Modeling Unobserved Heterogeneity in Susceptibility to Ambient Benzo[a]pyrene Concentration among Children with Allergic Asthma Using an Unsupervised Learning Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Study Sites
2.1.2. Case and Control Children
2.1.3. Air Pollution Monitoring of Polycyclic Aromatic Hydrocarbons
2.1.4. DNA Extraction
2.1.5. SNP Detection
2.1.6. Cotinine and Vitamin Assays
2.1.7. Allergy and Asthma Severity Index
2.2. Biostatistical Methods
2.2.1. Exposure Window of Interest
2.2.2. Identification of Confounders
2.2.3. Multivariate Analyses
2.2.4. Double k-Means
2.2.5. Regression Trees
2.2.6. Re-Categorizing Ordinal Outcome
2.2.7. Polygenic Risk Score (PRS) Calculation
2.2.8. Statistical Software
3. Results
3.1. Re-Categorizing Ordinal Outcomes
3.2. Double k-Means
3.3. Demographic Traits of the Clusters of Children
3.4. Regression Trees Using ln(B[a]P)
3.5. Application of Bi-Clustering Methods to Estimation of ln(B[a]P) Association with Asthma
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Loftus, P.A.; Wise, S.K. Epidemiology and economic burden of asthma. Int. Forum Allergy Rhinol. 2015, 5, S7–S10. [Google Scholar] [CrossRef] [PubMed]
- Von Mutius, E. Gene-environment interactions in asthma. J. Allergy Clin. Immunol. 2009, 123, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F. Genes, environments, development and asthma: A reappraisal. Eur. Respir. J. 2007, 29, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Bønnelykke, K.; Ober, C. Leveraging gene-environment interactions and endotypes for asthma gene discovery. J. Allergy Clin. Immunol. 2016, 137, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, S.F.; van der Sluis, S.; Kyvik, K.O.; Skytthe, A.; Skadhauge, L.R.; Backer, V. Increase in the heritability of asthma from 1994 to 2003 among adolescent twins. Respir. Med. 2011, 105, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Stern, G.; Latzin, P.; Röösli, M.; Fuchs, O.; Proietti, E.; Kuehni, C.; Frey, U. A prospective study of the impact of air pollution on respiratory symptoms and infections in infants. Am. J. Respir. Crit. Care Med. 2013, 187, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Samoli, E.; Nastos, P.T.; Paliatsos, A.G.; Katsouyanni, K.; Priftis, K.N. Acute effects of air pollution on pediatric asthma exacerbation: Evidence of association and effect modification. Environ. Res. 2011, 111, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Perzanowski, M.S.; Chew, G.L.; Divjan, A.; Jung, K.H.; Ridder, R.; Tang, D.; Diaz, D.; Goldstein, I.F.; Kinney, P.L.; Rundle, A.G.; et al. Early-life cockroach allergen and polycyclic aromatic hydrocarbon exposures predict cockroach sensitization among inner-city children. J. Allergy Clin. Immunol. 2013, 131, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Jedrychowski, W.A.; Perera, F.P.; Maugeri, U.; Mrozek-Budzyn, D.; Mroz, E.; Klimaszewska-Rembiasz, M.; Flak, E.; Edwards, S.; Spengler, J.; Jacek, R.; et al. Intrauterine exposure to polycyclic aromatic hydrocarbons, fine particulate matter and early wheeze. Prospective birth cohort study in 4-year olds. Pediatr. Allergy Immunol. 2010, 21, e723–e732. [Google Scholar] [CrossRef] [PubMed]
- London, S.J. Gene-Air Pollution Interactions in Asthma. Proc. Am. Thorac. Soc. 2007, 4, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data an Introduction to Cluster Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Johnson, S.C. Hierarchical clustering schemes. Psychometrika 1967, 2, 241–254. [Google Scholar] [CrossRef]
- Manly, B.F.J. Multivariate Statistical Methods: A Primer; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Jobson, J.D. Applied Multivariate Data Analysis: Categorical and Multivariate Methods. In Springer Texts in Statistics; Springer: New York, NY, USA, 1992. [Google Scholar]
- Lewis, S.J.G.; Foltynie, T.; Blackwell, A.D.; Robbins, T.W.; Owen, A.M.; Barker, R.A. Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J. Neurol. Neurosurg. Psychiatry 2003, 76, 343–348. [Google Scholar] [CrossRef] [PubMed]
- DeSarbo, W.S.; Fong, D.K.H.; Liechty, J.; Saxton, M.K. A hierarchical Bayesian procedure for two-mode cluster analysis. Psychometrika 2004, 69, 547–572. [Google Scholar] [CrossRef]
- Labiod, L.; Nadif, M. Co-clustering for binary and categorical data with maximum modularity. In Proceedings of the 2011 IEEE 11th International Conference on ICDM, Vancouver, BC, Canada, 11–14 December 2011; pp. 1140–1145. [Google Scholar]
- Arnold, R.; Hayakawa, Y.; Yip, P. Capture-recapture estimation using finite mixtures of arbitrary dimension. Biometrics 2010, 66, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Pledger, S. Unified maximum likelihood estimates for closed capture-recapture models using mixtures. Biometrics 2000, 56, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Govaert, G.; Nadif, M. Latent block model for contingency table. Commun. Stat. Theory Methods 2010, 39, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Pledger, S.; Arnold, R. Multivariate methods using mixtures: Correspondence analysis, scaling and pattern-detection. Comput. Stat. Data Anal. 2014, 71, 241–261. [Google Scholar] [CrossRef]
- Matechou, E.; Liu, I.; Fernández, D.; Farias, M.; Gjelsvik, B. Biclustering models for two-mode ordinal data. Psychometrika 2016, 81, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Fernández, D.; Arnold, R. Model selection for mixture-based clustering for ordinal data. Aust. N. Z. J. Stat. 2016, 58, 437–472. [Google Scholar] [CrossRef]
- Fernández, D.; Arnold, R.; Pledger, S. Mixture-based clustering for the ordered stereotype model. Comput. Stat. Data Anal. 2016, 93, 46–75. [Google Scholar] [CrossRef]
- Rocci, R.; Vichi, M. Two-mode multi-partitioning. Comput. Stat. Data Anal. 2008, 52, 1984–2003. [Google Scholar] [CrossRef]
- Vichi, M. Double k-means clustering for simultaneous classification of objects and variables. Adv. Classific. Data Anal. 2001, 43–52. [Google Scholar] [CrossRef]
- Batar, B.; Guven, M.; Onaran, I.; Tutluoglu, B.; Kanigur-Sultuybek, G. DNA repair gene XRCC1 polymorphisms and the risk of asthma in a Turkish population. In Allergy and Asthma Proceedings; OceanSide Publications, Inc.: Providence, RI, USA, 2010. [Google Scholar]
- Kim, H.S.; Manevich, Y.; Feinstein, S.I.; Pak, J.H.; Ho, Y.S.; Fisher, A.B. Induction of 1-cys peroxiredoxin expression by oxidative stress in lung epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 285, L363–L369. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.L.; Garfinkel, R.; Horton, M.; Camann, D.; Perera, F.P.; Whyatt, R.M.; Kinney, P.L. Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort. Chest J. 2004, 126, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Rotunno, M.; Yu, K.; Lubin, J.H.; Consonni, D.; Pesatori, A.C.; Goldstein, A.M.; Goldin, L.R.; Wacholder, S.; Welch, R.; Burdette, L.; et al. Phase I metabolic genes and risk of lung cancer: Multiple polymorphisms and mRNA expression. PLoS ONE 2009, 4, e5652. [Google Scholar] [CrossRef] [PubMed]
- Mather, K. Polygenic inheritance and natural selection. Biol. Rev. 1943, 18, 32–64. [Google Scholar] [CrossRef]
- Sram, R.J.; Dostál, M.; Libalová, H.; Rossner, P.; Rossnerová, A.; Švecová, V.; Topinka, J.; Bartonová, A. The European Hot Spot of B[a]P and PM2.5 Exposure—The Ostrava Region, Czech Republic: Health Research Results. ISRN Public Health 2013, 2013, 416701. [Google Scholar] [CrossRef]
- Rossnerova, A.; Tulupova, E.; Tabashidze, N.; Schmuczerova, J.; Dostal, M.; Rossner, P., Jr.; Gmuender, H.; Sram, R.J. Factors affecting the 27K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2013, 741, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Sram, R.J.; Rossnerova, A.; Tulupova, E.; Tabashidze, N.; Schmuczerova, J.; Dostal, M.; Rossner, P., Jr.; Gmuender, H.; Sram, R.J. Health impact of air pollution to children. Int. J. Hyg. Environ. Health 2013, 216, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Rossnerova, A.; Spatova, M.; Rossner, P.; Novakova, Z.; Solansky, I.; Sram, R.J. Factors affecting the frequency of micronuclei in asthmatic and healthy children from Ostrava. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2011, 708, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Rossnerova, A.; Spatova, M.; Rossner, P.; Solansky, I.; Sram, R.J. The impact of air pollution on the levels of micronuclei measured by automated image analysis. Mutat. Res. 2009, 669, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Tabashidze, N.; Rossner, P., Jr.; Dostal, M.; Pastorkova, A.; Kong, S.W.; Gmuender, H.; Sram, R.J. Altered vulnerability to Asthma at Various Levels of Ambient Benzo[a]Pyrene by CTLA4, STAT4 and CYP2E1 Polymorphisms. Environ. Pollut. 2017, 231, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- National Center for Health Statistics. International Classification of Diseases, 10th Revision. Clinical Modification (ICD-10-cm). Available online: http://www.cdc.gov/nchs/about/otheract/icd9/abticd10.htm (accessed on 1 October 2015).
- Hertz-Picciotto, I.; Baker, R.J.; Yap, P.S.; Dostál, M.; Joad, J.P.; Lipsett, M.; Greenfield, T.; Herr, C.E.; Beneš, I.; Shumway, R.H.; et al. Early childhood lower respiratory illness and air pollution. Environ. Health Perspect. 2007, 115, 1510–1518. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.P.; Stevens, R.K.; Willis, R.D.; Kellogg, R.; Mamane, Y.; Novak, J.; Šantroch, J.; Beneš, I.; Lenicek, J.; Bureš, V. Czech air quality monitoring and receptor modeling study. Environ. Sci. Technol. 1998, 32, 843–854. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Compendium of Methods for Toxic Organic Compounds in Ambient Air. In Compendium Method TO-13A; United States Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- Ghosh, R.; Rossner, P.; Honkova, K.; Dostal, M.; Sram, R.J.; Hertz-Picciotto, I. Air pollution and childhood bronchitis: Interaction with xenobiotic, immune regulatory and DNA repair genes. Environ. Int. 2016, 87, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Rossner, P.; Tabashidze, N.; Dostal, M.; Novakova, Z.; Chvatalova, I.; Spatova, M.; Sram, R.J. Genetic, biochemical, and environmental factors associated with pregnancy outcomes in newborns from the Czech Republic. Environ. Health Perspect. 2010, 119, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Driskell, W.J.; Neese, J.W.; Bryant, C.C.; Bashor, M.M. Measurement of vitamin A and vitamin E in human serum by high-performance liquid chromatography. J. Chromatogr. B 1982, 231, 439–444. [Google Scholar] [CrossRef]
- Tanishima, K.; Kita, M. High-performance liquid chromatographic determination of plasma ascorbic acid in relationship to health care. J. Chromatogr. B 1993, 613, 275–280. [Google Scholar] [CrossRef]
- Dharmage, S.C.; Lowe, A.J.; Matheson, M.C.; Burgess, J.A.; Allen, K.J.; Abramson, M.J. Atopic dermatitis and the atopic march revisited. Allergy 2014, 69, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Castro-Rodriguez, J.A.; Holberg, C.J.; Wright, A.L.; Martinez, F.D. A clinical index to define risk of asthma in young children with recurrent wheezing. Am. J. Respir. Crit. Care Med. 2000, 162, 1403–1406. [Google Scholar] [CrossRef] [PubMed]
- Dostál, M.; Milcová, A.; Binková, B.; Kotěšovec, F.; Nožička, J.; Topinka, J.; Šrám, R. J. Environmental tobacco smoke exposure in children in two districts of the Czech Republic. Int. J. Hyg. Environ. Health 2008, 211, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Czech Hydrometeorological Institute. B[a]P—Benzo[a]Pyrene Monthly and Annual Air Pollution Characteristics; Czech Hydrometeorological Institute: Prague, Czech Republic, 2008. [Google Scholar]
- Lloyd, S.P. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics: New York, NY, USA, 2001; Volume 1, pp. 241–249. [Google Scholar]
- Anderson, J.A. Regression and ordered categorical variables. J. R. Stat. Soc. Ser. B 1984, 46, 1–30. [Google Scholar]
- Nunes, C.; Pereira, A.M.; Morais-Almeida, M. Asthma costs and social impact. Asthma Res. Pract. 2017, 3. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.P. Endotyping asthma: New insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 2008, 372, 1107–1119. [Google Scholar] [CrossRef]
- Lötvall, J.; Akdis, C.A.; Bacharier, L.B.; Bjermer, L.; Casale, T.B.; Custovic, A.; Lemanske, R.F.; Wardlaw, A.J.; Wenzel, S.E.; Greenberger, P.A. Asthma endotypes: A new approach to classification of disease entities within the asthma syndrome. J. Allergy Clin. Immunol. 2011, 127, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Diaz-Sanchez, D.; Penichet-Garcia, M.; Saxon, A. Diesel exhaust particles directly induce activated mast cells to degranulate and increase histamine levels and symptom severity. J. Allergy Clin. Immunol. 2000, 106, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Rauh, V.; Garfinkel, R.; Tu, Y.; Perera, F.P. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and risk of intrauterine growth restriction. Environ. Health Perspect. 2008, 116, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Aquilina, N.J.; Delgado-Saborit, J.M.; Meddings, C.; Baker, S.; Harrison, R.M.; Jacob, P.; Wilson, M.; Yu, L.; Duan, M.; Benowitz, N.L. Environmental and biological monitoring of exposures to PAHs and ETS in the general population. Environ. Int. 2010, 36, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Wang, L.; Lin, X.; Spengler, J.D.; Perera, F.P. Fetal window of vulnerability to airborne polycyclic aromatic hydrocarbons on proportional intrauterine growth restriction. PLoS ONE 2012, 7, e35464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.; Jedrychowski, W.; Spengler, J.; Camann, D.E.; Whyatt, R.M.; Rauh, V.; Tsai, W.Y.; Perera, F.P. International studies of prenatal exposure to polycyclic aromatic hydrocarbons and fetal growth. Environ. Health Perspect. 2006, 114, 1744–1750. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Perera, F. Maternal Obesity and Dietary Intake of Polycyclic Aromatic Hydrocarbons during Pregnancy Jointly Affect Birth Weight. Epidemiology 2009, 20, S224. [Google Scholar] [CrossRef]
- Choi, H.; Perera, F.P. Sources of greater fetal vulnerability to airborne polycyclic aromatic hydrocarbons among African Americans. J. Epidemiol. Community Health 2010, 66, 121–126. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Polycyclic Aromatic Hydrocarbons European Series, Air Quality Guidelines for Europe, 2nd ed.; WHO Regional Publications: Copenhagen, Denmark, 2000; Volume 91. [Google Scholar]
- Rossner, P.; Milcova, A.; Libalova, H.; Novakova, Z.; Topinka, J.; Balascak, I.; Sram, R.J. Biomarkers of exposure to tobacco smoke and environmental pollutants in mothers and their transplacental transfer to the foetus. Part II. Oxidative damage. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2009, 669, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Sram, R.J.; Beskid, O.; Binkova, B.; Chvatalova, I.; Lnenickova, Z.; Milcova, A.; Solansky, I.; Tulupova, E.; Bavorova, H.; Ocadlikova, D.; et al. Chromosomal aberrations in environmentally exposed population in relation to metabolic and DNA repair genes polymorphisms. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2007, 620, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Rubes, J.; Rybar, R.; Prinosilova, P.; Veznik, Z.; Chvatalova, I.; Solansky, I.; Sram, R.J. Genetic polymorphisms influence the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat. Res. 2009, 583, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Dejmek, J.; Solanský, I.; Benes, I.; Lenícek, J.; Srám, R.J. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ. Health Perspect. 2000, 108, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Huo, X.; Wu, K.; Liu, J.; Zhang, Y.; Xu, X. Carcinogenic polycyclic aromatic hydrocarbons in umbilical cord blood of human neonates from Guiyu, China. Sci. Total Environ. 2012, 427, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Allan, L.L.; Sherr, D.H. Disruption of human plasma cell differentiation by an environmental polycyclic aromatic hydrocarbon: A mechanistic immunotoxicological study. Environ. Health 2010, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Sparfel, L.; Pinel-Marie, M.L.; Boize, M.; Koscielny, S.; Desmots, S.; Pery, A.; Fardel, O. Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol. Sci. 2010, 114, 247–259. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
AASI | Clinical Diagnoses | Age at Onset |
---|---|---|
1 | none | |
2 | allergen sensitized | any age |
3 | allergen sensitized; atopic dermatitis | At least one at ≤24 months |
4 | allergen sensitized; atopic dermatitis; wheezing | At least one at ≤24 months |
5 | allergen sensitized; atopic dermatitis; wheezing; positive bronchodilation result | At least one at ≤24 months |
6 | allergen sensitized; atopic dermatitis; wheezing; positive bronchodilation result; and upper respiratory infection | At least one at ≤24 months |
7 | allergen sensitized; atopic dermatitis; wheezing; positive bronchodilation result; upper respiratory infection; and rhinitis | At least one at ≤24 months |
Recoding | Category of Asthma Severity | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
(a) | Original | 1 | 4.954 | 6.784 | 6.988 | 6.994 | 6.994 | 7 |
Frequency | 179 | 81 | 76 | 33 | 12 | 12 | 1 | |
(b) | Intermediate | 1 | 2 | 3 | 4 | |||
Frequency | 179 | 81 | 76 | 58 | ||||
(c) | Rescaled | 1 | 2.977 | 3.892 | 4 | |||
Frequency | 179 | 81 | 76 | 58 |
Demographic Traits | Reference Group (n = 179) | Mild/Moderate (n = 81) | Severe Outcome (n = 124) | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | Min | Max | Mean | SE | Min | Max | Mean | SE | Min | Max | ||
Child’s age | 11 | 0 | 6 | 16 | 12 | 0 | 6 | 16 | 11 | 0 | 6 | 16 | 0.201 |
Age at first clinical diagnosis (months) | 82 | 32 | 35 | 143 | 72 | 5 | 24 | 165 | 24 | 4 | 0 | 171 | <0.001 |
Corticoid treatment (months) | 0 | 0 | 0 | 0 | 31 | 5 | 0 | 137 | 33 | 3 | 0 | 120 | <0.001 |
B[a]p (ng/m3) | 4.4 | 0.2 | 0.5 | 11.2 | 6.7 | 0.8 | 0.5 | 28.0 | 8.8 | 0.7 | 0.5 | 28.0 | <0.001 |
No. smokers at home | 1 | 0 | 0 | 6 | 1 | 0 | 0 | 4 | 1 | 0 | 0 | 8 | 0.312 |
BMI (kg/m2) | 18.18 | 0.25 | 6.5 | 30.5 | 18.89 | 0.37 | 13.6 | 29.7 | 19.09 | 0.37 | 13.7 | 38.5 | 0.075 |
Gestational age (weeks) | 40 | 0 | 32 | 42 | 40 | 0 | 33 | 42 | 39 | 0 | 26 | 42 | 0.085 |
Vitamin A (mg/L) | 0.7 | 0.0 | 0.2 | 4.2 | 0.7 | 0.0 | 0.1 | 1.8 | 0.7 | 0.0 | 0.2 | 2.7 | 0.908 |
Vitamin C (mg/L) | 7.3 | 0.3 | 1.3 | 16.0 | 7.049 | 0.4 | 2.2 | 16.4 | 6.9 | 0.3 | 1.9 | 13.4 | 0.651 |
Vitamin E (mg/L) | 10.1 | 0.3 | 2.8 | 21.5 | 10.1 | 0.4 | 2.8 | 22.7 | 10.7 | 0.4 | 3.2 | 23.0 | 0.346 |
Enrollment site (rural) | 83 | 43% | 56 | 29% | 55 | 28% | 0.001 | ||||||
Gender (female) | 85 | 48% | 33 | 41% | 48 | 39% | 0.278 | ||||||
Mother smoker (yes) | 45 | 25% | 25 | 31% | 32 | 26% | 0.609 | ||||||
Father smoker (yes) | 83 | 46% | 34 | 42% | 48 | 39% | 0.440 |
Biclustering ID | AASI | n | % | Gene Name | SNP | Native/Variant Allele |
---|---|---|---|---|---|---|
Reference group (i.e., 1) | 0 | 179 | 100% | n.a. | ||
Mild/Moderate | 1 | 81 | 100% | ERCC4-42 | rs744154 | C/G |
(i.e., 2.98) | MBL2-38 | rs1031101 | A/G | |||
XRCC3-04 | rs1799796 | T/C | ||||
GSTT1 | +/− | |||||
GSTP1 | rs1695 | A/G | ||||
Severe outcome | 2 | 76 | 61% | IL6-06 | rs2069832 | A/G |
(i.e., 3.93) | 3 | 33 | 27% | CYP1B1-82 | rs151257 | T/G |
4 | 12 | 10% | GSTM3-01 | rs7483 | A/G | |
5 | 2 | 2% | NQO1-01 | rs1800566 | A/G | |
6 | 1 | 1% | IL1RN-04 | rs380092 | A/T | |
CD14-06 | rs4914 | C/G | ||||
CYP2E1-07 | rs2070673 | A/T | ||||
LIG1-03 | rs20579 | A/G | ||||
GATA3-46 | rs925847 | A/G | ||||
IL1A-02 | rs1800587 | A/G | ||||
CYP1B1-42 | rs162557 | A/G |
Mild/Moderate (Cluster 2) | Severe Outcome (Cluster 3) | ||||
---|---|---|---|---|---|
Polygenic Risk Score | n | % | Polygenic Risk Score | n | % |
1–2 | 24 | 30% | 12–16 | 35 | 30% |
3 | 22 | 27% | 17–18 | 31 | 27% |
4 | 19 | 24% | 19–20 | 32 | 27% |
5–7 | 16 | 20% | 21–25 | 19 | 16% |
Biclustering ID | Polygenic Risk Score Categories | p | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mild/Moderate (Cluster 2) | PRS ≤ 2 (n = 24) | PRS 3 (n = 22) | PRS 4–5 (n = 19) | PRS ≥ 6 (n = 16) | |||||||||||||
Mean | SE | Min | Max | Mean | SE | Min | Max | Mean | SE | Min | Max | Mean | SE | Min | Max | ||
Child’s age | 12 | 1 | 6 | 16 | 12 | 1 | 6 | 16 | 11 | 1 | 6 | 15 | 12 | 1 | 8 | 16 | 0.751 |
Age at first clinical diagnosis (months) | 73 | 7 | 25 | 155 | 72 | 8 | 24 | 165 | 63 | 8 | 28 | 163 | 70 | 10 | 24 | 160 | 0.831 |
Corticoid treatment (months) | 24 | 6 | 0 | 103 | 39 | 7 | 0 | 102 | 26 | 7 | 0 | 108 | 30 | 11 | 0 | 137 | 0.492 |
No. smokers | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 2 | 1 | 0 | 0 | 2 | 1 | 0 | 0 | 4 | 0.083 |
BMI (kg/m2) | 19 | 1 | 14 | 30 | 19 | 1 | 14 | 27 | 18 | 1 | 14 | 23 | 19 | 1 | 16 | 25 | 0.824 |
Vitamin A (mg/L) | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0.353 |
Vitamin C (mg/L) | 7 | 1 | 3 | 14 | 7 | 1 | 2 | 12 | 7 | 1 | 4 | 16 | 7 | 1 | 4 | 14 | 0.930 |
Vitamin E (mg/L) | 10 | 1 | 3 | 15 | 10 | 1 | 5 | 17 | 9 | 1 | 4 | 19 | 11 | 1 | 6 | 23 | 0.479 |
Urban site (n, %) | 7 | 29% | 6 | 27% | 7 | 37% | 5 | 31% | 0.922 | ||||||||
Female child (n, %) | 7 | 29% | 10 | 46% | 10 | 53% | 6 | 38% | 0.437 | ||||||||
Severe Outcome (Cluster 3) | PRS ≤ 15 (n = 19) | PRS 16–18 (n = 32) | PRS 19–20 (n = 47) | PRS ≥ 21 (n = 19) | p | ||||||||||||
Mean | SE | Min | Max | Mean | SE | Min | Max | Mean | SE | Min | Max | Mean | SE | Min | Max | ||
Child’s age | 12 | 1 | 6 | 15 | 11 | 1 | 6 | 16 | 11 | 0 | 6 | 16 | 10 | 1 | 6 | 15 | 0.392 |
Age at first clinical diagnosis (months) | 22 | 9 | 1 | 148 | 28 | 7 | 0 | 149 | 24 | 6 | 0 | 171 | 19 | 9 | 0 | 170 | 0.879 |
Corticoid treatment (months) | 41 | 6 | 0 | 94 | 35 | 5 | 0 | 120 | 33 | 4 | 0 | 96 | 36 | 6 | 0 | 74 | 0.782 |
No. smokers | 2 | 0 | 0 | 5 | 1 | 0 | 0 | 8 | 1 | 0 | 0 | 4 | 1 | 0 | 0 | 6 | 0.037 |
BMI (kg/m2) | 20 | 1 | 14 | 28 | 19 | 1 | 14 | 29 | 19 | 1 | 14 | 38 | 18 | 1 | 14 | 26 | 0.719 |
Vitamin A (mg/L) | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 0.197 |
Vitamin C (mg/L) | 7 | 1 | 4 | 12 | 6 | 1 | 3 | 13 | 8 | 1 | 2 | 13 | 6 | 1 | 3 | 9 | 0.197 |
Vitamin E (mg/L) | 9 | 1 | 3 | 19 | 11 | 1 | 4 | 21 | 10 | 1 | 4 | 23 | 11 | 1 | 3 | 20 | 0.466 |
Urban site (n, %) | 11 | 58% | 17 | 53% | 25 | 53% | 15 | 79% | 0.242 | ||||||||
Female child (n, %) | 7 | 37% | 16 | 50% | 14 | 30% | 8 | 42% | 0.331 |
BIClustering ID | Low Polygenic Score (<4) | High Polygenic Score (≥4) | Overall | ||||
---|---|---|---|---|---|---|---|
aOR (95% CI) | p | aOR (95% CI) | p | aOR (95% CI) | p | ||
moderate | ln.B[a]P | 2.6 (0.7, 9.1) | 0.146 | 3.8 (0.5, 31.5) | 0.213 | 2.4 (1.0, 5.4) | 0.041 |
Low Polygenic Score (<18) | High Polygenic Score (≥18) | Overall | |||||
aOR (95% CI) | p | aOR (95% CI) | p | aOR (95% CI) | p | ||
severe outcome | ln.B[a]P | 2.0 (0.3, 15.8) | 0.506 | 5.2 (0.8, 36.1) | 0.092 | 2.7 (0.8, 9.3) | 0.123 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, D.; Sram, R.J.; Dostal, M.; Pastorkova, A.; Gmuender, H.; Choi, H. Modeling Unobserved Heterogeneity in Susceptibility to Ambient Benzo[a]pyrene Concentration among Children with Allergic Asthma Using an Unsupervised Learning Algorithm. Int. J. Environ. Res. Public Health 2018, 15, 106. https://doi.org/10.3390/ijerph15010106
Fernández D, Sram RJ, Dostal M, Pastorkova A, Gmuender H, Choi H. Modeling Unobserved Heterogeneity in Susceptibility to Ambient Benzo[a]pyrene Concentration among Children with Allergic Asthma Using an Unsupervised Learning Algorithm. International Journal of Environmental Research and Public Health. 2018; 15(1):106. https://doi.org/10.3390/ijerph15010106
Chicago/Turabian StyleFernández, Daniel, Radim J. Sram, Miroslav Dostal, Anna Pastorkova, Hans Gmuender, and Hyunok Choi. 2018. "Modeling Unobserved Heterogeneity in Susceptibility to Ambient Benzo[a]pyrene Concentration among Children with Allergic Asthma Using an Unsupervised Learning Algorithm" International Journal of Environmental Research and Public Health 15, no. 1: 106. https://doi.org/10.3390/ijerph15010106
APA StyleFernández, D., Sram, R. J., Dostal, M., Pastorkova, A., Gmuender, H., & Choi, H. (2018). Modeling Unobserved Heterogeneity in Susceptibility to Ambient Benzo[a]pyrene Concentration among Children with Allergic Asthma Using an Unsupervised Learning Algorithm. International Journal of Environmental Research and Public Health, 15(1), 106. https://doi.org/10.3390/ijerph15010106