Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea
Abstract
:1. Introduction
2. Study Area
3. Extreme Learning Machine
3.1. Architecture and Learning Method for ELM
- (Step 1) Randomly assign hidden node parameters
- (Step 2) Calculate the hidden layer output matrix
- (Step 3) Calculate the output weights β using a least squares estimate (LSE):
3.2. Model Application
4. Results and Discussion
4.1. Experimental Results
4.2. ELM Performance Discussion
- -
- ELM consists of a simple tuning-free three-step algorithm.
- -
- The learning speed of ELM is extremely fast.
- -
- The hidden node parameters are independent of training data. Although hidden nodes are important, they need not be tuned.
- -
- ELM could generate the hidden node parameters before using the training data.
- -
- ELM can be effectively applied to most real-world problems such as compression, feature learning, clustering, regression and classification.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Ann. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, F.; Wang, Y.; Cao, M.; Sun, X.; Du, Z.; Liu, R.; Ye, X. Deep-Learning-Based Approach for Prediction of Algal Blooms. Sustainability 2016, 8, 1060. [Google Scholar] [CrossRef]
- Tian, W.; Liao, Z.; Zhang, J. An Optimization of artificial neural network model for predicting chlorophyll hynamics. Ecol. Model. 2017, 364, 42–52. [Google Scholar] [CrossRef]
- Ye, L.; Cai, Q.; Zhang, M.; Tan, L. Real-time observation, early warning and forecasting phytoplankton blooms by integrating in situ automated online sondes and hybrid evolutionary algorithm. Ecol. Inform. 2014, 22, 44–51. [Google Scholar] [CrossRef]
- Conley, D.J.; Paeral, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Haven, K.E.; Lancelot, C.; Liken, G.E. Controlling Eutrophication: Nitrogen and Phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Recknagel, F.; French, M.; Harkonen, P.; Yabunaka, K.I. Artifitial neural network approach for modelling and prediction of algal blooms. Ecol. Model. 1997, 96, 11–28. [Google Scholar] [CrossRef]
- Zhang, X.; Recknagel, F.; Chen, Q.; Cao, H.; Li, R. Spatially-explicit modelling and forecasting of cyanobacteria growth in Lake Taihu by evolutionary computation. Ecol. Model. 2014, 306, 216–225. [Google Scholar] [CrossRef]
- Xie, Z.; Lou, I.; Ung, W.K.; Mok, K.M. Freshwater algal bloom prediction by Support vector machine in Macau Storage Reservoirs. Math. Probl. Eng. 2012, 27, 1–12. [Google Scholar] [CrossRef]
- Loi, I.; Xie, Z.; Ung, W.K. Freshwater algal bloom prediction by extreme learning machine in Macau Storage Reservoirs. Neural Comput. Appl. 2016, 27, 19–26. [Google Scholar] [CrossRef]
- Rogers, L.L.; Dowla, F.U. Optimization of groundwater remediation using artificial neural network with parallel solute transport modeling. Water Resour. Res. 1994, 30, 457. [Google Scholar] [CrossRef]
- Wong, K.I.; Wong, P.K.; Cheung, C.S.; Vong, C.M. Modeling and optimization of biodiesel engine performance using advanced machine learning methods. Energy 2013, 55, 519–529. [Google Scholar] [CrossRef]
- Deng, W.Y.; Zheng, Q.H.; Chen, L.; Xu, X.B. Power utility nontechnical loss analysis with extreme learning machine method. Chin. J. Comput. 2010, 33, 280–287. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, Y.; Dong, Z.Y.; Zhang, R.; Meng, K. Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems. Neural Comput. Appl. 2013, 22, 501–508. [Google Scholar] [CrossRef]
- Sun, Z.I.; Ng, K.M.; Soszynska-Budny, J.; Habbullah, M.S. Application of the LP-ELM model on transportation system life-time optimization. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1484–1494. [Google Scholar] [CrossRef]
- Vergara, G.; C’ozar, J.; Romero-Gonz’alez, C.; G’amez, J.A.; Soria-Olivas, E. Comparing ELM Against MLP for Electrical Power Prediction in Buildings. Bioinspired Comput. Artif. Syst. 2015, 409–418. [Google Scholar] [CrossRef]
- Yeom, C.U.; Kwak, K.C. Short-term electricity-load forecasting using a TSK-based extreme learning machine with knowledge representation. Energies 2017, 10, 1613. [Google Scholar] [CrossRef]
- Yadav, B.; Sudheer, C.; Shashi, M.; Adamowski, J. Discharge forecasting using an online sequential extreme learning machine (OS-ELM) model: A case study in Neckar River, Germany. Measurement 2016, 92, 433–445. [Google Scholar] [CrossRef]
- Yin, Z.; Peng, T.; Feng, Q.; Yang, L.; Deo, R.C.; Wen, X.; Si, J.; Xiao, S. Future Projection with an Extreme-Learning Machine and Support Vector Regression of Reference Evapotranspiration in a Mountainous Inland Watershed in North-West China. Water 2018, 9, 880. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Xu, Z.; Zhang, H.; Yao, J.; Jin, X.; Liu, C.; Shi, Y. Time-varying nonlinear modeling and analysis of algal bloom dynamics. Nonlinear Dyn. 2016, 84, 371–378. [Google Scholar] [CrossRef]
- Wang, X.; Yao, J.; Shi, Y.; Su, T.; Wang, L.; Xu, J. Research on hybrid mechanism modeling of algal bloom formation in urban lakes and reservoirs. Ecol. Model. 2016, 332, 67–73. [Google Scholar] [CrossRef]
- Wang, W.C.; Xu, D.M.; Chau, K.W.; Lei, G.J. Assessment of river water quality based on theory of variable fuzzy sets and fuzzy binary comparison method. Water Resour. Manag. 2014, 28, 4183–4200. [Google Scholar] [CrossRef]
- Olyaie, E.; Banejad, H.; Chau, K.W.; Melesse, A.M. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: A case study in United States. Environ. Monit. Assess. 2015, 187, 189. [Google Scholar] [CrossRef] [PubMed]
- Fotovatikhah, F.; Herrera, M.; Shamshirband, S.; Chau, K.W.; Ardabili, S.F.; Piran, M.J. Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work. Eng. Appl. Comput. Fluid Mech. 2018, 12, 411–437. [Google Scholar] [CrossRef]
- Cha, Y.K.; Cho, K.H.; Lee, H.; Kang, T.K.; Kim, J.H. The relative importance of water temperature and residence time in predicting cyanobacteria abundance in regulated rivers. Water Res. 2017, 124, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W. Controlling cyanobacterial harmful blooms in freshwater ecosystems. Microb. Biotechnol. 2017, 10, 1106–1110. [Google Scholar] [CrossRef] [PubMed][Green Version]
- U.S. Environmental Protection Agency. Water Quality Criteria Research of the U.S. Environmental Protection Agency: EPA-600/3-76-079. In Proceedings of the EPA Sponsored Symposium, Corvallis, OR, USA, 17–23 August 1975. [Google Scholar]
- Forsberg, C.; Ryding, S.O. Eutrophication parameters and trophic state indices in 30 Swedish waste-receiving lakes. Arch. Hydrobiol. 1980, 89, 189–207. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). OECD Eutrophication Programme-Regional Project Alpine Lakes; Swiss Federal Board for Environmental Protection OECD: Bern, Switzerland, 1980. [Google Scholar]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine; theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, G.B.; Chen, L.; Siew, C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17, 879–892. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the Second International Symposium on Information Theory, Tsahkadsor, Armenia, 2–8 September 1971; Petrov, B.N., Csaki, F., Eds.; pp. 267–281. [Google Scholar]
- Yaseen, Z.M.; Ramal, M.M.; Diop, L.; Jaafar, O.; Demir, V.; Kisi, O. Hybrid Adaptive Neuro-Fuzzy Models for Water Quality Index Estimation. Water Resour. Manag. 2018, 32, 2227–2245. [Google Scholar] [CrossRef]
- Wang, W.C.; Chau, K.W.; Cheng, C.T.; Qiu, L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374, 294–306. [Google Scholar] [CrossRef][Green Version]
- Bruder, B.; Babbar-Sebens, M.; Tedesco, L.; Soyeux, E. Use of fuzzy logic models for prediction of taste and odor compounds in algal bloom-affected inland water bodies. Environ. Monit. Assess. 2014, 186, 1525–1545. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhang, Y.; Lan, S.; Wang, F. A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida. Water Resour. Manag. 2016, 30, 375–391. [Google Scholar] [CrossRef]
- Kisi, O.; Zounemat-Kermani, M. Suspended Sediment Modeling Using Neuro-Fuzzy Embedded Fuzzy c-Means Clustering Technique. Water Resour. Manag. 2016, 30, 3979–3994. [Google Scholar] [CrossRef]
- Najah, A.; El-Shafie, A.; Karim, O.A.; El-Shafie, A.H. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring. Environ. Sci. Pollut. Res. 2014, 21, 1658–1670. [Google Scholar] [CrossRef] [PubMed]
- Mathworks. MATLAB R2018b Fuzzy Logic Toolbox. Available online: http://www.mathworks.com/products/fuzzy-logic.html (accessed on 20 September 2018).
- Sun, Z.-I.; Choi, T.-M.; Au, K.-F.; Yu, Y. Sales forecasting using extreme learning machine with applications in fashion retailing. Decis. Support Syst. 2008, 46, 411–419. [Google Scholar] [CrossRef]
- Sahin, M. Comparison of modelling ANN and ELM to estimate solar radiation over Turkey using NOAA satellite data. Int. J. Remote Sens. 2013, 34, 7508–7533. [Google Scholar] [CrossRef]
- Mohammadi, K.; Shamshirband, S.; Yee, P.L.; Petković, D.; Zamanid, M.; Ch, S. Predicting the wind power density based upon extreme learning machine. Energy 2015, 86, 232–239. [Google Scholar] [CrossRef]
Variables | Gangjeong-Goryeong Weir | Dalseong Weir | Hapcheon-Changnyeong Weir | Changnyeong-Haman Weir |
---|---|---|---|---|
Chlorophyll-a (μg/L) | 19.0 (2.2–106.7) | 26.0 (2.7–104.1) | 23.2 (1.7–100.7) | 25.2 (2.9–123.3) |
Total Nitrogen (mg/L) | 2.605 (1.201–4.100) | 3.723 (1.814–6.433) | 3.397 (1.842–6.207) | 2.778 (1.249–5.483) |
Total Phosphorus (mg/L) | 0.048 (0.012–0.157) | 0.061 (0.017–0.163) | 0.058 (0.016–0.163) | 0.054 (0.015–0.174) |
Items | Variables | Source |
---|---|---|
Weather | Air temperature, Rainfall, Solar radiation | Korea Meteorological Administration (http://kma.go.kr) |
Water quality | Total Nitrogen, Total Phosphorus, N/P ratio, chlorophyll-a | Ministry of Environment, National Institute of Environmental Research (http://water.nier.go.kr) |
ELM1 Model | Gangjeong-Goryeong Weir | Dalseong Weir | Hapcheon-Changnyeong Weir | Changnyeong-Haman Weir | |
---|---|---|---|---|---|
R2 | Training | 0.61 | 0.55 | 0.38 | 0.29 |
Testing | 0.47 | 0.44 | 0.41 | 0.36 | |
RMSE | Training | 8.6 | 12.6 | 15.3 | 16.6 |
Testing | 14.5 | 13.5 | 13.1 | 12.4 | |
AIC | Training | 371.2 | 444.6 | 461.3 | 469.0 |
Testing | 452.2 | 455.8 | 436.1 | 421.9 |
ELM 2 Model | Gangjeong-Goryeong Weir | Dalseong Weir | Hapcheon-Changnyeong Weir | Changnyeong-Haman Weir | |
---|---|---|---|---|---|
R2 | Training | 0.71 | 0.76 | 0.44 | 0.32 |
Testing | 0.45 | 0.45 | 0.43 | 0.46 | |
RMSE | Training | 6.8 | 8.9 | 14.6 | 16.3 |
Testing | 13.8 | 13.4 | 13.1 | 11.4 | |
AIC | Training | 333.8 | 388.1 | 455.8 | 468.3 |
Testing | 446.2 | 456.9 | 437.5 | 410.5 |
Model | RMSE | Gangjeong-Goryeong Weir | Dalseong Weir | Hapcheon-Changnyeong Weir | Changnyeong-Haman Weir |
---|---|---|---|---|---|
ELM2 | Training | 6.8 | 8.9 | 14.6 | 16.3 |
Testing | 13.8 | 13.4 | 13.1 | 11.4 | |
Multiple LR | Training | 11.3 | 15.3 | 14.7 | 16.9 |
Testing | 17.5 | 20.7 | 13.9 | 14.0 | |
NN with BP | Training | 9.3 | 11.4 | 14.7 | 16.7 |
Testing | 15.7 | 14.1 | 13.4 | 11.4 | |
ANFIS-FCM (r = 2) | Training | 7.8 | 9.3 | 13.3 | 14.2 |
Testing | 16.7 | 13.2 | 15.1 | 13.0 | |
ANFIS-FCM (r = 3) | Training | 6.7 | 8.9 | 12.9 | 12.2 |
Testing | 29.9 | 16.8 | 15.2 | 14.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, H.-S.; Park, S.; An, K.-G.; Kwak, K.-C. Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea. Int. J. Environ. Res. Public Health 2018, 15, 2078. https://doi.org/10.3390/ijerph15102078
Yi H-S, Park S, An K-G, Kwak K-C. Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea. International Journal of Environmental Research and Public Health. 2018; 15(10):2078. https://doi.org/10.3390/ijerph15102078
Chicago/Turabian StyleYi, Hye-Suk, Sangyoung Park, Kwang-Guk An, and Keun-Chang Kwak. 2018. "Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea" International Journal of Environmental Research and Public Health 15, no. 10: 2078. https://doi.org/10.3390/ijerph15102078