How Socio-Environmental Factors Are Associated with Japanese Encephalitis in Shaanxi, China—A Bayesian Spatial Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Data Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- SAGE Working Group. Background Paper on JE Vaccines. Available online: http://www.who.int /immunization/sage/meetings/2014/october/1_JE_Vaccine_Background_Paper.pdf (accessed on 12 June 2017).
- Ghosh, D.; Basu, A. Japanese encephalitis-a pathological and clinical perspective. PLoS Negl. Trop. Dis. 2009, 3. [Google Scholar] [CrossRef] [PubMed]
- Misra, U.K.; Kalita, J. Overview: Japanese encephalitis. Prog. Neurobiol. 2010, 91, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Van den Hurk, A.F.; Ritchie, S.A.; Mackenzie, J.S. Ecology and geographical expansion of Japanese encephalitis virus. Annu. Rev. Entomol. 2009, 54, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Solomon, T. Control of Japanese encephalitis—Within our grasp? N. Engl. J. Med. 2006, 355, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.L.; Hills, S.L.; Fischer, M.; Jacobson, J.A.; Hoke, C.H.; Hombach, J.M.; Marfin, A.A.; Solomon, T.; Tsai, T.F.; Tsui, V.D.; et al. Estimated global incidence of Japanese encephalitis: A systematic review. Bull. World Health Organ. 2011, 89, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Nasci, R.; Liang, G. The neglected arboviral infections in mainland China. PLoS Negl. Trop. Dis. 2010, 4. [Google Scholar] [CrossRef] [PubMed]
- Erlanger, T.E.; Weiss, S.; Keiser, J.; Utzinger, J.; Wiedenmayer, K. Past, present, and future of Japanese encephalitis. Emerg. Infect. Dis. 2009, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.F.; Griffiths, U.K.; Pennington, M.; Yu, H.; Jit, M. Systematic review of economic evaluations of vaccination programs in mainland China: Are they sufficient to inform decision making? Vaccine 2015, 33, 6164–6172. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, X.; Ren, Z.; Cao, Y.; Wang, J.; Liang, G. A spatial and temporal analysis of Japanese encephalitis in mainland China; 1963–1975: A period without Japanese encephalitis vaccination. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, W.; Soares Magalhaes, R.J.; Bi, P.; Ding, F.; Sun, H.; Li, S.; Yin, W.; Wei, L.; Liu, Q.; et al. The role of environmental factors in the spatial distribution of Japanese encephalitis in mainland China. Environ. Int. 2014, 73, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Zhang, W.Y.; Ding, F.; Hu, W.B.; Soares Magalhaes, R.J.; Sun, H.L.; Li, Y.X.; Zou, W.; Wang, Y.; Liu, Q.Y.; et al. Spatiotemporal patterns of Japanese encephalitis in China; 2002–2010. PLoS Negl. Trop. Dis. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cao, M.; Feng, H.H.; Fan, H.; Chen, F.; Feng, Z.; Li, X.; Zhou, X.H. Japanese encephalitis risk and contextual risk factors in southwest China: A Bayesian hierarchical spatial and spatiotemporal analysis. Int. J. Environ. Res. Public Health 2014, 11, 4201–4217. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cui, S.; Gao, X.; Wang, H.; Song, M.; Li, M.; Fu, S.; Lv, Z.; He, Y.; Lei, W.; et al. The Spatio-temporal Distribution of Japanese Encephalitis Cases in Different Age Groups in Mainland China, 2004–2014. PLoS Negl. Trop. Dis. 2016, 10. [Google Scholar] [CrossRef] [PubMed]
- Impoinvil, D.E.; Ooi, M.H.; Diggle, P.J.; Caminade, C.; Cardosa, M.J.; Morse, A.P.; Baylis, M.; Solomon, T. The effect of vaccination coverage and climate on Japanese encephalitis in Sarawak; Malaysia. PLoS. Negl. Trop. Dis. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Impoinvil, D.E.; Solomon, T.; Schluter, W.W.; Rayamajhi, A.; Bichha, R.P.; Shakya, G.; Caminade, C.; Baylis, M. The spatial heterogeneity between Japanese encephalitis incidence distribution and environmental variables in Nepal. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, Z.; Zhang, C.; Jiang, B. Short-term effects of floods on Japanese encephalitis in Nanchong; China; 2007–2012: A time-stratified case-crossover study. Sci. Total. Environ. 2016, 563–564, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Lin, C.Y.; Wu, Y.T.; Wu, P.C.; Lung, S.C.; Su, H.J. Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994–2008. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.L.; Chang, H.L.; Lin, C.Y.; Chen, K.T. Seasonal Patterns of Japanese Encephalitis and Associated Meteorological Factors in Taiwan. Int. J. Environ. Res. Public Health 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Nguyen-Viet, H.; Lee, M.; Duc, P.P.; Grace, D. Seasonality of Viral Encephalitis and Associated Environmental Risk Factors in Son La and Thai Binh Provinces in Vietnam from 2004 to 2013. Am. J. Trop. Med. Hyg. 2017, 96, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Samuel, P.P.; Arunachalam, N.; Rajendran, R.; Leo, S.V.; Ayanar, K.; Balasubramaniam, R.; Tyagi, B.K. Temporal variation in the susceptibility of Culex tritaeniorhynchus (Diptera: Culicidae) to Japanese encephalitis virus in an endemic area of Tamil Nadu; South India. Vector Borne Zoonotic Dis. 2010, 10, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Escaramís, G.; Carrasco, J.L.; Ascaso, C. Detection of significant disease risks using a spatial conditional autoregressive model. Biometrics 2008, 64, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Gou, F.; Liu, X.; Ren, X.; Liu, D.; Liu, H.; Wei, K.; Yang, X.; Cheng, Y.; Zheng, Y.; Jiang, X.; et al. Socio-ecological factors and hand; foot and mouth disease in dry climate regions: A Bayesian spatial approach in Gansu; China. Int. J. Biometeorol. 2017, 61, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kockelman, K.M. A Poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods. Accid. Anal. Prev. 2013, 60, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Tassone, E.C.; Waller, L.A.; Casper, M.L. Small-area racial disparity in stroke mortality: An application of bayesian spatial hierarchical modelling. Epidemiology 2009, 20, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Hu, W.; Mengersen, K.; Tong, S. Socio-environmental drivers and suicide in Australia: Bayesian spatial analysis. BMC Public Health 2014, 14, 681. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, D.; Robinson, T.; Stevenson, M.; Stevens, K.B.; Rogers, D.; Clements, A.C. Spatial Analysis in Epidemiology; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Balenghien, T.; Carron, A.; Sinègre, G.; Bicout, D.J. Mosquito density forecast from flooding: Population dynamics model for Aedes caspius (Pallas). Bull. Entomol. Res. 2010, 100, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Hay, S.I.; Myers, M.F.; Burke, D.S.; Vaughn, D.W.; Endy, T.; Ananda, N.; Shanks, G.D.; Snow, R.W.; Rogers, D.J. Etiology of interepidemic periods of mosquito-borne disease. Proc. Natl. Acad. Sci. USA 2000, 97, 9335–9339. [Google Scholar] [CrossRef] [PubMed]
- Masuoka, P.; Klein, T.A.; Kim, H.C.; Claborn, D.M.; Achee, N.; Andre, R.; Chamberlin, J.; Small, J.; Anyamba, A.; Lee, D.K.; et al. Modeling the distribution of Culex tritaeniorhynchus to predict Japanese encephalitis distribution in the Republic of Korea. Geospat. Health 2010, 5, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Le Flohic, G.; Porphyre, V.; Barbazan, P.; Gonzalez, J.P. Review of climate; landscape; and viral genetics as drivers of the Japanese encephalitis virus ecology. PLoS Negl. Trop. Dis. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.H.; Masuoka, P.; Klein, T.A.; Kim, H.C.; Somer, T.; Grieco, J. Ecological niche modeling to estimate the distribution of Japanese encephalitis virus in Asia. PLoS Negl. Trop. Dis. 2012, 6. [Google Scholar] [CrossRef] [PubMed]
- Bi, P.; Zhang, Y.; Parton, K.A. Weather variables and Japanese encephalitis in the metropolitan area of Jinan city, China. J. Infect. 2007, 55, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Murty, U.S.; Rao, M.S.; Arunachalam, N. The effects of climatic factors on the distribution and abundance of Japanese encephalitis vectors in Kurnool district of Andhra Pradesh; India. J. Vector Borne Dis. 2010, 47, 26–32. [Google Scholar] [PubMed]
- Zheng, Y.; Li, M.; Wang, H.; Liang, G. Japanese encephalitis and Japanese encephalitis virus in mainland China. Rev. Med. Virol. 2012, 22, 301–322. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Maity, K.; Jana, S.; Maiti, M. Application of various control strategies to Japanese encephalitic: A mathematical study with human; pig and mosquito. Math Biosci. 2016, 282, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Patil, S.; Hugar, L.B.; vanLoon, G. Sustainability of current agriculture practices; community perception; and implications for ecosystem health: An Indian study. Ecohealth 2011, 8, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Raju, K.H.; Sabesan, S.; Rajavel, A.R.; Subramanian, S.; Natarajan, R.; Thenmozhi, V.; Tyagi, B.K.; Jambulingam, P. A Preliminary Study to Forecast Japanese Encephalitis Vector Abundance in Paddy Growing Area; with the Aid of Radar Satellite Images. Vector Borne Zoonotic Dis. 2016, 16, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Sunish, I.P.; Reuben, R. Factors influencing the abundance of Japanese encephalitis vectors in rice fields in India—I. Abiotic. Med. Vet. Entomol. 2001, 15, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Lee, D. A comparison of conditional autoregressive models used in Bayesian disease mapping. Spat. Spatio-Temporal Epidemiol. 2011, 2, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Alegana, V.A.; Atkinson, P.M.; Wright, J.A.; Kamwi, R.; Uusiku, P.; Katokele, S.; Snow, R.W.; Noor, A.M. Estimation of malaria incidence in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial-temporal models. Spat. Spatio-Temporal. Epidemiol. 2013, 7, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Clements, A.; Williams, G.; Tong, S.; Mengersen, K. Bayesian spatiotemporal analysis of socio-ecologic drivers of Ross River virus transmission in Queensland; Australia. Am. J. Trop. Med. Hyg. 2010, 83, 722–728. [Google Scholar] [CrossRef] [PubMed]
Years | Total | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | ||
Months | ||||||||||
January | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
February | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
March | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
April–May | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
June | 2 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 5 |
July | 134 | 10 | 1 | 37 | 10 | 4 | 0 | 13 | 0 | 209 |
August | 322 | 92 | 31 | 116 | 65 | 17 | 48 | 88 | 49 | 828 |
September | 11 | 17 | 10 | 8 | 24 | 5 | 15 | 44 | 6 | 140 |
October | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 7 | 0 | 11 |
November–December | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Regions | ||||||||||
North | 31 | 3 | 2 | 9 | 4 | 0 | 0 | 34 | 0 | 83 |
Middle | 253 | 67 | 25 | 85 | 67 | 18 | 46 | 92 | 30 | 683 |
South | 188 | 50 | 15 | 68 | 31 | 11 | 17 | 26 | 25 | 431 |
Total | 472 | 120 | 42 | 162 | 102 | 29 | 63 | 152 | 55 | 1197 |
Mean | SD. | Min | Quantile | ||||
---|---|---|---|---|---|---|---|
25 | 50 | 75 | Max | ||||
IN | 0.37 | 0.32 | 0.00 | 0.12 | 0.29 | 0.55 | 1.55 |
RF | 95.33 | 21.00 | 58.74 | 83.08 | 88.03 | 105.06 | 169.68 |
HM | 72.07 | 5.57 | 59.02 | 69.93 | 71.45 | 75.46 | 81.53 |
Tmax | 25.91 | 0.93 | 23.49 | 25.30 | 25.78 | 26.50 | 28.08 |
Tmin | 20.17 | 1.59 | 12.01 | 14.78 | 16.05 | 17.02 | 18.60 |
Tmean | 15.82 | 1.12 | 17.96 | 19.18 | 20.16 | 21.04 | 22.38 |
SS | 174.95 | 24.57 | 129.24 | 158.30 | 171.19 | 185.29 | 233.27 |
AP | 916.76 | 19.58 | 870.95 | 901.31 | 916.33 | 931.42 | 957.59 |
UB | 41.19 | 19.95 | 17.17 | 28.44 | 33.36 | 47.27 | 100.00 |
PPD | 10.13 | 36.26 | 0.18 | 0.78 | 1.65 | 4.67 | 270.70 |
PHR | 0.39 | 0.38 | 0.00 | 0.13 | 0.27 | 0.51 | 2.28 |
EL | 738.88 | 300.47 | 212.00 | 469.00 | 693.00 | 959.00 | 1543.00 |
IN | RF | HM | Tmax | Tmin | Tmean | SS | AP | UB | PPD | PHR | |
---|---|---|---|---|---|---|---|---|---|---|---|
RF | 0.415 ** | 1.000 | |||||||||
HM | 0.326 ** | 0.907 ** | 1.000 | ||||||||
Tmax | 0.109 | 0.450 ** | 0.516 ** | 1.000 | |||||||
Tmin | 0.171 | 0.653 ** | 0.780 ** | 0.883 ** | 1.000 | ||||||
Tmean | 0.150 | 0.561 ** | 0.680 ** | 0.929 ** | 0.982 ** | 1.000 | |||||
SS | −0.220 * | −0.763 ** | −0.906 ** | −0.545 ** | −0.782 ** | −0.708 ** | 1.000 | ||||
AP | 0.162 | 0.579 ** | 0.673 ** | 0.945 ** | 0.963 ** | 0.986 ** | −0.685 ** | 1.000 | |||
UB | −0.414 ** | −0.334 ** | −0.240 * | −0.072 | −0.124 | −0.103 | 0.112 | −0.133 | 1.000 | ||
PPD | −0.212 * | −0.186 | 0.021 | 0.117 | 0.259 ** | 0.292 ** | −0.204 * | 0.242 * | 0.230 * | 1.000 | |
PHR | 0.284 ** | 0.544 ** | 0.474 ** | 0.414 ** | 0.439 ** | 0.409 ** | −0.380 ** | 0.422 ** | −0.437 ** | −0.351 ** | 1.000 |
EL | 0.035 | −0.113 | −0.306 ** | −0.526 ** | −0.621 ** | −0.643 ** | 0.422 ** | −0.603 ** | −0.122 | −0.679 ** | −0.001 |
Year | Variable | Mean | SD | MC Error | 2.50% | Median | 97.50% |
---|---|---|---|---|---|---|---|
2006–2008 DIC: 482.357 | RF | −0.00505 | 0.026 | 0.001346 | −0.05675 | −0.00562 | 0.04801 |
Tmin | 0.1757 | 0.8161 | 0.04699 | −1.392 | 0.2904 | 1.381 | |
UB | −0.01447 | 0.006339 | 8.7 × 10−5 | −0.02694 | −0.01446 | −0.00206 | |
PPD | −0.00505 | 0.005126 | 5.15 × 10−5 | −0.01562 | −0.00489 | 0.004593 | |
PHR | −0.3778 | 0.3247 | 0.008936 | −1.017 | −0.3775 | 0.259 | |
2009–2011 DIC: 381.612 | RF | −0.002776 | 0.01136 | 4.55 × 10−4 | −0.02498 | −0.002908 | 0.01965 |
HM | 0.0434 | 0.09243 | 0.005146 | −0.1153 | 0.03623 | 0.2319 | |
Tmin | 1.59 | 1.488 | 0.0858 | −1.496 | 1.411 | 4.751 | |
UB | −0.01466 | 0.007114 | 1.28 × 10−4 | −0.029 | −0.01457 | −9.74 × 10−4 | |
PPD | −0.005596 | 0.00557 | 5.00 × 10−5 | −0.0174 | −0.005294 | 0.004608 | |
PHR | −0.7085 | 0.4878 | 0.01128 | −1.677 | −0.7072 | 0.2421 | |
2012–2014 DIC: 401.925 | RF | 0.003558 | 0.001654 | 6.26 × 10−5 | 5.81 × 10−4 | 0.003453 | 0.007144 |
Tmin | −3.901 | 1.248 | 0.0719 | −6.03 | −3.89 | −1.489 | |
UB | −0.02025 | 0.005439 | 8.26 × 10−5 | −0.03087 | −0.02026 | −0.009464 | |
PPD | −0.001663 | 0.004063 | 5.48 × 10−5 | −0.01047 | −0.001387 | 0.00552 | |
PHR | −0.4917 | 0.2732 | 0.006128 | −1.051 | −0.4817 | 0.01762 |
Month of JE | Lag and DIC | Variable | Mean | SD | MC Error | 2.50% | Median | 97.50% |
---|---|---|---|---|---|---|---|---|
August | 1-month DIC: 252.858 | RF | 0.004155 | 0.002431 | 8.09 × 10−5 | −7.73 × 10−4 | 0.004221 | 0.008774 |
Tmin | −1.083 | 1.174 | 0.06731 | −4.112 | −0.8657 | 0.6437 | ||
UB | −0.02564 | 0.009119 | 1.21 × 10−4 | −0.0438 | −0.02556 | −0.007921 | ||
PPD | −0.01713 | 0.01472 | 1.12 × 10−4 | −0.05335 | −0.01435 | 0.003748 | ||
PHR | −1.165 | 0.5232 | 0.01226 | −2.261 | −1.141 | −0.209 | ||
2-month DIC: 251.518 | RF | 0.00312 | 0.007369 | 2.84 × 10−4 | −0.01214 | 0.003419 | 0.01692 | |
Tmin | −2.779 | 1.397 | 0.08016 | −5.123 | −3.009 | 0.2639 | ||
UB | −0.02573 | 0.00924 | 1.20 × 10−4 | −0.04408 | −0.02565 | −0.00777 | ||
PPD | −0.01325 | 0.01315 | 1.37 × 10−4 | −0.04547 | −0.01084 | 0.005502 | ||
PHR | −0.9929 | 0.5402 | 0.01096 | −2.15 | −0.9573 | −0.03795 | ||
3-month DIC: 243.944 | RF | −0.05158 | 0.01391 | 5.44 × 10−4 | −0.07931 | −0.05139 | −0.02518 | |
Tmin | 0.2289 | 0.952 | 0.05355 | −1.685 | 0.3494 | 1.904 | ||
UB | −0.02759 | 0.008652 | 1.45 × 10−4 | −0.04498 | −0.02749 | −0.01094 | ||
PPD | −0.01212 | 0.01335 | 1.65 × 10−4 | −0.045010 | −0.009631 | 0.006669 | ||
PHR | −1.664 | 0.5583 | 0.01578 | −2.83 | −1.634 | −0.6456 | ||
September | 1-month DIC: 155.262 | RF | −0.04816 | 0.02992 | 0.00103 | −0.1111 | −0.04633 | 0.005663 |
Tmin | −2.952 | 1.387 | 0.07904 | −5.973 | −2.87 | −0.05671 | ||
UB | −0.01319 | 0.01744 | 2.87 × 10−4 | −0.04756 | −0.0133 | 0.02167 | ||
PPD | −0.1252 | 0.1036 | 0.00244 | −0.3847 | −0.1015 | 0.002195 | ||
PHR | −0.3601 | 0.753 | 0.0169 | −1.856 | −0.3579 | 1.128 | ||
2-month DIC: 140.323 | RF | 0.01925 | 0.004357 | 2.08 × 10−4 | 0.01163 | 0.0189 | 0.02872 | |
Tmin | −1.68 | 2.081 | 0.1196 | −5.456 | −1.376 | 1.871 | ||
UB | −0.01898 | 0.01402 | 1.76 × 10−4 | −0.04658 | −0.01895 | 0.008462 | ||
PPD | −0.1021 | 0.08615 | 1.70 × 10−3 | −0.3129 | −0.08403 | 0.006762 | ||
PHR | −0.07627 | 0.5582 | 0.01121 | −1.267 | −0.04381 | 0.9268 | ||
3-month DIC: 147.809 | RF | −0.05426 | 0.02199 | 9.76 × 10−4 | −0.09975 | −0.05336 | −0.01424 | |
Tmin | −5.791 | 1.562 | 0.08906 | −9.645 | −5.492 | −3.489 | ||
UB | −0.02307 | 0.01343 | 1.76 × 10−4 | −0.05014 | −0.02288 | 0.002658 | ||
PPD | −0.06881 | 0.0592 | 8.42 × 10−4 | −0.2163 | −0.05536 | 0.00457 | ||
PHR | −0.5815 | 0.5584 | 0.009745 | −1.767 | −0.5504 | 0.4278 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Hu, W.; Qi, X.; Zhuang, G. How Socio-Environmental Factors Are Associated with Japanese Encephalitis in Shaanxi, China—A Bayesian Spatial Analysis. Int. J. Environ. Res. Public Health 2018, 15, 608. https://doi.org/10.3390/ijerph15040608
Zhang S, Hu W, Qi X, Zhuang G. How Socio-Environmental Factors Are Associated with Japanese Encephalitis in Shaanxi, China—A Bayesian Spatial Analysis. International Journal of Environmental Research and Public Health. 2018; 15(4):608. https://doi.org/10.3390/ijerph15040608
Chicago/Turabian StyleZhang, Shaobai, Wenbiao Hu, Xin Qi, and Guihua Zhuang. 2018. "How Socio-Environmental Factors Are Associated with Japanese Encephalitis in Shaanxi, China—A Bayesian Spatial Analysis" International Journal of Environmental Research and Public Health 15, no. 4: 608. https://doi.org/10.3390/ijerph15040608
APA StyleZhang, S., Hu, W., Qi, X., & Zhuang, G. (2018). How Socio-Environmental Factors Are Associated with Japanese Encephalitis in Shaanxi, China—A Bayesian Spatial Analysis. International Journal of Environmental Research and Public Health, 15(4), 608. https://doi.org/10.3390/ijerph15040608