Migrant Farmworkers’ Exposure to Pesticides in Sonora, Mexico
Abstract
1. Introduction
2. Methods
2.1. Recruitment
2.2. Questionnaire
2.3. Urine Sample Collection
2.4. Urine Sample Laboratory Analysis
2.5. Data Analysis
3. Results
3.1. Socio-Demographic Characteristics
3.2. Self-Reported Pesticide Exposure and Work Activities
3.3. Urinary Pesticide Metabolite Concentrations
3.4. Associations between Pesticide Metabolite Concentrations and Socio-Demographic and Occupational Characteristics
4. Discussion
4.1. Possible Sources of Exposure to Detected Pesticides
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 12 December 2017).
- Albert, L. Panorama de los plaguicidas en México. RETEL Revista de Toxicología en Línea 2005, 8, 1–17. (In Spanish) [Google Scholar]
- Peérez-Olvera, M.; Navarro-Garza, H.; Miranda-Cruz, H. Use of Pesticides for Vegetable Crops in Mexico: Pesticides in the Modern World; INTECH Open Access Publisher: London, UK, 2011. [Google Scholar] [CrossRef]
- Koureas, M.; Tsakalof, A.; Tsatsakis, A.; Hadjichristodoulou, C. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol. Lett. 2012, 210, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Limon-Miro, A.T.; Aldana-Madrid, M.L.; Alvarez-Hernandez, G.; Antunez-Roman, L.E.; Rodriguez-Olibarria, G.; Valencia Juillerat, M.E. Breast milk intake and mother to infant pesticide transfer measured by deuterium oxide dilution in agricultural and urban areas of Mexico. Chemosphere 2017, 181, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Guerra, M.; Pérez-Herrera, N.; Quintanilla-Vega, B. Organophosphorous pesticides research in Mexico: Epidemiological and experimental approaches. Toxicol. Mech. Methods 2011, 21, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Tinoco-Ojanguren, R.; Halperin, D.C. Poverty, production, and health: Inhibition of erythrocyte cholinesterase via occupational exposure to organophosphate insecticides in Chiapas, Mexico. Arch. Environ. Heal. Int. J. 1998, 53, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Sandal, S.; Yilmaz, B. Genotoxic effects of chlorpyrifos, cypermethrin, endosulfan and 2,4-D on human peripheral lymphocytes cultured from smokers and nonsmokers. Environ. Toxicol. 2011, 26, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Colosio, C.; Tiramani, M.; Maroni, M. Neurobehavioral Effects of Pesticides: State of the Art. NeuroToxicology 2003, 24, 577–591. [Google Scholar] [CrossRef]
- Manthripragada, A.D.; Costello, S.; Cockburn, M.G.; Bronstein, J.M.; Ritz, B. Paraoxonase 1, agricultural organophosphate exposure, and Parkinson disease. Epidemiology 2010, 21, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Rohlman, D.S.; Anger, W.K.; Lein, P.J. Correlating neurobehavioral performance with biomarkers of organophosphorous pesticide exposure. Neurotoxicology 2011, 32, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Glass, D.C.; Reid, A.; Bailey, H.D.; Milne, E.; Fritschi, L. Risk of childhood acute lymphoblastic leukaemia following parental occupational exposure to pesticides. Occup. Environ. Med. 2012, 69, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Soldin, O.P.; Nsouli-Maktabi, H.; Nsouly-Maktabi, H.; Genkinger, J.M.; Loffredo, C.A.; Ortega-Garcia, J.A.; Colantino, D.; Barr, D.B.; Luban, N.L.; Shad, A.T.; et al. Pediatric acute lymphoblastic leukemia and exposure to pesticides. Ther. Drug Monit. 2009, 31, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Heudorf, U.; Butte, W.; Schulz, C.; Angerer, J. Reference values for metabolites of pyrethroid and organophosphorous insecticides in urine for human biomonitoring in environmental medicine. Int. J. Hyg. Environ. Health 2006, 209, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Casarett, L.J.; Doull, J.; Klaassen, C.D. Casarett and Doull’s Toxicology: The Basic Science of Poisons; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Hughes, M.F.; Edwards, B.C. In vitro dermal absorption of pyrethroid pesticides in human and rat skin. Toxicol. Appl. Pharmacol. 2010, 246, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Repetto, R.; Baliga, S.S. Pesticides and immunosuppression: The risks to public health. Health Policy Plan. 1997, 12, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Soderlund, D.M.; Clark, J.M.; Sheets, L.P.; Mullin, L.S.; Piccirillo, V.J.; Sargent, D.; Stevens, J.T.; Weiner, M.L. Mechanisms of pyrethroid neurotoxicity: Implications for cumulative risk assessment. Toxicology 2002, 171, 3–59. [Google Scholar] [CrossRef]
- Ray, D.E.; Fry, J.R. A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol. Ther. 2006, 111, 174–193. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Symington, S.B. Pyrethroid action on calcium channels: Neurotoxicological implications. Invertebr. Neurosci. 2007, 7, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Bjørling-Poulsen, M.; Andersen, H.R.; Grandjean, P. Potential developmental neurotoxicity of pesticides used in Europe. Environ. Health 2008, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- DeMicco, A.; Cooper, K.R.; Richardson, J.R.; White, L.A. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos. Toxicol. Sci. 2010, 113, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiao, J.; Hu, G.; Zhou, J.; Xiao, H.; Wang, X. Estrogenicity of organophosphorus and pyrethroid pesticides. J. Toxicol. Environ. Health Part A 2002, 65, 1419–1435. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.Y.; Shin, J.H.; Kim, H.S.; Lee, S.J.; Kang, I.H.; Kim, T.S.; Moon, H.J.; Choi, K.S.; Aree, M.; Han, S.Y. Assessing estrogenic activity of pyrethroid insecticides using in vitro combination assays. J. Reprod. Dev. 2004, 50, 245–255. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. EPA Pesticide Regulation Notice; EPA: Washington, DC, USA, 1996; Volume 96, pp. 1–10.
- Arcury, T.A.; Quandt, S.A.; Rao, P.; Russell, G.B. Pesticide use and safety training in Mexico: The experience of farmworkers employed in North Carolina. Hum. Organ. 2001, 60, 56–66. [Google Scholar] [CrossRef]
- Tansey, R.R.; Hyman, M.; Jacobs, R.; Merrill, L. Eradicating the pesticide problem in Latin America. Bus. Soc. Rev. 1995, 92, 55–59. [Google Scholar]
- Payán-Rentería, R.; Garibay-Chávez, G.; Rangel-Ascencio, R.; Preciado-Martínez, V.; Muñoz-Islas, L.; Beltrán-Miranda, C.; Mena-Munguía, S.; Jave-Suárez, L.; Feria-Velasco, A.; De Celis, R. Effect of chronic pesticide exposure in farm workers of a Mexico community. Arch. Environ. Occup. Health 2012, 67, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Chaín-Castro, T.D.J.; Barrón-Aragón, R.; Haro-García, L. Pesticide poisoning in Mexican seasonal farm workers. Int. J. Occup. Environ. Health 1998, 4, 202–203. [Google Scholar] [CrossRef] [PubMed]
- SEDESOL. Diagnostic Care Program Agricultural Workers; Ministry of Social Development: Mexico city, Mexico, 2010. (In Spanish)
- Alvarez, S. Jornaleros agrícolas: Invisibilización deliberada. La Jornada del Campo. La Jornada. 2012, 54, 1–5. (In Spanish) [Google Scholar]
- Aldana-Madrid, M.-L.; Silveira-Gramont, M.-I.; Zuno-Floriano, F.-G.; Rodríguez-Olibarría, G. Insecticide Residuality of Mexican Populations Occupationally Exposed. In Insecticides-Development of Safer and More Effective Technologies; InTech: London, UK, 2013. [Google Scholar]
- Hernandez, E. Determinacion de Insecticidas en Liquidos Corporales de Residentes Masculinos en Areas Agricolas del Sur de Sonora; Universidad de Sonora: Hermosillo, Mexico, 2010. (In Spanish) [Google Scholar]
- Davis, M.D.; Wade, E.L.; Restrepo, P.R.; Roman-Esteva, W.; Bravo, R.; Kuklenyik, P.; Calafat, A.M. Semi-automated solid phase extraction method for the mass spectrometric quantification of 12 specific metabolites of organophosphorus pesticides, synthetic pyrethroids, and select herbicides in human urine. J. Chromatogr. B 2013, 929, 18–26. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Biological Monitoring of Chemical Exposure in the Workplace: Guidelines; Geneva, Switzerland, 1996.
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Hornung, R.W.; Reed, L.D. Estimation of Average Concentration in the Presence of Nondetectable Values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Arcury, T.A.; Chen, H.; Laurienti, P.J.; Howard, T.D.; Barr, D.B.; Mora, D.C.; Quandt, S.A. Farmworker and nonfarmworker Latino immigrant men in North Carolina have high levels of specific pesticide urinary metabolites. Arch. Environ. Occup. Health 2017. [Google Scholar] [CrossRef] [PubMed]
- Panuwet, P.; Prapamontol, T.; Chantara, S.; Thavornyuthikarn, P.; Montesano, M.A.; Whitehead, R.D.; Barr, D.B. Concentrations of urinary pesticide metabolites in small-scale farmers in Chiang Mai Province, Thailand. Sci. Total. Environ. 2008, 407, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Handal, A.J.; Hund, L.; Páez, M.; Bear, S.; Greenberg, C.; Fenske, R.A.; Barr, D.B. Characterization of pesticide exposure in a sample of pregnant women in ecuador. Arch. Environ. Contam. Toxicol. 2016, 70, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Raymer, J.; Studabaker, W.; Gardner, M.; Talton, J.; Quandt, S.; Chen, H.; Michael, L.; McCombs, M.; Arcury, T. Pesticide exposures to migrant farmworkers in Eastern NC: Detection of metabolites in farmworker urine associated with housing violations and camp characteristics. Am. J. Ind. Med. 2014, 57, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Riederer, A.M.; Hunter, R.E.; Hayden, S.W.; Ryan, P.B. Pyrethroid and organophosphorus pesticides in composite diet samples from Atlanta, USA adults. Environ. Sci. Technol 2010, 44, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.K.; Sheldon, L.S.; Croghan, C.W.; Jones, P.A.; Robertson, G.L.; Chuang, J.C.; Wilson, N.K.; Lyu, C.W. Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Bradman, A.; Quirós-Alcalá, L.; Castorina, R.; Aguilar Schall, R.; Camacho, J.; Holland, N.T.; Barr, D.B.; Eskenazi, B. Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities. Environ. Health Perspect. 2015, 123, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, L.J.; Xue, J.; Brown, G.G.; McCombs, M.; Nishioka, M.; Michael, L.C. Dietary intakes of pesticides based on community duplicate diet samples. Sci. Total Environ. 2014, 468–469, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Aldana-Madrid, M.L.; Valenzuela-Quintanar, A.I.; Silveira-Gramont, M.I.; Rodríguez-Olibarría, G.; Grajeda-Cota, P.; Zuno-Floriano, F.G.; Miller, M.G. Residual pyrethroids in fresh horticultural products in Sonora, Mexico. Bull. Environ. Contam. Toxicol. 2011, 87, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Quandt, S.A.; Hernández-Valero, M.A.; Grzywacz, J.G.; Hovey, J.D.; Gonzales, M.; Arcury, T.A. Workplace, household, and personal predictors of pesticide exposure for farmworkers. Environ. Health Perspect. 2006, 114, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Quandt, S.A.; Brooke, C.; Fagan, K.; Howe, A.; Thornburg, T.K.; McCurdy, S.A. Farmworker Housing in the United States and Its Impact on Health. New Solut. 2015, 25, 263–286. [Google Scholar] [CrossRef] [PubMed]
- Arcury, T.A.; Lu, C.; Chen, H.; Quandt, S.A. Pesticides present in migrant farmworker housing in North Carolina. Am. J. Ind. Med. 2014, 57, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, D.A. Physical and chemical properties of pyrethroids. Rev. Environ. Contam. Toxicol. 2002, 174, 49–170. [Google Scholar] [PubMed]
- Hernández, A.F.; Parrón, T.; Tsatsakis, A.M.; Requena, M.; Alarcón, R.; López-Guarnido, O. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology 2013, 307, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Wielgomas, B.; Krechniak, J. Toxicokinetic Interactions of α-Cypermethrin and Chlorpyrifos in Rats. Pol. J. Environ. Stud. 2007, 16, 267–274. [Google Scholar]
- Rohitrattana, J.; Siriwong, W.; Tunsaringkarn, T.; Panuwet, P.; Ryan, P.B.; Barr, D.B.; Robson, M.G.; Fiedler, N. Organophosphate pesticide exposure in school-aged children living in rice and aquacultural farming regions of Thailand. J. Agromed. 2014, 19, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, R.D. Renal and urinary tract function. Compr. Physiol. 1995, 28, 485–503. [Google Scholar] [CrossRef]
- Schmucker, D.L. Aging and the liver: An update. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 1998, 53, B315–B321. [Google Scholar] [CrossRef]
- Masoro, E. Exploration of Aging and Toxic Response Issues. Peer Review Report Prepared for the US Environmental Protection Agency. Contract 68-C-99-238; Washington DC, National Center for Environmenntal Assessment, USA; 2001. Available online: https://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=457855 (accessed on 26 November 2018).
- Leon, L.R. Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure. Toxicol. Appl. Pharmacol. 2008, 233, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.J.; Johnstone, A.F.; Aydin, C. Thermal stress and toxicity. Compr. Physiol. 2014, 4, 995–1016. [Google Scholar] [PubMed]
Biomarker | Abbreviation | Parent Chemical(s) | Pesticide Class | LOD |
---|---|---|---|---|
4-fluoro-3-phenoxybenzoic acid | 4F3PBA | Cyfluthrin | Pyrethroid | 0.1 µg/L |
trans-3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid | t-DCCA | Permethrin; Cypermethrin; Cyfluthrin | Pyrethroid | 0.6 µg/L |
3-phenoxybenzoic acid | 3PBA | Cyhalothrin, Cypermethrin, Deltamethrin, Fenpropathrin, Permethrin, Tralomethrin | Pyrethroid | 0.1 µg/L |
para-Nitrophenol | PNP | Parathion; Methyl parathion | OP | 0.1 µg/L |
3,5,6-Trichloro-2-pyridinol | TCPY | Chlorpyrifos, Chlorpyrifos-methyl | OP | 0.1 µg/L |
Min | Max | Median | Mean | SD | |
---|---|---|---|---|---|
Age (years) | 19 | 49 | 23.5 | 26.4 | 7.04 |
Frequency (N) | Percent (%) | ||||
Home language | |||||
Spanish only | 11 | 55 | |||
Spanish & indigenous language | 9 | 45 | |||
State of origin | |||||
Chiapas | 18 | 90 | |||
Veracruz | 1 | 5 | |||
Tabasco | 1 | 5 | |||
Gender | |||||
Male | 20 | 100 | |||
Marital Status | |||||
Single | 9 | 45 | |||
Married | 11 | 55 | |||
Education | |||||
Some Elementary school | 5 | 25 | |||
Some Middle school | 9 | 45 | |||
Some High school | 6 | 30 |
Pesticide Exposure (Questionnaire Responses) | Frequency (N) | Percent (%) |
---|---|---|
Agricultural experience | ||
Less than 1 year | 5 | 25 |
Between 1 year to 5 years | 4 | 20 |
More than 5 years | 11 | 55 |
Time working in this particular grape field | ||
Less than or equal to 3 months | 7 | 35 |
More than 3 months | 13 | 65 |
Knows which pesticides are applied in the fields | ||
No | 15 | 75 |
Yes | 5 | 25 |
Knows if pesticides have been applied in dorms | ||
No | 20 | 100 |
Yes | 0 | 0 |
Received training on how to reduce/prevent pesticide exposure in this | ||
field | ||
No | 14 | 70 |
Yes | 6 | 30 |
Received training on types of protective clothing | ||
No | 8 | 40 |
Yes | 12 | 60 |
Wear the same work clothing for more than two consecutive days without | ||
washing | ||
Always | 6 | 30 |
Sometimes | 10 | 50 |
Never | 4 | 20 |
Wash work clothing with leisure clothing | ||
Always | 14 | 70 |
Sometimes | 3 | 15 |
Never | 3 | 15 |
Frequency (N) | Detection (%) | Range (µg/g of Creatinine) | GM (µg/g of Creatinine) | GSD (µg/g of Creatinine) | |
---|---|---|---|---|---|
Organophosphates metabolites | |||||
TCPY | 19 | 95 | 0.07–13.24 | 3.56 | 2.85 |
PNP | 20 | 100 | 1.06–2.87 | 1.63 | 1.37 |
Pyrethroid metabolites | |||||
4F3PBA | 20 | 100 | 0.26–7.05 | 0.94 | 2.76 |
3PBA | 20 | 100 | 0.90–4.96 | 1.83 | 1.70 |
t-DCCA | 14 | 70 | 0.42–4.00 | 0.88 | 2.30 |
Metabolite | Study | Frequency (N) | Detection (%) | LOD (µg/L) | Geometric Mean (µg/g) | Percentile | ||
---|---|---|---|---|---|---|---|---|
50th | 75th | 95th | ||||||
TCPY | Current Study | 19 | 95 | 0.1 | 3.56 | 3.63 | 5.67 | 10.82 |
Current Studyⱡ | 19 | 95 | 0.1 | 4.17 | 4.43 | 7.19 | 13.6 | |
NHANES Total (n = 2747) * | 1923 | 70 | 0.1 | 0.81 | 0.98 | 1.66 | 3.53 | |
NHANES Mex American (n = 602) | 0.1 | 0.76 | 0.95 | 1.9 | 4.64 | |||
Arcury et al. [38] | 112 | 100 | 0.2 | 3.3 | 3 | 6.94 | 15.02 | |
Panuwet et al. [39] | 107 | 77 | 0.2 | 1.3 | 1.3 | 3.5 | 20.6 | |
Handal et al. [40] ⱡ | 14 | 86 | 0.1 | 0.94 | 1.04 | 11.0 | ||
Raymer et al. [41] ⱡ | 160 | 44 | 4.5 | |||||
Aldana-Madrid et al. [32] ⱡ | 15 | 28 | 0.1 | 3.40 + | ||||
Current Study | 20 | 100 | 0.1 | 1.63 | 1.62 | 2.07 | 2.69 | |
Current Studyⱡ | 20 | 100 | 0.1 | 1.91 | 1.84 | 3.05 | 4.53 | |
NHANES Total (n = 2744) * | 2113 | 77 | 0.1 | 0.47 | 0.49 | 0.92 | 2.62 | |
PNP | NHANES Mex American (n = 602) | 0.1 | 0.51 | 0.54 | 1.02 | 2.35 | ||
Panuwet et al. [39] | 135 | 99 | 0.1 | 2.1 | 2.2 | 2.9 | 4.7 | |
Raymer et al. [41] ⱡ | 220 | 61 | 2.94 | |||||
Aldana-Madrid et al. [32] ⱡ | 4 | 7 | 0.1 | 2.00 + | ||||
3PBA | Current Study | 20 | 100 | 0.1 | 1.83 | 1.69 | 2.39 | 4.65 |
Current Studyⱡ | 20 | 100 | 0.1 | 2.14 | 2.14 | 2.86 | 5.55 | |
NHANES Total (n = 2747) * | 2205 | 81 | 0.1 | 0.44 | 0.38 | 1.01 | 5.44 | |
NHANES Mex American (n = 602) | 0.1 | 0.39 | 0.36 | 0.7 | 3.22 | |||
Arcury et al. [38] | 107 | 96 | 0.4 | 1.03 | 1.04 | 1.7 | 3.16 | |
Panuwet et al. [39] | 118 | 87 | 0.1 | 0.86 | 0.98 | 2.5 | 7.4 | |
Handal et al. [40] ⱡ | 6 | 35 | 0.1 | 0.12 | <LOD | 3.93 | ||
Raymer et al. [41] ⱡ | 154 | 43 | 2.29 | |||||
t-DCCA | Current Study | 14 | 70 | 0.6 | 0.88 | 0.9 | 1.41 | 3.65 |
NHANES Total (n = 2747) | 28 | 0.1 | 0.6 | NC | <LOD | <LOD | 4.37 | |
NHANES Mex American (n = 602) | 0.6 | NC | <LOD | <LOD | 2.57 | |||
Handal et al. [40] ⱡ | 1 | 6 | 0.1 | 0.10 | <LOD | <LOD | 16.59 | |
Panuwet et al. [39] | 51 | 38 | 0.2 | NC | <LOD | 1.9 | 11.1 | |
4F3PBA | Current Study | 20 | 100 | 0.1 | 0.94 | 0.51 | 2.52 | 4.51 |
NHANES Total (n = 2747) | ND | 0 | 0.1 | NC | <LOD | <LOD | <LOD | |
NHANES Mex American (n = 602) | ND | 0 | 0.1 | NC | <LOD | <LOD | <LOD | |
Raymer et al. [41] ⱡ | 19 | 5 | NC |
Characteristics (N) | TCPY | PNP | 3PBA | t-DCCA | 4F3PBA | |||||
---|---|---|---|---|---|---|---|---|---|---|
GM | (p-Value) | GM | (p-Value) | GM | (p-Value) | GM | (p-Value) | GM | (p-Value) | |
Time in this grape field | ||||||||||
<3 months (7) | 3.25 | (0.053) | 1.71 | (0.607) | 2.21 | (0.322) | 1.06 | (0.552) | 2.13 | (0.019) * |
>3 months (13) | 3.74 | 1.59 | 1.65 | 0.80 | 0.61 | |||||
Language | ||||||||||
Spanish only (11) | 3.10 | (0.676) | 1.57 | (0.621) | 1.51 | (0.063) | 0.84 | (0.970) | 0.55 | (0.021) * |
Spanish & Ind. (9) | 4.22 | 1.71 | 2.30 | 0.91 | 1.80 ɫ | |||||
Training on PPE | ||||||||||
Yes (12) | 3.73 | (0.054) | 1.61 | (0.757) | 1.70 | (0.487) | 0.79 | (0.537) | 0.62 | (0.025) ϒ |
No (8) | 3.32 | 1.66 | 2.05 | 1.04 | 1.78 | |||||
Season | ||||||||||
Spring (10) | 2.82 | (0.880) | 1.67 | (0.597) | 1.23 | (0.001) ⱡ | 0.74 | (0.364) | 0.47 | (0.005) ⱡ |
Summer (10) | 4.50 | 1.59 | 2.71 | 1.06 | 1.90 | |||||
Spearman’s Correlation Coefficient (p-value) | ||||||||||
Participants age (20) | −0.52 (0.02) ** | 0.06 (0.79) | −0.29 (0.21) | −0.16 (0.49) | −0.17 (0.46) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Gálvez, N.; Wagoner, R.; Beamer, P.; De Zapien, J.; Rosales, C. Migrant Farmworkers’ Exposure to Pesticides in Sonora, Mexico. Int. J. Environ. Res. Public Health 2018, 15, 2651. https://doi.org/10.3390/ijerph15122651
López-Gálvez N, Wagoner R, Beamer P, De Zapien J, Rosales C. Migrant Farmworkers’ Exposure to Pesticides in Sonora, Mexico. International Journal of Environmental Research and Public Health. 2018; 15(12):2651. https://doi.org/10.3390/ijerph15122651
Chicago/Turabian StyleLópez-Gálvez, Nicolás, Rietta Wagoner, Paloma Beamer, Jill De Zapien, and Cecilia Rosales. 2018. "Migrant Farmworkers’ Exposure to Pesticides in Sonora, Mexico" International Journal of Environmental Research and Public Health 15, no. 12: 2651. https://doi.org/10.3390/ijerph15122651
APA StyleLópez-Gálvez, N., Wagoner, R., Beamer, P., De Zapien, J., & Rosales, C. (2018). Migrant Farmworkers’ Exposure to Pesticides in Sonora, Mexico. International Journal of Environmental Research and Public Health, 15(12), 2651. https://doi.org/10.3390/ijerph15122651