How Socio-Environmental Factors Are Associated with Japanese Encephalitis in Shaanxi, China—A Bayesian Spatial Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Data Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- SAGE Working Group. Background Paper on JE Vaccines. Available online: http://www.who.int /immunization/sage/meetings/2014/october/1_JE_Vaccine_Background_Paper.pdf (accessed on 12 June 2017).
- Ghosh, D.; Basu, A. Japanese encephalitis-a pathological and clinical perspective. PLoS Negl. Trop. Dis. 2009, 3. [Google Scholar] [CrossRef] [PubMed]
- Misra, U.K.; Kalita, J. Overview: Japanese encephalitis. Prog. Neurobiol. 2010, 91, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Van den Hurk, A.F.; Ritchie, S.A.; Mackenzie, J.S. Ecology and geographical expansion of Japanese encephalitis virus. Annu. Rev. Entomol. 2009, 54, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Solomon, T. Control of Japanese encephalitis—Within our grasp? N. Engl. J. Med. 2006, 355, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.L.; Hills, S.L.; Fischer, M.; Jacobson, J.A.; Hoke, C.H.; Hombach, J.M.; Marfin, A.A.; Solomon, T.; Tsai, T.F.; Tsui, V.D.; et al. Estimated global incidence of Japanese encephalitis: A systematic review. Bull. World Health Organ. 2011, 89, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Nasci, R.; Liang, G. The neglected arboviral infections in mainland China. PLoS Negl. Trop. Dis. 2010, 4. [Google Scholar] [CrossRef] [PubMed]
- Erlanger, T.E.; Weiss, S.; Keiser, J.; Utzinger, J.; Wiedenmayer, K. Past, present, and future of Japanese encephalitis. Emerg. Infect. Dis. 2009, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.F.; Griffiths, U.K.; Pennington, M.; Yu, H.; Jit, M. Systematic review of economic evaluations of vaccination programs in mainland China: Are they sufficient to inform decision making? Vaccine 2015, 33, 6164–6172. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, X.; Ren, Z.; Cao, Y.; Wang, J.; Liang, G. A spatial and temporal analysis of Japanese encephalitis in mainland China; 1963–1975: A period without Japanese encephalitis vaccination. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, W.; Soares Magalhaes, R.J.; Bi, P.; Ding, F.; Sun, H.; Li, S.; Yin, W.; Wei, L.; Liu, Q.; et al. The role of environmental factors in the spatial distribution of Japanese encephalitis in mainland China. Environ. Int. 2014, 73, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Zhang, W.Y.; Ding, F.; Hu, W.B.; Soares Magalhaes, R.J.; Sun, H.L.; Li, Y.X.; Zou, W.; Wang, Y.; Liu, Q.Y.; et al. Spatiotemporal patterns of Japanese encephalitis in China; 2002–2010. PLoS Negl. Trop. Dis. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cao, M.; Feng, H.H.; Fan, H.; Chen, F.; Feng, Z.; Li, X.; Zhou, X.H. Japanese encephalitis risk and contextual risk factors in southwest China: A Bayesian hierarchical spatial and spatiotemporal analysis. Int. J. Environ. Res. Public Health 2014, 11, 4201–4217. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cui, S.; Gao, X.; Wang, H.; Song, M.; Li, M.; Fu, S.; Lv, Z.; He, Y.; Lei, W.; et al. The Spatio-temporal Distribution of Japanese Encephalitis Cases in Different Age Groups in Mainland China, 2004–2014. PLoS Negl. Trop. Dis. 2016, 10. [Google Scholar] [CrossRef] [PubMed]
- Impoinvil, D.E.; Ooi, M.H.; Diggle, P.J.; Caminade, C.; Cardosa, M.J.; Morse, A.P.; Baylis, M.; Solomon, T. The effect of vaccination coverage and climate on Japanese encephalitis in Sarawak; Malaysia. PLoS. Negl. Trop. Dis. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Impoinvil, D.E.; Solomon, T.; Schluter, W.W.; Rayamajhi, A.; Bichha, R.P.; Shakya, G.; Caminade, C.; Baylis, M. The spatial heterogeneity between Japanese encephalitis incidence distribution and environmental variables in Nepal. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, Z.; Zhang, C.; Jiang, B. Short-term effects of floods on Japanese encephalitis in Nanchong; China; 2007–2012: A time-stratified case-crossover study. Sci. Total. Environ. 2016, 563–564, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Lin, C.Y.; Wu, Y.T.; Wu, P.C.; Lung, S.C.; Su, H.J. Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994–2008. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.L.; Chang, H.L.; Lin, C.Y.; Chen, K.T. Seasonal Patterns of Japanese Encephalitis and Associated Meteorological Factors in Taiwan. Int. J. Environ. Res. Public Health 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Nguyen-Viet, H.; Lee, M.; Duc, P.P.; Grace, D. Seasonality of Viral Encephalitis and Associated Environmental Risk Factors in Son La and Thai Binh Provinces in Vietnam from 2004 to 2013. Am. J. Trop. Med. Hyg. 2017, 96, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Samuel, P.P.; Arunachalam, N.; Rajendran, R.; Leo, S.V.; Ayanar, K.; Balasubramaniam, R.; Tyagi, B.K. Temporal variation in the susceptibility of Culex tritaeniorhynchus (Diptera: Culicidae) to Japanese encephalitis virus in an endemic area of Tamil Nadu; South India. Vector Borne Zoonotic Dis. 2010, 10, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Escaramís, G.; Carrasco, J.L.; Ascaso, C. Detection of significant disease risks using a spatial conditional autoregressive model. Biometrics 2008, 64, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Gou, F.; Liu, X.; Ren, X.; Liu, D.; Liu, H.; Wei, K.; Yang, X.; Cheng, Y.; Zheng, Y.; Jiang, X.; et al. Socio-ecological factors and hand; foot and mouth disease in dry climate regions: A Bayesian spatial approach in Gansu; China. Int. J. Biometeorol. 2017, 61, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kockelman, K.M. A Poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods. Accid. Anal. Prev. 2013, 60, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Tassone, E.C.; Waller, L.A.; Casper, M.L. Small-area racial disparity in stroke mortality: An application of bayesian spatial hierarchical modelling. Epidemiology 2009, 20, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Hu, W.; Mengersen, K.; Tong, S. Socio-environmental drivers and suicide in Australia: Bayesian spatial analysis. BMC Public Health 2014, 14, 681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, D.; Robinson, T.; Stevenson, M.; Stevens, K.B.; Rogers, D.; Clements, A.C. Spatial Analysis in Epidemiology; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Balenghien, T.; Carron, A.; Sinègre, G.; Bicout, D.J. Mosquito density forecast from flooding: Population dynamics model for Aedes caspius (Pallas). Bull. Entomol. Res. 2010, 100, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Hay, S.I.; Myers, M.F.; Burke, D.S.; Vaughn, D.W.; Endy, T.; Ananda, N.; Shanks, G.D.; Snow, R.W.; Rogers, D.J. Etiology of interepidemic periods of mosquito-borne disease. Proc. Natl. Acad. Sci. USA 2000, 97, 9335–9339. [Google Scholar] [CrossRef] [PubMed]
- Masuoka, P.; Klein, T.A.; Kim, H.C.; Claborn, D.M.; Achee, N.; Andre, R.; Chamberlin, J.; Small, J.; Anyamba, A.; Lee, D.K.; et al. Modeling the distribution of Culex tritaeniorhynchus to predict Japanese encephalitis distribution in the Republic of Korea. Geospat. Health 2010, 5, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Le Flohic, G.; Porphyre, V.; Barbazan, P.; Gonzalez, J.P. Review of climate; landscape; and viral genetics as drivers of the Japanese encephalitis virus ecology. PLoS Negl. Trop. Dis. 2013, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, R.H.; Masuoka, P.; Klein, T.A.; Kim, H.C.; Somer, T.; Grieco, J. Ecological niche modeling to estimate the distribution of Japanese encephalitis virus in Asia. PLoS Negl. Trop. Dis. 2012, 6. [Google Scholar] [CrossRef] [PubMed]
- Bi, P.; Zhang, Y.; Parton, K.A. Weather variables and Japanese encephalitis in the metropolitan area of Jinan city, China. J. Infect. 2007, 55, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Murty, U.S.; Rao, M.S.; Arunachalam, N. The effects of climatic factors on the distribution and abundance of Japanese encephalitis vectors in Kurnool district of Andhra Pradesh; India. J. Vector Borne Dis. 2010, 47, 26–32. [Google Scholar] [PubMed]
- Zheng, Y.; Li, M.; Wang, H.; Liang, G. Japanese encephalitis and Japanese encephalitis virus in mainland China. Rev. Med. Virol. 2012, 22, 301–322. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Maity, K.; Jana, S.; Maiti, M. Application of various control strategies to Japanese encephalitic: A mathematical study with human; pig and mosquito. Math Biosci. 2016, 282, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Patil, S.; Hugar, L.B.; vanLoon, G. Sustainability of current agriculture practices; community perception; and implications for ecosystem health: An Indian study. Ecohealth 2011, 8, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Raju, K.H.; Sabesan, S.; Rajavel, A.R.; Subramanian, S.; Natarajan, R.; Thenmozhi, V.; Tyagi, B.K.; Jambulingam, P. A Preliminary Study to Forecast Japanese Encephalitis Vector Abundance in Paddy Growing Area; with the Aid of Radar Satellite Images. Vector Borne Zoonotic Dis. 2016, 16, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Sunish, I.P.; Reuben, R. Factors influencing the abundance of Japanese encephalitis vectors in rice fields in India—I. Abiotic. Med. Vet. Entomol. 2001, 15, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Lee, D. A comparison of conditional autoregressive models used in Bayesian disease mapping. Spat. Spatio-Temporal Epidemiol. 2011, 2, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Alegana, V.A.; Atkinson, P.M.; Wright, J.A.; Kamwi, R.; Uusiku, P.; Katokele, S.; Snow, R.W.; Noor, A.M. Estimation of malaria incidence in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial-temporal models. Spat. Spatio-Temporal. Epidemiol. 2013, 7, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Clements, A.; Williams, G.; Tong, S.; Mengersen, K. Bayesian spatiotemporal analysis of socio-ecologic drivers of Ross River virus transmission in Queensland; Australia. Am. J. Trop. Med. Hyg. 2010, 83, 722–728. [Google Scholar] [CrossRef] [PubMed]
Years | Total | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | ||
Months | ||||||||||
January | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
February | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
March | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
April–May | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
June | 2 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 5 |
July | 134 | 10 | 1 | 37 | 10 | 4 | 0 | 13 | 0 | 209 |
August | 322 | 92 | 31 | 116 | 65 | 17 | 48 | 88 | 49 | 828 |
September | 11 | 17 | 10 | 8 | 24 | 5 | 15 | 44 | 6 | 140 |
October | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 7 | 0 | 11 |
November–December | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Regions | ||||||||||
North | 31 | 3 | 2 | 9 | 4 | 0 | 0 | 34 | 0 | 83 |
Middle | 253 | 67 | 25 | 85 | 67 | 18 | 46 | 92 | 30 | 683 |
South | 188 | 50 | 15 | 68 | 31 | 11 | 17 | 26 | 25 | 431 |
Total | 472 | 120 | 42 | 162 | 102 | 29 | 63 | 152 | 55 | 1197 |
Mean | SD. | Min | Quantile | ||||
---|---|---|---|---|---|---|---|
25 | 50 | 75 | Max | ||||
IN | 0.37 | 0.32 | 0.00 | 0.12 | 0.29 | 0.55 | 1.55 |
RF | 95.33 | 21.00 | 58.74 | 83.08 | 88.03 | 105.06 | 169.68 |
HM | 72.07 | 5.57 | 59.02 | 69.93 | 71.45 | 75.46 | 81.53 |
Tmax | 25.91 | 0.93 | 23.49 | 25.30 | 25.78 | 26.50 | 28.08 |
Tmin | 20.17 | 1.59 | 12.01 | 14.78 | 16.05 | 17.02 | 18.60 |
Tmean | 15.82 | 1.12 | 17.96 | 19.18 | 20.16 | 21.04 | 22.38 |
SS | 174.95 | 24.57 | 129.24 | 158.30 | 171.19 | 185.29 | 233.27 |
AP | 916.76 | 19.58 | 870.95 | 901.31 | 916.33 | 931.42 | 957.59 |
UB | 41.19 | 19.95 | 17.17 | 28.44 | 33.36 | 47.27 | 100.00 |
PPD | 10.13 | 36.26 | 0.18 | 0.78 | 1.65 | 4.67 | 270.70 |
PHR | 0.39 | 0.38 | 0.00 | 0.13 | 0.27 | 0.51 | 2.28 |
EL | 738.88 | 300.47 | 212.00 | 469.00 | 693.00 | 959.00 | 1543.00 |
IN | RF | HM | Tmax | Tmin | Tmean | SS | AP | UB | PPD | PHR | |
---|---|---|---|---|---|---|---|---|---|---|---|
RF | 0.415 ** | 1.000 | |||||||||
HM | 0.326 ** | 0.907 ** | 1.000 | ||||||||
Tmax | 0.109 | 0.450 ** | 0.516 ** | 1.000 | |||||||
Tmin | 0.171 | 0.653 ** | 0.780 ** | 0.883 ** | 1.000 | ||||||
Tmean | 0.150 | 0.561 ** | 0.680 ** | 0.929 ** | 0.982 ** | 1.000 | |||||
SS | −0.220 * | −0.763 ** | −0.906 ** | −0.545 ** | −0.782 ** | −0.708 ** | 1.000 | ||||
AP | 0.162 | 0.579 ** | 0.673 ** | 0.945 ** | 0.963 ** | 0.986 ** | −0.685 ** | 1.000 | |||
UB | −0.414 ** | −0.334 ** | −0.240 * | −0.072 | −0.124 | −0.103 | 0.112 | −0.133 | 1.000 | ||
PPD | −0.212 * | −0.186 | 0.021 | 0.117 | 0.259 ** | 0.292 ** | −0.204 * | 0.242 * | 0.230 * | 1.000 | |
PHR | 0.284 ** | 0.544 ** | 0.474 ** | 0.414 ** | 0.439 ** | 0.409 ** | −0.380 ** | 0.422 ** | −0.437 ** | −0.351 ** | 1.000 |
EL | 0.035 | −0.113 | −0.306 ** | −0.526 ** | −0.621 ** | −0.643 ** | 0.422 ** | −0.603 ** | −0.122 | −0.679 ** | −0.001 |
Year | Variable | Mean | SD | MC Error | 2.50% | Median | 97.50% |
---|---|---|---|---|---|---|---|
2006–2008 DIC: 482.357 | RF | −0.00505 | 0.026 | 0.001346 | −0.05675 | −0.00562 | 0.04801 |
Tmin | 0.1757 | 0.8161 | 0.04699 | −1.392 | 0.2904 | 1.381 | |
UB | −0.01447 | 0.006339 | 8.7 × 10−5 | −0.02694 | −0.01446 | −0.00206 | |
PPD | −0.00505 | 0.005126 | 5.15 × 10−5 | −0.01562 | −0.00489 | 0.004593 | |
PHR | −0.3778 | 0.3247 | 0.008936 | −1.017 | −0.3775 | 0.259 | |
2009–2011 DIC: 381.612 | RF | −0.002776 | 0.01136 | 4.55 × 10−4 | −0.02498 | −0.002908 | 0.01965 |
HM | 0.0434 | 0.09243 | 0.005146 | −0.1153 | 0.03623 | 0.2319 | |
Tmin | 1.59 | 1.488 | 0.0858 | −1.496 | 1.411 | 4.751 | |
UB | −0.01466 | 0.007114 | 1.28 × 10−4 | −0.029 | −0.01457 | −9.74 × 10−4 | |
PPD | −0.005596 | 0.00557 | 5.00 × 10−5 | −0.0174 | −0.005294 | 0.004608 | |
PHR | −0.7085 | 0.4878 | 0.01128 | −1.677 | −0.7072 | 0.2421 | |
2012–2014 DIC: 401.925 | RF | 0.003558 | 0.001654 | 6.26 × 10−5 | 5.81 × 10−4 | 0.003453 | 0.007144 |
Tmin | −3.901 | 1.248 | 0.0719 | −6.03 | −3.89 | −1.489 | |
UB | −0.02025 | 0.005439 | 8.26 × 10−5 | −0.03087 | −0.02026 | −0.009464 | |
PPD | −0.001663 | 0.004063 | 5.48 × 10−5 | −0.01047 | −0.001387 | 0.00552 | |
PHR | −0.4917 | 0.2732 | 0.006128 | −1.051 | −0.4817 | 0.01762 |
Month of JE | Lag and DIC | Variable | Mean | SD | MC Error | 2.50% | Median | 97.50% |
---|---|---|---|---|---|---|---|---|
August | 1-month DIC: 252.858 | RF | 0.004155 | 0.002431 | 8.09 × 10−5 | −7.73 × 10−4 | 0.004221 | 0.008774 |
Tmin | −1.083 | 1.174 | 0.06731 | −4.112 | −0.8657 | 0.6437 | ||
UB | −0.02564 | 0.009119 | 1.21 × 10−4 | −0.0438 | −0.02556 | −0.007921 | ||
PPD | −0.01713 | 0.01472 | 1.12 × 10−4 | −0.05335 | −0.01435 | 0.003748 | ||
PHR | −1.165 | 0.5232 | 0.01226 | −2.261 | −1.141 | −0.209 | ||
2-month DIC: 251.518 | RF | 0.00312 | 0.007369 | 2.84 × 10−4 | −0.01214 | 0.003419 | 0.01692 | |
Tmin | −2.779 | 1.397 | 0.08016 | −5.123 | −3.009 | 0.2639 | ||
UB | −0.02573 | 0.00924 | 1.20 × 10−4 | −0.04408 | −0.02565 | −0.00777 | ||
PPD | −0.01325 | 0.01315 | 1.37 × 10−4 | −0.04547 | −0.01084 | 0.005502 | ||
PHR | −0.9929 | 0.5402 | 0.01096 | −2.15 | −0.9573 | −0.03795 | ||
3-month DIC: 243.944 | RF | −0.05158 | 0.01391 | 5.44 × 10−4 | −0.07931 | −0.05139 | −0.02518 | |
Tmin | 0.2289 | 0.952 | 0.05355 | −1.685 | 0.3494 | 1.904 | ||
UB | −0.02759 | 0.008652 | 1.45 × 10−4 | −0.04498 | −0.02749 | −0.01094 | ||
PPD | −0.01212 | 0.01335 | 1.65 × 10−4 | −0.045010 | −0.009631 | 0.006669 | ||
PHR | −1.664 | 0.5583 | 0.01578 | −2.83 | −1.634 | −0.6456 | ||
September | 1-month DIC: 155.262 | RF | −0.04816 | 0.02992 | 0.00103 | −0.1111 | −0.04633 | 0.005663 |
Tmin | −2.952 | 1.387 | 0.07904 | −5.973 | −2.87 | −0.05671 | ||
UB | −0.01319 | 0.01744 | 2.87 × 10−4 | −0.04756 | −0.0133 | 0.02167 | ||
PPD | −0.1252 | 0.1036 | 0.00244 | −0.3847 | −0.1015 | 0.002195 | ||
PHR | −0.3601 | 0.753 | 0.0169 | −1.856 | −0.3579 | 1.128 | ||
2-month DIC: 140.323 | RF | 0.01925 | 0.004357 | 2.08 × 10−4 | 0.01163 | 0.0189 | 0.02872 | |
Tmin | −1.68 | 2.081 | 0.1196 | −5.456 | −1.376 | 1.871 | ||
UB | −0.01898 | 0.01402 | 1.76 × 10−4 | −0.04658 | −0.01895 | 0.008462 | ||
PPD | −0.1021 | 0.08615 | 1.70 × 10−3 | −0.3129 | −0.08403 | 0.006762 | ||
PHR | −0.07627 | 0.5582 | 0.01121 | −1.267 | −0.04381 | 0.9268 | ||
3-month DIC: 147.809 | RF | −0.05426 | 0.02199 | 9.76 × 10−4 | −0.09975 | −0.05336 | −0.01424 | |
Tmin | −5.791 | 1.562 | 0.08906 | −9.645 | −5.492 | −3.489 | ||
UB | −0.02307 | 0.01343 | 1.76 × 10−4 | −0.05014 | −0.02288 | 0.002658 | ||
PPD | −0.06881 | 0.0592 | 8.42 × 10−4 | −0.2163 | −0.05536 | 0.00457 | ||
PHR | −0.5815 | 0.5584 | 0.009745 | −1.767 | −0.5504 | 0.4278 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Hu, W.; Qi, X.; Zhuang, G. How Socio-Environmental Factors Are Associated with Japanese Encephalitis in Shaanxi, China—A Bayesian Spatial Analysis. Int. J. Environ. Res. Public Health 2018, 15, 608. https://doi.org/10.3390/ijerph15040608
Zhang S, Hu W, Qi X, Zhuang G. How Socio-Environmental Factors Are Associated with Japanese Encephalitis in Shaanxi, China—A Bayesian Spatial Analysis. International Journal of Environmental Research and Public Health. 2018; 15(4):608. https://doi.org/10.3390/ijerph15040608
Chicago/Turabian StyleZhang, Shaobai, Wenbiao Hu, Xin Qi, and Guihua Zhuang. 2018. "How Socio-Environmental Factors Are Associated with Japanese Encephalitis in Shaanxi, China—A Bayesian Spatial Analysis" International Journal of Environmental Research and Public Health 15, no. 4: 608. https://doi.org/10.3390/ijerph15040608