Effects of Regular Aerobic Exercise and Resistance Training on High-Density Lipoprotein Cholesterol Levels in Taiwanese Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Database
2.2. Study Participants
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fletcher, G.F.; Landolfo, C.; Niebauer, J.; Ozemek, C.; Arena, R.; Lavie, C.J. Promoting physical activity and exercise: JACC health promotion series. J. Am. Coll. Cardiol. 2018, 72, 1622–1639. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Huffman, M.D.; Moran, A.E.; Feigin, V.; Mensah, G.A.; Naghavi, M.; Murray, C.J. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation 2015, 132, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.V.; Lange, L.A.; Palmer, T.; Lanktree, M.B.; North, K.E.; Almoguera, B.; Buxbaum, S.; Chandrupatla, H.R.; Elbers, C.C.; Guo, Y.; et al. Causal effects of body mass index on cardiometabolic traits and events: A Mendelian randomization analysis. Am. J. Hum. Genet. 2014, 94, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Stein, O.; Stein, Y. Atheroprotective mechanisms of HDL. Atherosclerosis 1999, 144, 285–301. [Google Scholar] [CrossRef]
- Jin, F.; Hagemann, N.; Sun, L.; Wu, J.; Doeppner, T.R.; Dai, Y.; Hermann, D.M. High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation. Angiogenesis 2018, 21, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.J.; Probstfield, J.L.; Garrison, R.J.; Neaton, J.D.; Castelli, W.P.; Knoke, J.D.; Jacobs, D.R., Jr.; Bangdiwala, S.; Tyroler, H.A. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989, 79, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, X.; Guo, J.; Roberts, C.K.; McKenzie, S.; Wu, W.C.; Liu, S.; Song, Y. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2015, 4, e002014. [Google Scholar] [CrossRef] [PubMed]
- Lemes, Í.R.; Turi-Lynch, B.C.; Cavero-Redondo, I.; Linares, S.N.; Monteiro, H.L. Aerobic training reduces blood pressure and waist circumference and increases HDL-c in metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. J. Am. Soc. Hypertens. 2018, 12, 580–588. [Google Scholar] [CrossRef]
- Pattyn, N.; Cornelissen, V.A.; Eshghi, S.R.T.; Vanhees, L. The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome. Sports Med. 2013, 43, 121–133. [Google Scholar] [CrossRef]
- Lemes, Í.R.; Ferreira, P.H.; Linares, S.N.; Machado, A.F.; Pastre, C.M.; Netto, J. Resistance training reduces systolic blood pressure in metabolic syndrome: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2016, 50, 1438–1442. [Google Scholar] [CrossRef]
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006, 174, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Miller, N.H.; Hubbard, V.S.; Lee, I.M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2960–2984. [Google Scholar] [CrossRef] [PubMed]
- Bickmore, T.W.; Schulman, D.; Sidner, C.L. A reusable framework for health counseling dialogue systems based on a behavioral medicine ontology. J. Biomed. Inform. 2011, 44, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Kodama, S.; Tanaka, S.; Saito, K.; Shu, M.; Sone, Y.; Onitake, F.; Suzuki, E.; Shimano, H.; Yamamoto, S.; Kondo, K.; et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: A meta-analysis. Arch. Intern. Med. 2007, 167, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Vanhees, L.; Geladas, N.; Hansen, D.; Kouidi, E.; Niebauer, J.; Reiner, Ž.; Cornelissen, V.; Adamopoulos, S.; Prescott, E.; Börjesson, M. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: Recommendations from the EACPR (Part II). Eur. J. Prev. Cardiol. 2012, 19, 1005–1033. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Beedie, C.; Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sports Med. 2014, 44, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Banz, W.J.; Maher, M.A.; Thompson, W.G.; Bassett, D.R.; Moore, W.; Ashraf, M.; Keefer, D.J.; Zemel, M.B. Effects of resistance versus aerobic training on coronary artery disease risk factors. Exp. Biol. Med. 2003, 228, 434–440. [Google Scholar] [CrossRef]
- Leon, A.S.; Sanchez, O.A. Response of blood lipids to exercise training alone or combined with dietary intervention. Med. Sci. Sports Exerc. 2001, 33, S502–S515. [Google Scholar] [CrossRef]
- Maraki, M.I.; Sidossis, L.S. The latest on the effect of prior exercise on postprandial lipaemia. Sports Med. 2013, 43, 463–481. [Google Scholar] [CrossRef]
- Shaw, K.A.; Gennat, H.C.; O’Rourke, P.; Del Mar, C. Exercise for overweight or obesity. Cochrane Database Syst. Rev. 2006, 4, CD003817. [Google Scholar] [CrossRef]
- Aadahl, M.; von Huth Smith, L.; Pisinger, C.; Toft, U.N.; Glümer, C.; Borch-Johnsen, K.; Jørgensen, T. Five-year change in physical activity is associated with changes in cardiovascular disease risk factors: The Inter99 study. Prev. Med. 2009, 48, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Gordon, B.; Chen, S.; Durstine, J.L. The effects of exercise training on the traditional lipid profile and beyond. Transl. J. Am. Coll. Sports Med. 2016, 1, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Klancic, T.; Woodward, L.; Hofmann, S.M.; Fisher, E.A. High density lipoprotein and metabolic disease: Potential benefits of restoring its functional properties. Mol. Metab. 2016, 5, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Tomeleri, C.M.; Ribeiro, A.S.; Souza, M.F.; Schiavoni, D.; Schoenfeld, B.J.; Venturini, D.; Barbosa, D.S.; Landucci, K.; Sardinha, L.B.; Cyrino, E.S. Resistance training improves inflammatory level, lipid and glycemic profiles in obese older women: A randomized controlled trial. Exp. Gerontol. 2016, 84, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Lira, F.S.; Yamashita, A.S.; Uchida, M.C.; Zanchi, N.E.; Gualano, B.; Martins, E.; Caperuto, E.C.; Seelaender, M. Low and moderate, rather than high intensity strength exercise induces benefit regarding plasma lipid profile. Diabetol. Metab. Syndr. 2010, 2, 31. [Google Scholar] [CrossRef] [PubMed]
- Moro, T.; Tinsley, G.; Bianco, A.; Gottardi, A.; Gottardi, G.B.; Faggian, D.; Plebani, M.; Marcolin, G.; Paoli, A. High intensity interval resistance training (HIIRT) in older adults: Effects on body composition, strength, anabolic hormones and blood lipids. Exp. Gerontol. 2017, 98, 91. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.E. Effects of whole body vibration and resistance training on bone mineral density and anthropometry in obese postmenopausal women. J. Osteoporos. 2014, 2014, 6. [Google Scholar] [CrossRef]
- Rossi, F.E.; Fortaleza, A.C.; Neves, L.M.; Buonani, C.; Picolo, M.R.; Diniz, T.A.; Kalva-Filho, C.A.; Papoti, M.; Lira, F.S.; Junior, I.F.F. Combined training (aerobic plus strength) potentiates a reduction in body fat but demonstrates no difference on the lipid profile in postmenopausal women when compared with aerobic training with a similar training load. J. Strength Cond. Res. 2016, 30, 226–234. [Google Scholar] [CrossRef]
Variable | No Exercise (n = 16,245) | Aerobic Exercise (n = 7545) | Non-Aerobic | p-Value | ||
---|---|---|---|---|---|---|
Ball Game (n = 327) | Resistance Training (n = 69) | Mixed (n = 670) | ||||
HDL-C | 52.58 ± 0.10 | 54.61 ± 0.16 | 53.28 ± 0.70 | 54.83 ± 1.53 | 53.32 ± 0.51 | <0.0001 |
Sex | ||||||
Female | 57.18 ± 0.13 | 58.86 ± 0.21 | 61.38 ± 1.55 | 60.39 ± 2.80 | 61.80 ± 1.12 | <0.0001 |
Male | 46.84 ± 0.12 | 49.26 ± 0.20 | 50.70 ± 0.71 | 52.04 ± 1.69 | 50.96 ± 0.53 | <0.0001 |
WHR | ||||||
male <0.9; female < 0.8 | 54.36 ± 0.16 | 56.41 ± 0.27 | 54.42 ± 1.00 | 54.03 ± 1.74 | 54.23 ± 0.66 | <0.0001 |
male ≥ 0.9; female ≥ 0.8 | 51.43 ± 0.13 | 53.52 ± 0.19 | 51.98 ± 0.97 | 55.70 ± 2.60 | 51.86 ± 0.81 | <0.0001 |
Body Fat Rate | ||||||
Normal | 54.77 ± 0.15 | 56.19 ± 0.22 | 53.87 ± 0.88 | 58.26 ± 1.97 | 54.27 ± 0.61 | <0.0001 |
Overweight | 50.27 ± 0.13 | 52.65 ± 0.21 | 52.14 ± 1.16 | 50.37 ± 2.18 | 51.04 ± 0.94 | <0.0001 |
Age | ||||||
30–40 | 52.93 ± 0.16 | 54.97 ± 0.40 | 52.34 ± 1.23 | 56.33 ± 2.01 | 53.27 ± 0.80 | <0.0001 |
41–50 | 52.31 ± 0.19 | 55.04 ± 0.33 | 55.01 ± 1.64 | 56.70 ± 4.15 | 52.40 ± 1.01 | <0.0001 |
51–60 | 52.65 ± 0.22 | 54.95 ± 0.26 | 52.73 ± 1.29 | 52.79 ± 2.70 | 54.11 ± 1.16 | <0.0001 |
61–70 | 51.97 ± 0.32 | 53.56 ± 0.30 | 53.18 ± 1.49 | 37.00 ± 1.00 | 53.69 ± 1.32 | 0.0014 |
BMI | ||||||
Underweight | 63.81 ± 0.56 | 67.32 ± 0.99 | 56.67 ± 4.89 | 73.00 | 65.75 ± 5.13 | 0.0227 |
Normal | 56.80 ± 0.14 | 58.47 ± 0.22 | 56.50 ± 1.11 | 58.91 ± 2.11 | 58.44 ± 0.77 | <0.0001 |
Overweight | 49.30 ± 0.17 | 51.24 ± 0.25 | 50.89 ± 1.13 | 52.30 ± 1.95 | 50.06 ± 0.78 | <0.0001 |
Obese | 45.68 ± 0.17 | 47.29 ± 0.29 | 48.88 ± 1.21 | 46.92 ± 4.43 | 45.93 ± 0.77 | <0.0001 |
Smoking | ||||||
Never | 54.22 ± 0.12 | 56.12 ± 0.18 | 54.74 ± 0.86 | 58.12 ± 2.02 | 54.79 ± 0.63 | <0.0001 |
Former | 48.50 ± 0.28 | 49.94 ± 0.37 | 50.73 ± 1.60 | 53.58 ± 2.54 | 50.49 ± 1.04 | 0.0060 |
Current | 46.48 ± 0.24 | 47.66 ± 0.51 | 48.73 ± 1.58 | 45.79 ± 2.50 | 49.88 ± 1.41 | 0.0223 |
Drinking | ||||||
Never | 52.82 ± 0.11 | 54.93 ± 0.16 | 53.37 ± 0.77 | 55.34 ± 1.56 | 52.94 ± 0.54 | <0.0001 |
Former | 46.71 ± 0.58 | 47.31 ± 0.74 | 51.60 ± 3.21 | 40.50 ± 2.50 | 49.83 ± 0.54 | 0.4381 |
Current | 51.41 ± 0.40 | 54.01 ± 0.61 | 53.00 ± 2.10 | 52.50 ± 14.50 | 57.43 ± 1.89 | 0.0002 |
LDL-C | ||||||
<130 | 53.15 ± 0.13 | 54.79 ± 0.21 | 53.66 ± 0.96 | 55.45 ± 2.08 | 54.03 ± 0.67 | <0.0001 |
≥130 | 51.58 ± 0.15 | 54.29 ± 0.23 | 52.65 ± 0.97 | 53.97 ± 2.26 | 52.03 ± 0.76 | <0.0001 |
Triglyceride | ||||||
<150 | 55.30 ± 0.11 | 57.17 ± 0.17 | 55.35 ± 0.77 | 56.89 ± 1.66 | 55.69 ± 0.55 | <0.0001 |
≥150 | 42.70 ± 0.15 | 44.20 ± 0.23 | 44.77 ± 1.19 | 45.00 ± 2.34 | 42.35 ± 0.82 | <0.0001 |
SBP | ||||||
<120 | 54.41 ± 0.13 | 56.54 ± 0.22 | 54.63 ± 0.97 | 58.02 ± 1.76 | 55.11 ± 0.73 | <0.0001 |
120–139 | 49.68 ± 0.18 | 52.44 ± 0.26 | 51.23 ± 1.23 | 49.18 ± 3.22 | 51.42 ± 0.80 | <0.0001 |
≥140 | 49.25 ± 0.30 | 52.47 ± 0.41 | 52.50 ± 1.74 | 48.00 ± 4.02 | 52.40 ± 1.51 | <0.0001 |
DBP | ||||||
<80 | 54.06 ± 0.12 | 55.77 ± 0.19 | 54.52 ± 0.86 | 56.62 ± 1.73 | 54.71 ± 0.60 | <0.0001 |
80–89 | 48.72 ± 0.21 | 52.34 ± 0.33 | 50.01 ± 1.31 | 52.65 ± 3.51 | 50.81 ± 1.11 | <0.0001 |
≥90 | 47.53 ± 0.33 | 50.23 ± 0.54 | 51.48 ± 2.44 | 45.40 ± 4.86 | 48.87 ± 1.81 | 0.0002 |
Variable | β-Coefficient | SE | p-Value |
---|---|---|---|
Exercise (Ref: no exercise) | |||
Aerobic | 1.33748 | 0.15826 | <0.0001 |
Non-aerobic | 2.56210 | 0.34496 | <0.0001 |
Sex (Ref: female) | |||
male | −8.73486 | 0.18737 | <0.0001 |
WHR (Ref: male < 0.9; female < 0.8) | |||
Male > 0.9; female ≥ 0.8 | −2.43206 | 0.16432 | <0.0001 |
Body fat rate (Ref: Normal) | |||
Overweight | −1.76628 | 0.18631 | <0.0001 |
Age (Ref: 30–40) | |||
41–50 | −0.76063 | 0.18391 | <0.0001 |
51–60 | 1.44934 | 0.19494 | <0.0001 |
61–70 | 0.93248 | 0.24226 | 0.0001 |
BMI (Ref: Normal) | |||
Underweight | 4.86672 | 0.40332 | <0.0001 |
Overweight | −3.41607 | 0.18466 | <0.0001 |
Obese | −4.72790 | 0.23980 | <0.0001 |
Smoking (Ref: Never) | |||
Former | −0.16073 | 0.23368 | 0.4916 |
Current | −2.06155 | 0.23941 | <0.0001 |
Drinking (Ref: Never) | |||
Former | −0.41432 | 0.43680 | 0.3429 |
Current | 5.15102 | 0.28672 | <0.0001 |
LDL-C (Ref: <130) | |||
≥130 | 1.06658 | 0.14539 | <0.0001 |
Triglyceride (Ref: <150) | |||
≥150 | −8.52164 | 0.18090 | <0.0001 |
SBP (Ref: <120) | |||
120–139 | −0.19182 | 0.18188 | 0.2916 |
≥140 | 0.32595 | 0.30045 | 0.2780 |
DBP (Ref: <80) | |||
80–89 | 0.05259 | 0.20426 | 0.7968 |
≥90 | 0.25113 | 0.33033 | 0.4471 |
Variable | β-Coefficient | SE | p-Value |
---|---|---|---|
Exercise (Ref: no exercise) | |||
Aerobic | 1.33557 | 0.15827 | <0.0001 |
Ball game | 2.43815 | 0.60416 | <0.0001 |
Resistance training | 4.01828 | 1.30055 | 0.0020 |
Mixed | 2.47021 | 0.42890 | <0.0001 |
Sex (Ref: female) | |||
male | −8.73348 | 0.18738 | <0.0001 |
WHR (Ref: male < 0.9; female < 0.8) | |||
male > 0.9; female ≥ 0.8 | −2.43365 | 0.16434 | <0.0001 |
Body fat rate (Ref: Normal) | |||
Overweight | −1.76888 | 0.18633 | <0.0001 |
Age (Ref:30–40) | |||
41–50 | 0.76651 | 0.18400 | <0.0001 |
51–60 | 1.45484 | 0.19505 | <0.0001 |
61–70 | 0.94048 | 0.24244 | 0.0001 |
BMI (Ref: Normal) | |||
Underweight | 4.86663 | 0.40333 | <0.0001 |
Overweight | −3.41565 | 0.18468 | <0.0001 |
Obese | −4.72494 | 0.23981 | <0.0001 |
Smoking (Ref: Never) | |||
Former | −0.16315 | 0.23373 | 0.4852 |
Current | −2.06691 | 0.23946 | <0.0001 |
Drinking (Ref: Never) | |||
Former | −0.41375 | 0.43681 | 0.3435 |
Current | 5.15666 | 0.28677 | <0.0001 |
LDL-C (Ref: <130) | |||
≥130 | 1.06535 | 0.14540 | <0.0001 |
Triglyceride (Ref: <150) | |||
≥150 | −8.52168 | 0.18091 | <0.0001 |
SBP (Ref: <120) | |||
120–139 | −0.18963 | 0.18194 | 0.2973 |
≥140 | 0.32769 | 0.30047 | 0.2755 |
DBP (Ref: <80) | |||
80–89 | 0.04997 | 0.20428 | 0.8068 |
≥90 | 0.24884 | 0.33034 | 0.4513 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-S.; Chang, S.-T.; Nfor, O.N.; Lee, K.-J.; Lee, S.-S.; Liaw, Y.-P. Effects of Regular Aerobic Exercise and Resistance Training on High-Density Lipoprotein Cholesterol Levels in Taiwanese Adults. Int. J. Environ. Res. Public Health 2019, 16, 2003. https://doi.org/10.3390/ijerph16112003
Hsu C-S, Chang S-T, Nfor ON, Lee K-J, Lee S-S, Liaw Y-P. Effects of Regular Aerobic Exercise and Resistance Training on High-Density Lipoprotein Cholesterol Levels in Taiwanese Adults. International Journal of Environmental Research and Public Health. 2019; 16(11):2003. https://doi.org/10.3390/ijerph16112003
Chicago/Turabian StyleHsu, Chun-Sheng, Shin-Tsu Chang, Oswald Ndi Nfor, Kuan-Jung Lee, Shiuan-Shinn Lee, and Yung-Po Liaw. 2019. "Effects of Regular Aerobic Exercise and Resistance Training on High-Density Lipoprotein Cholesterol Levels in Taiwanese Adults" International Journal of Environmental Research and Public Health 16, no. 11: 2003. https://doi.org/10.3390/ijerph16112003
APA StyleHsu, C.-S., Chang, S.-T., Nfor, O. N., Lee, K.-J., Lee, S.-S., & Liaw, Y.-P. (2019). Effects of Regular Aerobic Exercise and Resistance Training on High-Density Lipoprotein Cholesterol Levels in Taiwanese Adults. International Journal of Environmental Research and Public Health, 16(11), 2003. https://doi.org/10.3390/ijerph16112003