 21) | p | Robust (n = 28) | Prefrail (n = 54) | Frail (n = 32) | p | ||
n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | |||
Cognitive function * | |||||||||
Impairment (≤ 72) | 45 (15.1) | 4 (5.4) | 8 (9.0) | 4 (19.0) | 0.143 | 3 (10.7) | 10 (18.5) | 16 (50.0) | 0.001 |
Normal (> 73) | 253 (84.9) | 70 (94.6) | 81 (91.0) | 17 (81.0) | 25 (89.3) | 44 (81.5) | 16 (50.0) | ||
Self-care behaviors | 31.71 (7.06) | 34.92 (6.29) | 32.00 (6.86) † | 26.29 (5.69) †‡ | < 0.001 | 34.54 (6.57) | 30.72 (6.84) † | 26.22 (5.22) †‡ | <0.001 |
Predictors | Step 1 | Step 2 | ||||
---|---|---|---|---|---|---|
Β | t(p) | 95% CI | β | t (p) | 95% CI | |
Age (years) | −0.104 | −1.121 (0.264) | −0.287 to 0.079 | −0.059 | −0.641 (0.523) | −0.240 to 0.122 |
Educational level (below middle school) | −1.680 | −1.536 (0.126) | −3.838 to 0.479 | −1.132 | −1.057 (0.292) | −3.246 to 0.983 |
Job (no) | 2.692 | 1.950 (0.053) | −0.035 to 5.419 | 2.274 | 1.720 (0.087) | −0.338 to 4.885 |
Monthly income (< 1,000,000 KRW) | −2.575 | −2.089 (0.038) | −5.010 to −0.141 | −1.336 | −1.098 (0.274) | −3.740 to 1.068 |
CHA2Ds2-VASc (high stroke risk) | −0.243 | −0.134 (0.893) | −3.827 to 3.340 | −0.354 | −0.203 (0.839) | −3.801 to 3.092 |
HAS-BLED (high bleeding risk) | 0.136 | 0.078 (0.938) | −3.302 to 3.575 | −0.268 | −0.161 (0.872) | −3.556 to 3.020 |
Hypertension | −0.905 | −0.595 (0.553) | −3.911 to 2.101 | 0.294 | 0.198 (0.843) | −2.634 to 3.221 |
Heart failure | −0.636 | −0.567 (0.572) | −2.854 to 1.581 | 0.445 | 0.402 (0.688) | −1.744 to 2.634 |
Renal failure | −0.299 | −0.092 (0.927) | −6.699 to 6.102 | 0.469 | 0.151 (0.880) | −5.677 to 6.616 |
Hb (g/dL) | 0.729 | 1.210 (0.228) | −0.461 to 1.919 | 0.475 | 0.821 (0.413) | −.668 to 1.618 |
Hct (%) | −0.079 | −0.407 (0.685) | −0.463 to 0.305 | −0.089 | −0.480 (0.632) | −0.457 to 0.278 |
Prefrail | −2.874 | −2.523 (0.013) | −5.123 to −0.624 | |||
Frail | −7.698 | −4.044 (< 0.001) | −11.458 to −3.939 | |||
Cognitive impairment | −2.528 | −1.310 (0.192) | −6.341 to 1.285 | |||
Adjusted R2 = 0.053, F (p) = 1.759 (0.054) | Adjusted R2 = 0.139, F (p) = 2.759 (0.001), R2 change = 0.086 |
Predictors | Step 1 | Step 2 | ||||
---|---|---|---|---|---|---|
Β | t(p) | 95% CI | β | t (p) | 95% CI | |
Age (years) | −0.194 | −2.122 (0.036) | −0.375 to −0.013 | −0.054 | −0.553 (0.581) | −0.248 to 0.140 |
Family type (live alone) | 0.082 | 0.055 (0.956) | −2.868 to 3.031 | 0.757 | 0.533 (0.595) | −2.059 to 3.573 |
Monthly income (<1,000,000 KRW) | −3.513 | −2.525 (0.013) | −6.272 to −0.754 | −2.045 | −1.494 (0.138) | −4.760 to 0.670 |
HAS-BLED (high bleeding risk) | 1.010 | 0.588 (0.558) | −2.396 to 4.415 | 1.088 | 0.658 (0.512) | −2.191 to 4.368 |
Prefrail | −2.482 | −1.605 (0.112) | −5.550 to 0.586 | |||
Frail | −5.476 | −3.005 (0.003) | −9.090 to −1.862 | |||
Cognitive impairment | −3.350 | −2.040 (0.044) | −6.608 to −0.093 | |||
Adjusted R2 = 0.150, F (p) = 4.873 (< 0.001) | Adjusted R2 = 0.244, F (p) = 5.435 (< 0.001), R2 change = 0.094 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, Y.-J.; Lee, K.; Kim, B.-H. Gender Differences in the Association between Frailty, Cognitive Impairment, and Self-Care Behaviors Among Older Adults with Atrial Fibrillation. Int. J. Environ. Res. Public Health 2019, 16, 2387. https://doi.org/10.3390/ijerph16132387
Son Y-J, Lee K, Kim B-H. Gender Differences in the Association between Frailty, Cognitive Impairment, and Self-Care Behaviors Among Older Adults with Atrial Fibrillation. International Journal of Environmental Research and Public Health. 2019; 16(13):2387. https://doi.org/10.3390/ijerph16132387
Chicago/Turabian StyleSon, Youn-Jung, Kyounghoon Lee, and Bo-Hwan Kim. 2019. "Gender Differences in the Association between Frailty, Cognitive Impairment, and Self-Care Behaviors Among Older Adults with Atrial Fibrillation" International Journal of Environmental Research and Public Health 16, no. 13: 2387. https://doi.org/10.3390/ijerph16132387
APA StyleSon, Y.-J., Lee, K., & Kim, B.-H. (2019). Gender Differences in the Association between Frailty, Cognitive Impairment, and Self-Care Behaviors Among Older Adults with Atrial Fibrillation. International Journal of Environmental Research and Public Health, 16(13), 2387. https://doi.org/10.3390/ijerph16132387