Possible Biological Mechanisms Linking Mental Health and Heat—A Contemplative Review
Abstract
:1. Introduction and Aim
2. Climate Change, Heatwaves and Public Health
3. Associations between Heatwaves and Mental Disease Exacerbation
4. Thermoregulation
4.1. Thermoregulatory Challenges in Body and Brain
4.2. Central Thermoregulation
5. Behavioral State Neurotransmitters
5.1. Thermoregulation and the “Behavioral State Neurotransmitters”
5.2. Vulnerability of Mental Health Patients–Behavioral Changes and Medicines
6. Heat and Brain
6.1. Background: Neuroimaging and Brain Connectivity
6.2. Altered Brain Function in Hot Conditions–Evidence from Neuroimaging Studies
7. Heatwave Induced Sleep Disruptions—A Possible Pathway to Mental Health Problems
8. Conclusions
Funding
Conflicts of Interest
References
- Ebi, K.L.; Ogden, N.H.; Semenza, J.C.; Woodward, A. Detecting and Attributing Health Burdens to Climate Change. Environ. Health Perspect. 2017, 125, 085004. [Google Scholar] [CrossRef] [PubMed]
- De’ Donato, F.K.; Leone, M.; Scortichini, M.; De Sario, M.; Katsouyanni, K.; Lanki, T.; Basagaña, X.; Ballester, F.; Åström, C.; Paldy, A.; et al. Changes in the Effect of Heat on Mortality in the Last 20 Years in Nine European Cities. Results from the PHASE Project. Int. J. Environ. Res. Public Health 2015, 12, 15567–15583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Meteorological Organization. Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2012); World Meteorological Organization: Generva, Switzerland, 2014. [Google Scholar]
- Åström, C. Health Effects of Heatwaves: Short and Long Term Predictions; Umeå University: Umeå, Sweden, 2017. [Google Scholar]
- Kenny, G.P.; Yardley, J.; Brown, C.; Sigal, R.J.; Jay, O. Heat stress in older individuals and patients with common chronic diseases. Can. Med. Assoc. J. 2010, 182, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Quinn, A.; Tamerius, J.D.; Perzanowski, M.; Jacobson, J.S.; Goldstein, I.; Acosta, L.; Shaman, J. Predicting indoor heat exposure risk during extreme heat events. Sci. Total Environ. 2014, 490, 686–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robine, J.-M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.-P.; Herrmann, F.R. Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Bouchama, A.; Dehbi, M.; Mohamed, G.; Matthies, F.; Shoukri, M.; Menne, B. Prognostic factors in heat wave–related deaths: A meta-analysis. Arch. Intern. Med. 2007, 167, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Bark, N. Deaths of psychiatric patients during heat waves. Psychiatr. Serv. 1998, 49, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Semenza, J.C.; Rubin, C.H.; Falter, K.H.; Selanikio, J.D.; Flanders, W.D.; Howe, H.L.; Wilhelm, J.L. Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 1996, 335, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Semenza, J.C.; McCullough, J.E.; Flanders, W.D.; McGeehin, M.A.; Lumpkin, J.R. Excess hospital admissions during the July 1995 heat wave in Chicago. Am. J. Prev. Med. 1999, 16, 269–277. [Google Scholar] [CrossRef]
- Fouillet, A.; Rey, G.; Laurent, F.; Pavillon, G.; Bellec, S.; Guihenneuc-Jouyaux, C.; Clavel, J.; Jougla, E.; Hémon, D. Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. Health 2006, 80, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandentorren, S.; Bretin, P.; Zeghnoun, A.; Mandereau-Bruno, L.; Croisier, A.; Cochet, C.; Ribéron, J.; Siberan, I.; Declercq, B.; Ledrans, M. August 2003 Heat Wave in France: Risk Factors for Death of Elderly People Living at Home. Eur. J. Public Health 2006, 16, 583–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, A.; Bi, P.; Nitschke, M.; Ryan, P.; Pisaniello, D.; Tucker, G. The effect of heat waves on mental health in a temperate Australian city. Environ. Health Perspect. 2008, 116, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lavigne, E.; Ouellette-kuntz, H.; Chen, B.E. Acute impacts of extreme temperature exposure on emergency room admissions related to mental and behavior disorders in Toronto, Canada. J. Affect. Disord. 2014, 155, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Sung, T.-I.; Chen, M.-J.; Lin, C.-Y.; Lung, S.-C.; Su, H.-J. Relationship between mean daily ambient temperature range and hospital admissions for schizophrenia: Results from a national cohort of psychiatric inpatients. Sci. Total Environ. 2011, 410, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhang, X.; Xie, M.; Cheng, J.; Zhang, H.; Wang, S.; Li, K.; Yang, H.; Wen, L.; Wang, X. Is greater temperature change within a day associated with increased emergency admissions for schizophrenia? Sci. Total Environ. 2016, 566, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Trang, P.M.; Rocklöv, J.; Giang, K.B.; Van Minh, H.; Tinh, L.T.; Nilsson, M. Weather Variations and Hospital Admissions for Depressive Disorders: A Case Study in Hanoi. Ann. Psychiatry Ment. Health 2015, 3, 1020. [Google Scholar]
- Conti, S.; Masocco, M.; Meli, P.; Minelli, G.; Palummeri, E.; Solimini, R.; Toccaceli, V.; Vichi, M. General and specific mortality among the elderly during the 2003 heat wave in Genoa (Italy). Environ. Res. 2007, 103, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Linares, C.; Culqui, D.; Carmona, R.; Ortiz, C.; Díaz, J. Short-term association between environmental factors and hospital admissions due to dementia in Madrid. Environ. Res. 2017, 152, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Medici, C.R.; Vestergaard, C.H.; Hadzi-Pavlovic, D.; Munk-Jørgensen, P.; Parker, G. Seasonal variations in hospital admissions for mania: Examining for associations with weather variables over time. J. Affect. Disord. 2016, 205, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Linares, C.; Martinez-Martin, P.; Rodríguez-Blázquez, C.; Forjaz, M.J.; Carmona, R.; Díaz, J. Effect of heat waves on morbidity and mortality due to Parkinson’s disease in Madrid: A time-series analysis. Environ. Int. 2016, 89, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Culqui, D.; Linares, C.; Ortiz, C.; Carmona, R.; Díaz, J. Association between environmental factors and emergency hospital admissions due to Alzheimer’s disease in Madrid. Sci. Total Environ. 2017, 592, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Cervellin, G.; Comelli, I.; Lippi, G.; Comelli, D.; Rastelli, G.; Ossola, P.; Marchesi, C. The number of emergency department visits for psychiatric emergencies is strongly associated with mean temperature and humidity variations. Results of a nine year survey. Emerg. Care J. 2014, 10. [Google Scholar] [CrossRef] [Green Version]
- Trang, P.M.; Rocklöv, J.; Giang, K.B.; Kullgren, G.; Nilsson, M. Heatwaves and Hospital Admissions for Mental Disorders in Northern Vietnam. PLoS ONE 2016, 11, e0155609. [Google Scholar] [CrossRef] [PubMed]
- Trang, P.M.; Rocklöv, J.; Giang, K.B.; Nilsson, M. Seasonality of hospital admissions for mental disorders in Hanoi, Vietnam. Glob. Health Action 2016, 9, 32116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, S.F.; Nakamura, K. Central neural pathways for thermoregulation. Front. Biosci. 2011, 16, 74–104. [Google Scholar] [CrossRef]
- Smith, C.J.; Johnson, J.M. Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: Neural control of skin blood flow and sweating in humans. Auton. Neurosci. 2016, 196 (Suppl. C), 25–36. [Google Scholar] [CrossRef] [PubMed]
- Martin-Latry, K.; Goumy, M.-P.; Latry, P.; Gabinski, C.; Bégaud, B.; Faure, I.; Verdoux, H. Psychotropic drugs use and risk of heat-related hospitalisation. Eur. Psychiatry 2007, 22, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Yablonskiy, D.A.; Ackerman, J.J.; Raichle, M.E. Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation. Proc. Natl. Acad. Sci. USA 2000, 97, 7603–7608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, H.S.; Hoopes, P. Hyperthermia induced pathophysiology of the central nervous system. Int. J. Hyperth. 2003, 19, 325–354. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.F. Central neural control of thermoregulation and brown adipose tissue. Auton. Neurosci. 2016, 196 (Suppl. C), 14–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes-Rodrigues, J.; De Castro, M.; Elias, L.L.; Valença, M.M.; McCann, S.M. Neuroendocrine control of body fluid metabolism. Physiol. Rev. 2004, 84, 169–208. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, D.; Hodges, G.J.; Orozco, C.R.; Phillips, T.M.; Zhao, J.L.; Johnson, J.M. Cholinergic mechanisms of cutaneous active vasodilation during heat stress in cystic fibrosis. J. Appl. Physiol. 2007, 103, 963–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, C.A.; Fulop, T. Clinical aspects of changes in water and sodium homeostasis in the elderly. Rev. Endocr. Metab. Disord. 2017, 18, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Millard-Stafford, M.; Wendland, D.M.; O’Dea, N.K.; Norman, T.L. Thirst and hydration status in everyday life. Nutr. Rev. 2012, 70 (Suppl. 2), S147–S151. [Google Scholar] [CrossRef] [PubMed]
- McLane, V.D. Characterization of Thermoregulatory Efferents to the Paraventricular Nucleus of the Rat Hypothalamus; College of William and Mary: Williamsburg, VA, USA, 2011. [Google Scholar]
- Chauhan, N.R.; Kapoor, M.; Singh, L.P.; Gupta, R.K.; Meena, R.C.; Tulsawani, R.; Nanda, S.; Singh, S.B. Heat stress-induced neuroinflammation and aberration in monoamine levels in hypothalamus are associated with temperature dysregulation. Neuroscience 2017, 358, 79–92. [Google Scholar] [CrossRef] [PubMed]
- McMorris, T.; Swain, J.; Smith, M.; Corbett, J.; Delves, S.; Sale, C.; Harris, R.C.; Potter, J. Heat stress, plasma concentrations of adrenaline, noradrenaline, 5-hydroxytryptamine and cortisol, mood state and cognitive performance. Int. J. Psychophysiol. 2006, 61, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Lustig, R. The pursuit of pleasure is a modern-day addiction. In The Guardian; Love Inspired Books: New York, NY, USA, 2017. [Google Scholar]
- Bell, V. The unsexy truth about dopamine. In The Guardian; Bethany House: Minneapolis, MN, USA, 2013. [Google Scholar]
- Oaklander, M. New Hope for Depression. In Time; Macmillan Collector’s Library: London, UK, 2017. [Google Scholar]
- Lee, C.-P.; Chen, P.-J.; Chang, C.-M. Heat stroke during treatment with olanzapine, trihexyphenidyl, and trazodone in a patient with schizophrenia. Acta Neuropsychiatr. 2015, 27, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Feldberg, W.; Myers, R. A new concept of temperature regulation by amines in the hypothalamus. Nature 1963, 200, 1325. [Google Scholar] [CrossRef] [PubMed]
- Ishiwata, T.; Hasegawa, H.; Greenwood, B.N. Involvement of serotonin in the ventral tegmental area in thermoregulation of freely moving rats. Neurosci. Lett. 2017, 653 (Suppl. C), 71–77. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Hasegawa, H. Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise. Eur. J. Sport Sci. 2016, 16, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Cox, B.; Davis, A.; Juxon, V.; Lee, T.; Martin, D. A role for an indoleamine other than 5-hydroxytryptamine in the hypothalamic thermoregulatory pathways of the rat. J. Physiol. 1983, 337, 441–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishiwata, T.; Saito, T.; Hasegawa, H.; Yazawa, T.; Otokawa, M.; Aihara, Y. Changes of body temperature and extracellular serotonin level in the preoptic area and anterior hypothalamus after thermal or serotonergic pharmacological stimulation of freely moving rats. Life Sci. 2004, 75, 2665–2675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Hosono, T.; Yanase-Fujiwara, M.; Chen, X.M.; Kanosue, K. Effect of midbrain stimulations on thermoregulatory vasomotor responses in rats. J. Physiol. 1997, 503, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Ootsuka, Y.; Tanaka, M. Control of cutaneous blood flow by central nervous system. Temperature 2015, 2, 392–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Björklund, A.; Dunnett, S.B. Dopamine neuron systems in the brain: An update. Trends Neurosci. 2007, 30, 194–202. [Google Scholar] [CrossRef] [PubMed]
- De Roij, T.A.; Frens, J.; Bakker, J.; Németh, F. Thermoregulatory effects of intraventricularly injected dopamine in the goat. Eur. J. Pharmacol. 1977, 43, 1–7. [Google Scholar] [CrossRef]
- Lee, T.; Mora, F.; Myers, R. Dopamine and thermoregulation: An evaluation with special reference to dopaminergic pathways. Neurosci. Biobehav. Rev. 1985, 9, 589–598. [Google Scholar] [CrossRef]
- Scott, I.; Boulant, J.A. Dopamine effects on thermosensitive neurons in hypothalamic tissue slices. Brain Res. 1984, 306, 157–163. [Google Scholar] [CrossRef]
- Brown, S.; Gisolfi, C.; Mora, F. Temperature regulation and dopaminergic systems in the brain: Does the substantia nigra play a role? Brain Res. 1982, 234, 275–286. [Google Scholar] [CrossRef]
- Balthazar, C.H.; Leite, L.H.; Ribeiro, R.M.; Soares, D.D.; Coimbra, C.C. Effects of blockade of central dopamine D 1 and D 2 receptors on thermoregulation, metabolic rate and running performance. Pharmacol. Rep. 2010, 62, 54–61. [Google Scholar] [CrossRef]
- Robertson, S.D.; Plummer, N.W.; de Marchena, J.; Jensen, P. Developmental origins of central norepinephrine neuron diversity. Nat. Neurosci. 2013, 16, 1016–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, W.G.; Lipton, J. Changes in body temperature after administration of adrenergic and serotonergic agents and related drugs including antidepressants: II. Neurosci. Biobehav. Rev. 1986, 10, 153–220. [Google Scholar] [CrossRef]
- Watanabe, T.; Morimoto, A.; Murakami, N. Effect of amine on temperature-responsive neuron in slice preparation of rat brain stem. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1986, 250, R553–R559. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, R.; Roelands, B. Central fatigue and neurotransmitters, can thermoregulation be manipulated? Scand. J. Med. Sci. Sports 2010, 20, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, N.; Xin, L.; Blatteis, C.M. Microdialysis of norepinephrine into preoptic area of guinea pigs: Characteristics of hypothermic effect. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1991, 261, R378–R385. [Google Scholar] [CrossRef] [PubMed]
- Quan, N.; Xin, L.; Ungar, A.; Blatteis, C. Preoptic norepinephrine-induced hypothermia is mediated by alpha 2-adrenoceptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1992, 262, R407–R411. [Google Scholar] [CrossRef] [PubMed]
- Batscha, C.L. Heat stroke: Keeping your clients cool in the summer. J. Psychosoc. Nurs. Ment. Health Serv. 1997, 35, 12–17. [Google Scholar] [PubMed]
- Lieberman, J.A. Managing Anticholinergic Side Effects. Prim. Care Companion J. Clin. Psychiatry 2004, 6 (Suppl. 2), 20–23. [Google Scholar] [PubMed]
- Kwok, J.S.; Chan, T.Y. Recurrent heat-related illnesses during antipsychotic treatment. Ann. Pharmacother. 2005, 39, 1940–1942. [Google Scholar] [CrossRef] [PubMed]
- Hayes, B.D.; Martinez, J.P.; Barrueto, F. Drug-induced hyperthermic syndromes: Part I. Hyperthermia in overdose. Emerg. Med. Clin. 2013, 31, 1019–1033. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; Devenport, L.; Saussy, J.; Martinez, J. Drug-associated heat stroke. South. Med. J. 2002, 95, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Kilbourne, E.M.; Choi, K.; Jones, T.S.; Thacker, S.B. Risk factors for heatstroke: A case-control study. JAMA 1982, 247, 3332–3336. [Google Scholar] [CrossRef] [PubMed]
- Adnet, P.; Lestavel, P.; Krivosic-Horber, R. Neuroleptic malignant syndrome. Br. J. Anaesth. 2000, 85, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roelands, B.; Hasegawa, H.; Watson, P.; Piacentini, M.F.; Buyse, L.; De Schutter, G.; Meeusen, R. Performance and thermoregulatory effects of chronic bupropion administration in the heat. Eur. J. Appl. Physiol. 2009, 105, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Meeusen, R.; Sarre, S.; Diltoer, M.; Piacentini, M.F.; Michotte, Y. Acute dopamine/norepinephrine reuptake inhibition increases brain and core temperature in rats. J. Appl. Physiol. 2005, 99, 1397–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhir, A.; Kulkarni, S. Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of bupropion, a dopamine reuptake inhibitor. Eur. J. Pharmacol. 2007, 568, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.H.; Goulding, V.S.; Wilson, A.A.; Hussey, D.; Christensen, B.K.; Houle, S. Bupropion occupancy of the dopamine transporter is low during clinical treatment. Psychopharmacology 2002, 163, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Cooper, B.R.; Wang, C.M.; Cox, R.F.; Norton, R.; Shea, V.; Ferris, R.M. Evidence that the Acute Behavioral and Electrophysiological Effects of Bupropion (Wellbutrin®) Are Mediated by a Noradrenergic Mechanism. Neuropsychopharmacology 1994, 11, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Stöllberger, C.; Lutz, W.; Finsterer, J. Heat-related side-effects of neurological and non-neurological medication may increase heatwave fatalities. Eur. J. Neurol. 2009, 16, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, A.K.; Lövborg, H.; Lohr, W.; Ekman, B.; Rocklöv, J. Increased Risk of Drug-Induced Hyponatremia during High Temperatures. Int. J. Environ. Res. Public Health 2017, 14, 827. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, S.; Shariff, S.Z.; Al-Jaishi, A.; Reiss, J.P.; Mamdani, M.M.; Hackam, D.G.; Li, L.; McArthur, E.; Weir, M.A.; Garg, A.X. Second-generation antidepressants and hyponatremia risk: A population-based cohort study of older adults. Am. J. Kidney Dis. 2017, 69, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.J.; Begg, E.J.; Winter, A.C.; Sainsbury, R. Incidence and risk factors for hyponatraemia following treatment with fluoxetine or paroxetine in elderly people. Br. J. Clin Pharmacol. 1999, 47, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Shakibaei, F.; Gholamrezaei, A.; Alikhani, M.; Talaeizadeh, K. Serum sodium changes in fluoxetine users at different age groups. Iran. J. Psychiatry 2010, 5, 113–116. [Google Scholar] [PubMed]
- Kirpekar, V.C.; Joshi, P.P. Syndrome of inappropriate ADH secretion (SIADH) associated with citalopram use. Indian J. Psychiatry 2005, 47, 119–120. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Spinier, S.A. Hyponatremia Associated with Selective Serotonin-Reuptake Inhibitors in Older Adults. Ann. Pharmacother. 2006, 40, 1618–1622. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Qian, S.; Jiang, Q.; Liu, K.; Li, B.; Li, M.; Zhao, L.; Zhou, Z.; von Deneen, K.M.; Liu, Y. Hyperthermia-induced disruption of functional connectivity in the human brain network. PLoS ONE 2013, 8, e61157. [Google Scholar] [CrossRef] [PubMed]
- Takamura, T.; Hanakawa, T. Clinical utility of resting-state functional connectivity magnetic resonance imaging for mood and cognitive disorders. J. Neural Transm. 2017, 124, 821–839. [Google Scholar] [CrossRef] [PubMed]
- Vitali, P.; Di Perri, C.; Vaudano, A.E.; Meletti, S.; Villani, F. Integration of multimodal neuroimaging methods: A rationale for clinical applications of simultaneous EEG-fMRI. Funct. Neurol. 2015, 30, 9–20. [Google Scholar] [PubMed]
- Nair, V.A.; Raut, R.V.; Prabhakaran, V. Investigating the Blood Oxygenation Level-Dependent Functional MRI Response to a Verbal Fluency Task in Early Stroke before and after Hemodynamic Scaling. Front. Neurol. 2017, 8, 283. [Google Scholar] [CrossRef] [PubMed]
- Junghöfer, M.; Peyk, P.; Flaisch, T.; Schupp, H.T. Neuroimaging methods in affective neuroscience: Selected methodological issues. In Progress in Brain Research; Anders, S., Ende, G., Junghofer, M., Kissler, J., Wildgruber, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 156, pp. 123–143. [Google Scholar]
- Bijsterbosch, J.; Smith, S.; Beckmann, C. Resting STate fMRI Functional Connectivity; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Greicius, M.D.; Supekar, K.; Menon, V.; Dougherty, R.F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 2009, 19, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-J.; Friston, K. Structural and functional brain networks: From connections to cognition. Science 2013, 342, 1238411. [Google Scholar] [CrossRef] [PubMed]
- Wig, G.S. Segregated Systems of Human Brain Networks. Trends Cogn. Sci. 2017, 21, 981–996. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, F.X.; Margulies, D.S.; Kelly, C.; Uddin, L.Q.; Ghaffari, M.; Kirsch, A.; Shaw, D.; Shehzad, Z.; Di Martino, A.; Biswal, B. Cingulate-precuneus interactions: A new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 2008, 63, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Greicius, M.D.; Srivastava, G.; Reiss, A.L.; Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. USA 2004, 101, 4637–4642. [Google Scholar] [CrossRef] [PubMed]
- Harrison, B.J.; Soriano-Mas, C.; Pujol, J.; Ortiz, H.; López-Solà, M.; Hernández-Ribas, R.; Deus, J.; Alonso, P.; Yücel, M.; Pantelis, C. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch. Gen. Psychiatry 2009, 66, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Li, Y.; Wang, Y.; Wu, J.; Gao, S.; Bukhari, L.; Mathews, V.P.; Kalnin, A.; Lowe, M.J. Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study. Biol. Psychiatry 2005, 57, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Kalmar, J.H.; He, Y.; Jackowski, M.; Chepenik, L.G.; Edmiston, E.E.; Tie, K.; Gong, G.; Shah, M.P.; Jones, M. Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biol. Psychiatry 2009, 66, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Salvador, R.; Sarró, S.; Gomar, J.J.; Ortiz-Gil, J.; Vila, F.; Capdevila, A.; Bullmore, E.; McKenna, P.J.; Pomarol-Clotet, E. Overall brain connectivity maps show cortico-subcortical abnormalities in schizophrenia. Hum. Brain Mapp. 2010, 31, 2003–2014. [Google Scholar] [CrossRef] [PubMed]
- Etkin, A.; Prater, K.E.; Schatzberg, A.F.; Menon, V.; Greicius, M.D. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch. Gen. Psychiatry 2009, 66, 1361–1372. [Google Scholar] [CrossRef] [PubMed]
- Guyer, A.E.; Lau, J.Y.; McClure-Tone, E.B.; Parrish, J.; Shiffrin, N.D.; Reynolds, R.C.; Chen, G.; Blair, R.; Leibenluft, E.; Fox, N.A. Amygdala and ventrolateral prefrontal cortex function during anticipated peer evaluation in pediatric social anxiety. Arch. Gen. Psychiatry 2008, 65, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-H.; Wang, P.-J.; Li, C.-B.; Hu, Z.-H.; Xi, Q.; Wu, W.-Y.; Tang, X.-W. Altered default mode network activity in patient with anxiety disorders: An fMRI study. Eur. J. Radiol. 2007, 63, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Åhs, F.; Pissiota, A.; Michelgård, Å.; Frans, Ö.; Furmark, T.; Appel, L.; Fredrikson, M. Disentangling the web of fear: Amygdala reactivity and functional connectivity in spider and snake phobia. Psychiatry Res. 2009, 172, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.; Stein, P.; Windischberger, C.; Weissenbacher, A.; Spindelegger, C.; Moser, E.; Kasper, S.; Lanzenberger, R. Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. NeuroImage 2011, 56, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Sun, G.; Li, B.; Jiang, Q.; Yang, X.; Li, M.; Li, L.; Qian, S.; Zhao, L.; Zhou, Z. The impact of passive hyperthermia on human attention networks: An fMRI study. Behav. Brain Res. 2013, 243, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.M.; Hassan, T.; Wilson, G.; Ishigami, Y.; Mulle, J. The AttentionTrip: A game-like tool for measuring the networks of attention. J. Neurosci. Methods 2017, 289 (Suppl. C), 99–109. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.E.; Posner, M.I. The Attention System of the Human Brain: 20 Years After. Annu. Rev. Neurosci. 2012, 35, 73–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paelecke-Habermann, Y.; Pohl, J.; Leplow, B. Attention and executive functions in remitted major depression patients. J. Affect. Disord. 2005, 89, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Makris, N.; Biederman, J.; Valera, E.M.; Bush, G.; Kaiser, J.; Kennedy, D.N.; Caviness, V.S.; Faraone, S.V.; Seidman, L.J. Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb. Cortex 2006, 17, 1364–1375. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, M.; Namba, M.; Oshiro, M.; Kakigi, R.; Nakata, H. Suppression of cognitive function in hyperthermia; From the viewpoint of executive and inhibitive cognitive processing. Sci. Rep. 2017, 7, 43528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walton, M.E.; Behrens, T.E.J.; Buckley, M.J.; Rudebeck, P.H.; Rushworth, M.F.S. Separable Learning Systems in the Macaque Brain and the Role of Orbitofrontal Cortex in Contingent Learning. Neuron 2010, 65, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Beer, J.S.; Lombardo, M.V.; Bhanji, J.P. Roles of Medial Prefrontal Cortex and Orbitofrontal Cortex in Self-evaluation. J. Cogn. Neurosci. 2010, 22, 2108–2119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaoua, N.; Racinais, S.; Grantham, J.; El Massioui, F. Alterations in cognitive performance during passive hyperthermia are task dependent. Int. J. Hyperth. 2011, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Gaoua, N.; Grantham, J. Hyperthermia impairs short-term memory and peripheral motor drive transmission. J. Physiol. 2008, 586, 4751–4762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, S.; Sun, G.; Jiang, Q.; Liu, K.; Li, B.; Li, M.; Yang, X.; Yang, Z.; Zhao, L. Altered topological patterns of large-scale brain functional networks during passive hyperthermia. Brain Cogn. 2013, 83, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Lynall, M.-E.; Bassett, D.S.; Kerwin, R.; McKenna, P.J.; Kitzbichler, M.; Muller, U.; Bullmore, E. Functional Connectivity and Brain Networks in Schizophrenia. J. Neurosci. 2010, 30, 9477–9487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.-J.; Bolbecker, A.R.; Howell, J.; Rass, O.; Sporns, O.; Hetrick, W.P.; Breier, A.; O’Donnell, B.F. Disturbed resting state EEG synchronization in bipolar disorder: A graph-theoretic analysis. NeuroImage 2013, 2, 414–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, S.; Jiang, Q.; Liu, K.; Li, B.; Li, M.; Li, L.; Yang, X.; Yang, Z.; Sun, G. Effects of short-term environmental hyperthermia on patterns of cerebral blood flow. Physiol. Behav. 2014, 128, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.E.; Cui, J.; Zhang, R.; Crandall, C.G. Heat stress reduces cerebral blood velocity and markedly impairs orthostatic tolerance in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R1443–R1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, E.Z.; Cotter, J.D.; Wilson, L.; Fan, J.-L.; Lucas, S.J.; Ainslie, P.N. Cerebrovascular and corticomotor function during progressive passive hyperthermia in humans. J. Appl. Physiol. 2012, 112, 748–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.D.; Haykowsky, M.J.; Stickland, M.K.; Altamirano-Diaz, L.A.; Willie, C.K.; Smith, K.J.; Petersen, S.R.; Ainslie, P.N. Reductions in cerebral blood flow during passive heat stress in humans: Partitioning the mechanisms. J. Physiol. 2011, 589, 4053–4064. [Google Scholar] [CrossRef] [PubMed]
- Van Beek, A.H.; Claassen, J.A.; Rikkert, M.G.O.; Jansen, R.W. Cerebral autoregulation: An overview of current concepts and methodology with special focus on the elderly. J. Cereb. Blood Flow Metab. 2008, 28, 1071–1085. [Google Scholar] [CrossRef] [PubMed]
- Buguet, A. Sleep under extreme environments: Effects of heat and cold exposure, altitude, hyperbaric pressure and microgravity in space. J. Neurol. Sc. 2007, 262, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Kendel, K.; Schmidt-Kessen, W. The influence of room temperature on night-sleep in man (polygraphic night-sleep recordings in the climatic chamber). In Sleep 1972; Karger Publishers: London, UK, 1973; pp. 423–425. [Google Scholar]
- Buguet, A.; Allin, L.; Dittmar, A.; Muzet, A.; Peyrin, L.; Roussel, B. Human reactions to chronic heat. Proc. Int. Union Physiol. Sci. 1983, 15, 101. [Google Scholar]
- Haskell, E.; Palca, J.; Walker, J.; Berger, R.; Heller, H. Metabolism and thermoregulation during stages of sleep in humans exposed to heat and cold. J. Appl. Physiol. 1981, 51, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Henane, R.; Buguet, A.; Roussel, B.; Bittel, J. Variations in evaporation and body temperatures during sleep in man. J. Appl. Physiol. 1977, 42, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Ohnaka, T.; Tochihara, Y.; Kanda, K. Body movements of the elderly during sleep and thermal conditions in bedrooms in summer. Appl. Hum. Sci. 1995, 14, 89–93. [Google Scholar] [CrossRef]
- Okamoto-Mizuno, K.; Mizuno, K. Effects of thermal environment on sleep and circadian rhythm. J. Physiol. Anthropol. 2012, 31, 14. [Google Scholar] [CrossRef] [PubMed]
- Libert, J.-P.; Bach, V. Thermoregulation and sleep in the human. In The Physiologic Nature of Sleep; Imperial College Press: London, UK, 2005; pp. 407–431. [Google Scholar]
- Mullington, J.M.; Haack, M.; Toth, M.; Serrador, J.M.; Meier-Ewert, H.K. Cardiovascular, Inflammatory, and Metabolic Consequences of Sleep Deprivation. Prog. Cardiovasc. Dis. 2009, 51, 294–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, D.J.; Fleshner, M.; Wright, K.P. The effects of 40 hours of total sleep deprivation on inflammatory markers in healthy young adults. Brain Behav. Immun. 2007, 21, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Krysta, K.; Krzystanek, M.; Bratek, A.; Krupka-Matuszczyk, I. Sleep and inflammatory markers in different psychiatric disorders. J. Neural Transm. 2017, 124, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.-S.; Gujar, N.; Hu, P.; Jolesz, F.A.; Walker, M.P. The human emotional brain without sleep—A prefrontal amygdala disconnect. Curr. Biol. 2007, 17, R877–R878. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.J.; Webb, T.L.; Rowse, G. Does improving sleep lead to better mental health? A protocol for a meta-analytic review of randomised controlled trials. BMJ Open 2017, 7, e016873. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.; Stahl, D.; McManus, S.; Meltzer, H.; Brugha, T.; Wiles, N.; Bebbington, P. Insomnia, worry, anxiety and depression as predictors of the occurrence and persistence of paranoid thinking. Soc. Psychiatry Psychiatr. Epidemiol. 2012, 47, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, C.; Battagliese, G.; Feige, B.; Spiegelhalder, K.; Nissen, C.; Voderholzer, U.; Lombardo, C.; Riemann, D. Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies. J. Affect. Disord. 2011, 135, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, C.; Nanovska, S.; Regen, W.; Spiegelhalder, K.; Feige, B.; Nissen, C.; Reynolds, C.F., III; Riemann, D. Sleep and mental disorders: A meta-analysis of polysomnographic research. Psychol. Bull. 2016, 142, 969–990. [Google Scholar] [CrossRef] [PubMed]
- Jansson-Fröjmark, M.; Lindblom, K. A bidirectional relationship between anxiety and depression, and insomnia? A prospective study in the general population. J. Psychosom. Res. 2008, 64, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, C.; Spiegelhalder, K.; Lombardo, C.; Riemann, D. Sleep and emotions: A focus on insomnia. Sleep Med. Rev. 2010, 14, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Dahl, R.E. The impact of inadequate sleep on children’s daytime cognitive function. In Seminars in Pediatric Neurology; Elsevier: Amsterdam, The Netherlands, 1996; pp. 44–50. [Google Scholar]
- Franzen, P.L.; Siegle, G.J.; Buysse, D.J. Relationships between affect, vigilance, and sleepiness following sleep deprivation. J. Sleep Res. 2008, 17, 34–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zohar, D.; Tzischinsky, O.; Epstein, R.; Lavie, P. The effects of sleep loss on medical residents’ emotional reactions to work events: A cognitive-energy model. Sleep 2005, 28, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Hysing, M.; Sivertsen, B.; Stormark, K.M.; O’connor, R.C. Sleep problems and self-harm in adolescence. Br. J. Psychiatry 2015, 207, 306–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abel, T.; Havekes, R.; Saletin, J.M.; Walker, M.P. Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks. Curr. Biol. 2013, 23, R774–R788. [Google Scholar] [CrossRef] [PubMed]
- Stavitsky, K.; Neargarder, S.; Bogdanova, Y.; McNamara, P.; Cronin-Golomb, A. The impact of sleep quality on cognitive functioning in Parkinson’s disease. J. Int. Neuropsychol. Soc. 2012, 18, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Kanady, J.C.; Soehner, A.M.; Klein, A.B.; Harvey, A.G. The association between insomnia-related sleep disruptions and cognitive dysfunction during the inter-episode phase of bipolar disorder. J. Psychiatr. Res. 2017, 88 (Suppl. C), 80–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lõhmus, M. Possible Biological Mechanisms Linking Mental Health and Heat—A Contemplative Review. Int. J. Environ. Res. Public Health 2018, 15, 1515. https://doi.org/10.3390/ijerph15071515
Lõhmus M. Possible Biological Mechanisms Linking Mental Health and Heat—A Contemplative Review. International Journal of Environmental Research and Public Health. 2018; 15(7):1515. https://doi.org/10.3390/ijerph15071515
Chicago/Turabian StyleLõhmus, Mare. 2018. "Possible Biological Mechanisms Linking Mental Health and Heat—A Contemplative Review" International Journal of Environmental Research and Public Health 15, no. 7: 1515. https://doi.org/10.3390/ijerph15071515