Migrant Farmworkers’ Exposure to Pesticides in Sonora, Mexico
Abstract
:1. Introduction
2. Methods
2.1. Recruitment
2.2. Questionnaire
2.3. Urine Sample Collection
2.4. Urine Sample Laboratory Analysis
2.5. Data Analysis
3. Results
3.1. Socio-Demographic Characteristics
3.2. Self-Reported Pesticide Exposure and Work Activities
3.3. Urinary Pesticide Metabolite Concentrations
3.4. Associations between Pesticide Metabolite Concentrations and Socio-Demographic and Occupational Characteristics
4. Discussion
4.1. Possible Sources of Exposure to Detected Pesticides
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 12 December 2017).
- Albert, L. Panorama de los plaguicidas en México. RETEL Revista de Toxicología en Línea 2005, 8, 1–17. (In Spanish) [Google Scholar]
- Peérez-Olvera, M.; Navarro-Garza, H.; Miranda-Cruz, H. Use of Pesticides for Vegetable Crops in Mexico: Pesticides in the Modern World; INTECH Open Access Publisher: London, UK, 2011. [Google Scholar] [CrossRef]
- Koureas, M.; Tsakalof, A.; Tsatsakis, A.; Hadjichristodoulou, C. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol. Lett. 2012, 210, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Limon-Miro, A.T.; Aldana-Madrid, M.L.; Alvarez-Hernandez, G.; Antunez-Roman, L.E.; Rodriguez-Olibarria, G.; Valencia Juillerat, M.E. Breast milk intake and mother to infant pesticide transfer measured by deuterium oxide dilution in agricultural and urban areas of Mexico. Chemosphere 2017, 181, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Guerra, M.; Pérez-Herrera, N.; Quintanilla-Vega, B. Organophosphorous pesticides research in Mexico: Epidemiological and experimental approaches. Toxicol. Mech. Methods 2011, 21, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Tinoco-Ojanguren, R.; Halperin, D.C. Poverty, production, and health: Inhibition of erythrocyte cholinesterase via occupational exposure to organophosphate insecticides in Chiapas, Mexico. Arch. Environ. Heal. Int. J. 1998, 53, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Sandal, S.; Yilmaz, B. Genotoxic effects of chlorpyrifos, cypermethrin, endosulfan and 2,4-D on human peripheral lymphocytes cultured from smokers and nonsmokers. Environ. Toxicol. 2011, 26, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Colosio, C.; Tiramani, M.; Maroni, M. Neurobehavioral Effects of Pesticides: State of the Art. NeuroToxicology 2003, 24, 577–591. [Google Scholar] [CrossRef]
- Manthripragada, A.D.; Costello, S.; Cockburn, M.G.; Bronstein, J.M.; Ritz, B. Paraoxonase 1, agricultural organophosphate exposure, and Parkinson disease. Epidemiology 2010, 21, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Rohlman, D.S.; Anger, W.K.; Lein, P.J. Correlating neurobehavioral performance with biomarkers of organophosphorous pesticide exposure. Neurotoxicology 2011, 32, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, D.C.; Reid, A.; Bailey, H.D.; Milne, E.; Fritschi, L. Risk of childhood acute lymphoblastic leukaemia following parental occupational exposure to pesticides. Occup. Environ. Med. 2012, 69, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Soldin, O.P.; Nsouli-Maktabi, H.; Nsouly-Maktabi, H.; Genkinger, J.M.; Loffredo, C.A.; Ortega-Garcia, J.A.; Colantino, D.; Barr, D.B.; Luban, N.L.; Shad, A.T.; et al. Pediatric acute lymphoblastic leukemia and exposure to pesticides. Ther. Drug Monit. 2009, 31, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Heudorf, U.; Butte, W.; Schulz, C.; Angerer, J. Reference values for metabolites of pyrethroid and organophosphorous insecticides in urine for human biomonitoring in environmental medicine. Int. J. Hyg. Environ. Health 2006, 209, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Casarett, L.J.; Doull, J.; Klaassen, C.D. Casarett and Doull’s Toxicology: The Basic Science of Poisons; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Hughes, M.F.; Edwards, B.C. In vitro dermal absorption of pyrethroid pesticides in human and rat skin. Toxicol. Appl. Pharmacol. 2010, 246, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Repetto, R.; Baliga, S.S. Pesticides and immunosuppression: The risks to public health. Health Policy Plan. 1997, 12, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Soderlund, D.M.; Clark, J.M.; Sheets, L.P.; Mullin, L.S.; Piccirillo, V.J.; Sargent, D.; Stevens, J.T.; Weiner, M.L. Mechanisms of pyrethroid neurotoxicity: Implications for cumulative risk assessment. Toxicology 2002, 171, 3–59. [Google Scholar] [CrossRef]
- Ray, D.E.; Fry, J.R. A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol. Ther. 2006, 111, 174–193. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Symington, S.B. Pyrethroid action on calcium channels: Neurotoxicological implications. Invertebr. Neurosci. 2007, 7, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Bjørling-Poulsen, M.; Andersen, H.R.; Grandjean, P. Potential developmental neurotoxicity of pesticides used in Europe. Environ. Health 2008, 7, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeMicco, A.; Cooper, K.R.; Richardson, J.R.; White, L.A. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos. Toxicol. Sci. 2010, 113, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiao, J.; Hu, G.; Zhou, J.; Xiao, H.; Wang, X. Estrogenicity of organophosphorus and pyrethroid pesticides. J. Toxicol. Environ. Health Part A 2002, 65, 1419–1435. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.Y.; Shin, J.H.; Kim, H.S.; Lee, S.J.; Kang, I.H.; Kim, T.S.; Moon, H.J.; Choi, K.S.; Aree, M.; Han, S.Y. Assessing estrogenic activity of pyrethroid insecticides using in vitro combination assays. J. Reprod. Dev. 2004, 50, 245–255. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. EPA Pesticide Regulation Notice; EPA: Washington, DC, USA, 1996; Volume 96, pp. 1–10.
- Arcury, T.A.; Quandt, S.A.; Rao, P.; Russell, G.B. Pesticide use and safety training in Mexico: The experience of farmworkers employed in North Carolina. Hum. Organ. 2001, 60, 56–66. [Google Scholar] [CrossRef]
- Tansey, R.R.; Hyman, M.; Jacobs, R.; Merrill, L. Eradicating the pesticide problem in Latin America. Bus. Soc. Rev. 1995, 92, 55–59. [Google Scholar]
- Payán-Rentería, R.; Garibay-Chávez, G.; Rangel-Ascencio, R.; Preciado-Martínez, V.; Muñoz-Islas, L.; Beltrán-Miranda, C.; Mena-Munguía, S.; Jave-Suárez, L.; Feria-Velasco, A.; De Celis, R. Effect of chronic pesticide exposure in farm workers of a Mexico community. Arch. Environ. Occup. Health 2012, 67, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Chaín-Castro, T.D.J.; Barrón-Aragón, R.; Haro-García, L. Pesticide poisoning in Mexican seasonal farm workers. Int. J. Occup. Environ. Health 1998, 4, 202–203. [Google Scholar] [CrossRef] [PubMed]
- SEDESOL. Diagnostic Care Program Agricultural Workers; Ministry of Social Development: Mexico city, Mexico, 2010. (In Spanish)
- Alvarez, S. Jornaleros agrícolas: Invisibilización deliberada. La Jornada del Campo. La Jornada. 2012, 54, 1–5. (In Spanish) [Google Scholar]
- Aldana-Madrid, M.-L.; Silveira-Gramont, M.-I.; Zuno-Floriano, F.-G.; Rodríguez-Olibarría, G. Insecticide Residuality of Mexican Populations Occupationally Exposed. In Insecticides-Development of Safer and More Effective Technologies; InTech: London, UK, 2013. [Google Scholar] [Green Version]
- Hernandez, E. Determinacion de Insecticidas en Liquidos Corporales de Residentes Masculinos en Areas Agricolas del Sur de Sonora; Universidad de Sonora: Hermosillo, Mexico, 2010. (In Spanish) [Google Scholar]
- Davis, M.D.; Wade, E.L.; Restrepo, P.R.; Roman-Esteva, W.; Bravo, R.; Kuklenyik, P.; Calafat, A.M. Semi-automated solid phase extraction method for the mass spectrometric quantification of 12 specific metabolites of organophosphorus pesticides, synthetic pyrethroids, and select herbicides in human urine. J. Chromatogr. B 2013, 929, 18–26. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Biological Monitoring of Chemical Exposure in the Workplace: Guidelines; Geneva, Switzerland, 1996.
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornung, R.W.; Reed, L.D. Estimation of Average Concentration in the Presence of Nondetectable Values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Arcury, T.A.; Chen, H.; Laurienti, P.J.; Howard, T.D.; Barr, D.B.; Mora, D.C.; Quandt, S.A. Farmworker and nonfarmworker Latino immigrant men in North Carolina have high levels of specific pesticide urinary metabolites. Arch. Environ. Occup. Health 2017. [Google Scholar] [CrossRef] [PubMed]
- Panuwet, P.; Prapamontol, T.; Chantara, S.; Thavornyuthikarn, P.; Montesano, M.A.; Whitehead, R.D.; Barr, D.B. Concentrations of urinary pesticide metabolites in small-scale farmers in Chiang Mai Province, Thailand. Sci. Total. Environ. 2008, 407, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Handal, A.J.; Hund, L.; Páez, M.; Bear, S.; Greenberg, C.; Fenske, R.A.; Barr, D.B. Characterization of pesticide exposure in a sample of pregnant women in ecuador. Arch. Environ. Contam. Toxicol. 2016, 70, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Raymer, J.; Studabaker, W.; Gardner, M.; Talton, J.; Quandt, S.; Chen, H.; Michael, L.; McCombs, M.; Arcury, T. Pesticide exposures to migrant farmworkers in Eastern NC: Detection of metabolites in farmworker urine associated with housing violations and camp characteristics. Am. J. Ind. Med. 2014, 57, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Riederer, A.M.; Hunter, R.E.; Hayden, S.W.; Ryan, P.B. Pyrethroid and organophosphorus pesticides in composite diet samples from Atlanta, USA adults. Environ. Sci. Technol 2010, 44, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.K.; Sheldon, L.S.; Croghan, C.W.; Jones, P.A.; Robertson, G.L.; Chuang, J.C.; Wilson, N.K.; Lyu, C.W. Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Bradman, A.; Quirós-Alcalá, L.; Castorina, R.; Aguilar Schall, R.; Camacho, J.; Holland, N.T.; Barr, D.B.; Eskenazi, B. Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities. Environ. Health Perspect. 2015, 123, 1086–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnyk, L.J.; Xue, J.; Brown, G.G.; McCombs, M.; Nishioka, M.; Michael, L.C. Dietary intakes of pesticides based on community duplicate diet samples. Sci. Total Environ. 2014, 468–469, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Aldana-Madrid, M.L.; Valenzuela-Quintanar, A.I.; Silveira-Gramont, M.I.; Rodríguez-Olibarría, G.; Grajeda-Cota, P.; Zuno-Floriano, F.G.; Miller, M.G. Residual pyrethroids in fresh horticultural products in Sonora, Mexico. Bull. Environ. Contam. Toxicol. 2011, 87, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Quandt, S.A.; Hernández-Valero, M.A.; Grzywacz, J.G.; Hovey, J.D.; Gonzales, M.; Arcury, T.A. Workplace, household, and personal predictors of pesticide exposure for farmworkers. Environ. Health Perspect. 2006, 114, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Quandt, S.A.; Brooke, C.; Fagan, K.; Howe, A.; Thornburg, T.K.; McCurdy, S.A. Farmworker Housing in the United States and Its Impact on Health. New Solut. 2015, 25, 263–286. [Google Scholar] [CrossRef] [PubMed]
- Arcury, T.A.; Lu, C.; Chen, H.; Quandt, S.A. Pesticides present in migrant farmworker housing in North Carolina. Am. J. Ind. Med. 2014, 57, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, D.A. Physical and chemical properties of pyrethroids. Rev. Environ. Contam. Toxicol. 2002, 174, 49–170. [Google Scholar] [PubMed]
- Hernández, A.F.; Parrón, T.; Tsatsakis, A.M.; Requena, M.; Alarcón, R.; López-Guarnido, O. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology 2013, 307, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Wielgomas, B.; Krechniak, J. Toxicokinetic Interactions of α-Cypermethrin and Chlorpyrifos in Rats. Pol. J. Environ. Stud. 2007, 16, 267–274. [Google Scholar]
- Rohitrattana, J.; Siriwong, W.; Tunsaringkarn, T.; Panuwet, P.; Ryan, P.B.; Barr, D.B.; Robson, M.G.; Fiedler, N. Organophosphate pesticide exposure in school-aged children living in rice and aquacultural farming regions of Thailand. J. Agromed. 2014, 19, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, R.D. Renal and urinary tract function. Compr. Physiol. 1995, 28, 485–503. [Google Scholar] [CrossRef]
- Schmucker, D.L. Aging and the liver: An update. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 1998, 53, B315–B321. [Google Scholar] [CrossRef]
- Masoro, E. Exploration of Aging and Toxic Response Issues. Peer Review Report Prepared for the US Environmental Protection Agency. Contract 68-C-99-238; Washington DC, National Center for Environmenntal Assessment, USA; 2001. Available online: https://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=457855 (accessed on 26 November 2018).
- Leon, L.R. Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure. Toxicol. Appl. Pharmacol. 2008, 233, 146–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, C.J.; Johnstone, A.F.; Aydin, C. Thermal stress and toxicity. Compr. Physiol. 2014, 4, 995–1016. [Google Scholar] [PubMed]
Biomarker | Abbreviation | Parent Chemical(s) | Pesticide Class | LOD |
---|---|---|---|---|
4-fluoro-3-phenoxybenzoic acid | 4F3PBA | Cyfluthrin | Pyrethroid | 0.1 µg/L |
trans-3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid | t-DCCA | Permethrin; Cypermethrin; Cyfluthrin | Pyrethroid | 0.6 µg/L |
3-phenoxybenzoic acid | 3PBA | Cyhalothrin, Cypermethrin, Deltamethrin, Fenpropathrin, Permethrin, Tralomethrin | Pyrethroid | 0.1 µg/L |
para-Nitrophenol | PNP | Parathion; Methyl parathion | OP | 0.1 µg/L |
3,5,6-Trichloro-2-pyridinol | TCPY | Chlorpyrifos, Chlorpyrifos-methyl | OP | 0.1 µg/L |
Min | Max | Median | Mean | SD | |
---|---|---|---|---|---|
Age (years) | 19 | 49 | 23.5 | 26.4 | 7.04 |
Frequency (N) | Percent (%) | ||||
Home language | |||||
Spanish only | 11 | 55 | |||
Spanish & indigenous language | 9 | 45 | |||
State of origin | |||||
Chiapas | 18 | 90 | |||
Veracruz | 1 | 5 | |||
Tabasco | 1 | 5 | |||
Gender | |||||
Male | 20 | 100 | |||
Marital Status | |||||
Single | 9 | 45 | |||
Married | 11 | 55 | |||
Education | |||||
Some Elementary school | 5 | 25 | |||
Some Middle school | 9 | 45 | |||
Some High school | 6 | 30 |
Pesticide Exposure (Questionnaire Responses) | Frequency (N) | Percent (%) |
---|---|---|
Agricultural experience | ||
Less than 1 year | 5 | 25 |
Between 1 year to 5 years | 4 | 20 |
More than 5 years | 11 | 55 |
Time working in this particular grape field | ||
Less than or equal to 3 months | 7 | 35 |
More than 3 months | 13 | 65 |
Knows which pesticides are applied in the fields | ||
No | 15 | 75 |
Yes | 5 | 25 |
Knows if pesticides have been applied in dorms | ||
No | 20 | 100 |
Yes | 0 | 0 |
Received training on how to reduce/prevent pesticide exposure in this | ||
field | ||
No | 14 | 70 |
Yes | 6 | 30 |
Received training on types of protective clothing | ||
No | 8 | 40 |
Yes | 12 | 60 |
Wear the same work clothing for more than two consecutive days without | ||
washing | ||
Always | 6 | 30 |
Sometimes | 10 | 50 |
Never | 4 | 20 |
Wash work clothing with leisure clothing | ||
Always | 14 | 70 |
Sometimes | 3 | 15 |
Never | 3 | 15 |
Frequency (N) | Detection (%) | Range (µg/g of Creatinine) | GM (µg/g of Creatinine) | GSD (µg/g of Creatinine) | |
---|---|---|---|---|---|
Organophosphates metabolites | |||||
TCPY | 19 | 95 | 0.07–13.24 | 3.56 | 2.85 |
PNP | 20 | 100 | 1.06–2.87 | 1.63 | 1.37 |
Pyrethroid metabolites | |||||
4F3PBA | 20 | 100 | 0.26–7.05 | 0.94 | 2.76 |
3PBA | 20 | 100 | 0.90–4.96 | 1.83 | 1.70 |
t-DCCA | 14 | 70 | 0.42–4.00 | 0.88 | 2.30 |
Metabolite | Study | Frequency (N) | Detection (%) | LOD (µg/L) | Geometric Mean (µg/g) | Percentile | ||
---|---|---|---|---|---|---|---|---|
50th | 75th | 95th | ||||||
TCPY | Current Study | 19 | 95 | 0.1 | 3.56 | 3.63 | 5.67 | 10.82 |
Current Studyⱡ | 19 | 95 | 0.1 | 4.17 | 4.43 | 7.19 | 13.6 | |
NHANES Total (n = 2747) * | 1923 | 70 | 0.1 | 0.81 | 0.98 | 1.66 | 3.53 | |
NHANES Mex American (n = 602) | 0.1 | 0.76 | 0.95 | 1.9 | 4.64 | |||
Arcury et al. [38] | 112 | 100 | 0.2 | 3.3 | 3 | 6.94 | 15.02 | |
Panuwet et al. [39] | 107 | 77 | 0.2 | 1.3 | 1.3 | 3.5 | 20.6 | |
Handal et al. [40] ⱡ | 14 | 86 | 0.1 | 0.94 | 1.04 | 11.0 | ||
Raymer et al. [41] ⱡ | 160 | 44 | 4.5 | |||||
Aldana-Madrid et al. [32] ⱡ | 15 | 28 | 0.1 | 3.40 + | ||||
Current Study | 20 | 100 | 0.1 | 1.63 | 1.62 | 2.07 | 2.69 | |
Current Studyⱡ | 20 | 100 | 0.1 | 1.91 | 1.84 | 3.05 | 4.53 | |
NHANES Total (n = 2744) * | 2113 | 77 | 0.1 | 0.47 | 0.49 | 0.92 | 2.62 | |
PNP | NHANES Mex American (n = 602) | 0.1 | 0.51 | 0.54 | 1.02 | 2.35 | ||
Panuwet et al. [39] | 135 | 99 | 0.1 | 2.1 | 2.2 | 2.9 | 4.7 | |
Raymer et al. [41] ⱡ | 220 | 61 | 2.94 | |||||
Aldana-Madrid et al. [32] ⱡ | 4 | 7 | 0.1 | 2.00 + | ||||
3PBA | Current Study | 20 | 100 | 0.1 | 1.83 | 1.69 | 2.39 | 4.65 |
Current Studyⱡ | 20 | 100 | 0.1 | 2.14 | 2.14 | 2.86 | 5.55 | |
NHANES Total (n = 2747) * | 2205 | 81 | 0.1 | 0.44 | 0.38 | 1.01 | 5.44 | |
NHANES Mex American (n = 602) | 0.1 | 0.39 | 0.36 | 0.7 | 3.22 | |||
Arcury et al. [38] | 107 | 96 | 0.4 | 1.03 | 1.04 | 1.7 | 3.16 | |
Panuwet et al. [39] | 118 | 87 | 0.1 | 0.86 | 0.98 | 2.5 | 7.4 | |
Handal et al. [40] ⱡ | 6 | 35 | 0.1 | 0.12 | <LOD | 3.93 | ||
Raymer et al. [41] ⱡ | 154 | 43 | 2.29 | |||||
t-DCCA | Current Study | 14 | 70 | 0.6 | 0.88 | 0.9 | 1.41 | 3.65 |
NHANES Total (n = 2747) | 28 | 0.1 | 0.6 | NC | <LOD | <LOD | 4.37 | |
NHANES Mex American (n = 602) | 0.6 | NC | <LOD | <LOD | 2.57 | |||
Handal et al. [40] ⱡ | 1 | 6 | 0.1 | 0.10 | <LOD | <LOD | 16.59 | |
Panuwet et al. [39] | 51 | 38 | 0.2 | NC | <LOD | 1.9 | 11.1 | |
4F3PBA | Current Study | 20 | 100 | 0.1 | 0.94 | 0.51 | 2.52 | 4.51 |
NHANES Total (n = 2747) | ND | 0 | 0.1 | NC | <LOD | <LOD | <LOD | |
NHANES Mex American (n = 602) | ND | 0 | 0.1 | NC | <LOD | <LOD | <LOD | |
Raymer et al. [41] ⱡ | 19 | 5 | NC |
Characteristics (N) | TCPY | PNP | 3PBA | t-DCCA | 4F3PBA | |||||
---|---|---|---|---|---|---|---|---|---|---|
GM | (p-Value) | GM | (p-Value) | GM | (p-Value) | GM | (p-Value) | GM | (p-Value) | |
Time in this grape field | ||||||||||
<3 months (7) | 3.25 | (0.053) | 1.71 | (0.607) | 2.21 | (0.322) | 1.06 | (0.552) | 2.13 | (0.019) * |
>3 months (13) | 3.74 | 1.59 | 1.65 | 0.80 | 0.61 | |||||
Language | ||||||||||
Spanish only (11) | 3.10 | (0.676) | 1.57 | (0.621) | 1.51 | (0.063) | 0.84 | (0.970) | 0.55 | (0.021) * |
Spanish & Ind. (9) | 4.22 | 1.71 | 2.30 | 0.91 | 1.80 ɫ | |||||
Training on PPE | ||||||||||
Yes (12) | 3.73 | (0.054) | 1.61 | (0.757) | 1.70 | (0.487) | 0.79 | (0.537) | 0.62 | (0.025) ϒ |
No (8) | 3.32 | 1.66 | 2.05 | 1.04 | 1.78 | |||||
Season | ||||||||||
Spring (10) | 2.82 | (0.880) | 1.67 | (0.597) | 1.23 | (0.001) ⱡ | 0.74 | (0.364) | 0.47 | (0.005) ⱡ |
Summer (10) | 4.50 | 1.59 | 2.71 | 1.06 | 1.90 | |||||
Spearman’s Correlation Coefficient (p-value) | ||||||||||
Participants age (20) | −0.52 (0.02) ** | 0.06 (0.79) | −0.29 (0.21) | −0.16 (0.49) | −0.17 (0.46) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Gálvez, N.; Wagoner, R.; Beamer, P.; De Zapien, J.; Rosales, C. Migrant Farmworkers’ Exposure to Pesticides in Sonora, Mexico. Int. J. Environ. Res. Public Health 2018, 15, 2651. https://doi.org/10.3390/ijerph15122651
López-Gálvez N, Wagoner R, Beamer P, De Zapien J, Rosales C. Migrant Farmworkers’ Exposure to Pesticides in Sonora, Mexico. International Journal of Environmental Research and Public Health. 2018; 15(12):2651. https://doi.org/10.3390/ijerph15122651
Chicago/Turabian StyleLópez-Gálvez, Nicolás, Rietta Wagoner, Paloma Beamer, Jill De Zapien, and Cecilia Rosales. 2018. "Migrant Farmworkers’ Exposure to Pesticides in Sonora, Mexico" International Journal of Environmental Research and Public Health 15, no. 12: 2651. https://doi.org/10.3390/ijerph15122651
APA StyleLópez-Gálvez, N., Wagoner, R., Beamer, P., De Zapien, J., & Rosales, C. (2018). Migrant Farmworkers’ Exposure to Pesticides in Sonora, Mexico. International Journal of Environmental Research and Public Health, 15(12), 2651. https://doi.org/10.3390/ijerph15122651