Heat Health Messages: A Randomized Controlled Trial of a Preventative Messages Tool in the Older Population of South Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collaboration
2.2. Eligible Population and Recruitment
2.3. Intervention Materials and Questionnaire
2.4. Statistical Methods and Outcome Measures
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kenny, G.P.; Yardley, J.; Brown, C.; Sigal, R.J.; Jay, O. Heat stress in older individuals and patients with common chronic diseases. Can. Med. Assoc. J. 2010, 182, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Argaud, L.; Ferry, T.; Le, Q.H.; Marfisi, A.; Ciorba, D.; Achache, P.; Ducluzeau, R.; Robert, D. Short- and long-term outcomes of heatstroke following the 2003 heat wave in Lyon, France. Arch. Intern. Med. 2007, 167, 2177–2183. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, M.; Tucker, G.; Hansen, A.; Williams, S.; Zhang, Y.; Bi, P. Impact of two recent extreme heat episodes on morbidity and mortality in Adelaide, South Australia: A case-series analysis. Environ. Health 2011, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nitschke, M.; Bi, P. Risk factors for direct heat-related hospitalization during the 2009 Adelaide heatwave: A case crossover study. Sci. Total Environ. 2013, 442, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ebi, K.L.; Teisberg, T.J.; Kalkstein, L.S.; Robinson, L.; Weiher, R.F. Heat Watch/Warning Systems save lives. Estimated costs and benefits for Philadelphia 1995–1998. Am. Meteorol. Soc. 2004, 85, 1067–1073. [Google Scholar] [CrossRef]
- Lowe, D.; Ebi, K.L.; Forsberg, B. Heatwave Early Warning Systems and adaptation advice to reduce human health consequences of heatwaves. Int. J. Environ. Res. Public Health 2011, 8, 4623–4648. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, M.; Tucker, G.; Hansen, A.; Williams, S.; Zhang, Y.; Bi, P. Evaluation of a heat warning system in Adelaide, South Australia, using case-series analysis. BMJ Open 2016, 6, e012125. [Google Scholar] [CrossRef] [PubMed]
- Schifano, P.; Leone, M.; De Sario, M.; de’Donato, F.; Bargagli, A.M.; D’Ippoliti, D.; Marino, C.; Michelozzi, P. Changes in the effects of heat on mortality among the elderly from 1998–2010: Results from a multicenter time series study in Italy. Environ. Health 2012, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, M.; Hansen, A.L.; Bi, P.; Pisaniello, D.L.; Newbury, J.; Kitson, A.; Tucker, G.; Avery, J.; Dal Grande, E. Risk factors, Health effects and behaviour in older people during extreme heat: A survey in South Australia. Int. J. Environ. Res. Public Health 2013, 10, 6721–6733. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Semenza, J.C.; Rubin, C.H.; Falter, K.H.; Selanikio, J.D.; Flanders, W.D.; Howe, H.L.; Wilhelm, J.L. Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 1996, 335, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nitschke, M.; Krackowizer, A.; Dear, K.; Pisaniello, D.; Weinstein, P.; Tucker, G.; Shakib, S.; Bi, P. Risk factors for deaths during the 2009 heat wave in Adelaide, Australia: A matched case-control study. Int. J. Biometeorol. 2016, 61, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Bureau of Meteorology. Special Climate Statement 48—One of Southeast Australia’s Most Significant Heatwaves. Melbourne, Commonwealth of Australia, 2014. Available online: http://www.bom.gov.au/climate/current/statements/scs48.pdf (accessed on 13 July 2017).
- Abrahamson, V.; Wolf, J.; Lorenzoni, I.; Fenn, B.; Kovats, R.S.; Wilkinson, P.; Adger, W.N.; Raine, R. Perceptions of heatwave risks to healt: Interview-based study of older people in London and Norwich, UK. J. Public Health 2008, 31, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nitschke, M.; Krackowizer, A.; Dear, K.; Pisaniello, D.; Weinstein, P.; Tucker, G.; Shakib, S.; Bi, P. Risk factors of direct heat-related hospital admissions during the 2009 heatwave in Adelaide, Australia: A matched case control study. BMJ Open 2016, 6, e010666. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. Stata Statistical Software: Release 13; StataCorp LP: College Station, TX, USA, 2013. [Google Scholar]
- The SA Health Extreme Heat Website. Available online: http://www.sahealth.sa.gov.au/wps/wcm/connect/public+content/sa+health+internet/protecting+public+health/emergency+management/extreme+heat (accessed on 5 July 2017).
- Knol, M.J.; Le Cessie, S.; Algra, A.; Vandenbroucke, J.P.; Groenwold, R.H.H. Overestimation of risk ratios by odds ratios in trials and cohort studies: Alternatives to logistic regression. Can. Med. Assoc. J. 2012, 184, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. OpenEpi: Open Source Epidemiologic Statistics for Public Health, Version. Available online: www.OpenEpi.com (accessed on 17 May 2017).
- Takahashi, N.; Nakao, R.; Ueda, K.; Ono, M.; Kondo, M.; Honda, Y.; Hashizume, M. Community Trial on heat related-illness prevention behaviors and knowledge for the elderly. Int. J. Environ. Res. Public Health 2015, 12, 3188–3214. [Google Scholar] [CrossRef] [PubMed]
- Bouchama, A.; Dehbi, M.; Mohamed, G.; Matthies, F.; Shoukri, M.; Menne, B. Prognostic factors in heat wave related deaths: A meta-analysis. Arch. Intern. Med. 2007, 167, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Seltenrich, N. Between extremes: Health effects of heat and cold. Environ. Health Perspect. 2015, 123, A275–A279. [Google Scholar] [CrossRef] [PubMed]
Demographic Factors | Intervention n = 216 (%) | Controls n = 218 (%) |
---|---|---|
Age group ≥75 | 137 (63.4) | 145 (66.5) |
Age group <75 | 79 (36.6) | 73 (33.5) |
Females | 108 (50.0) | 126 (57.8) |
Living in a house | 158 (73.2) | 147 (67.4) |
Living in a unit | 41 (19.0) | 52 (23.9) |
Living in a duplex | 17 (7.9) | 15 (6.9) |
Own your accommodation | 174 (80.6) | 171 (80.7) |
Having outdoor blinds, shutters, awnings | 124 (57.4) | 129 (59.2) |
A/c presence | 207 (95.8) | 212 (97.3) |
Factors | Intervention n = 216 (%) | Controls n = 218 (%) |
---|---|---|
Health status | ||
Good to excellent (compared to fair-poor) | 152 # (70.4) | 168 # (77.4) |
Aid for walking | 75 # (34.7) | 59 # (27.1) |
Medication for | ||
Diabetes | 28 (13) | 33 (15.1) |
Thyroid | 24 (11.1) | 27 (12.4) |
High blood pressure | 127 (58.8) | 138 (63.3) |
Heart failure | 12 (5.6) | 8 (3.7) |
Other heart problems | 66 (31) | 53 (24.3) |
Renal | 8 (3.7) | 6 (2.8) |
Respiratory | 30 (14) | 35 (16.1) |
Mental health | 43 # (20) | 28 # (28) |
No medication | 28 (13) | 29 (13.3) |
Don’t know | 2 | 3 |
Factors | Intervention Count 216 (%) | Controls Count 218 (%) |
---|---|---|
Cooling the house | ||
Use of outside shades | 122 (98.4) | 127 (98.5) |
Use of inside shades | 204 (94.4) | 196 (89.9) |
Use of A/c (most times-always) | 154 * (71.3) | 135 * (61.9) |
Cost of A/c is a problem | 93 (43.1) | 86 (39.5) |
Cooling behavior | ||
Cooling down via shower, bath, swim | 46 (21.3) | 36 (16.5) |
Wearing lighter clothes | 178 (82.4) | 177 (81.2) |
Using wet cloth (most-always) | 34 * (15.7) | 18 * (8.3) |
Stayed indoors | 189 (87.5) | 192 (88.1) |
Let cool breeze in | 177 (81.9) | 182 (83.5) |
Drinking lots more fluids | 87 (40.3) | 99 (45.4) |
Concerned about pets | 66 (78.6) | 68 (81.9) |
Had enough “heat” information | 201 * (94.4) | 188 * (88.3) |
Concerns during heat | 121 (56.0) | 116 (53.2) |
Did things different this summer | 67 (31.0) | 82 (37.6) |
Had or made contact during hot weather | 128 (59.3) | 124 (56.9) |
Was well prepared for extreme heat | 208 (96.3) | 207 (95.0) |
Factors | Counts n = 434 | |
---|---|---|
Intervention n = 216 (%) | Controls n = 218 (%) | |
Heat health aspects | ||
Needed help during heat | 9 (4.2) | 9 (4.1) |
Needed help from a doctor during heat | 5 (2.5) | 11 (5.1) |
Affected by hot weather | 61 (28.4) | 62 (29.1) |
Experience during hot weather | ||
Anxiety | 22 (10.2) | 22 (10.1) |
Loss of balance/dizzy | 43 # (19.9) | 29 # (13.3) |
Fall | 5 (2.3) | 9 (4.2) |
Headache | 61 * (28.2) | 43 * (19.7) |
Shortness of breath | 38 (17.6) | 35 (16.1) |
Heat stress | 17 * (7.9) | 41 * (18.8) |
Heart condition | 11 (5.1) | 6 (2.8) |
Renal problems | 2 (0.9) | 4 (1.8) |
Something else | 44 (20.5) | 36 (16.5) |
Health Outcomes | Crude Risk Ratio (95% CI) | Adjusted Risk Ratio (95% CI) |
---|---|---|
Anxiety | 1.01 (0.54–1.75) | 0.76 (0.45–1.28) |
Dizziness | 1.62 (0.97–2.71) # | 1.24 (0.81–1.90) |
Falls | 1.85 (0.61–5.62) | 1.48 (0.51–4.30) |
Headache | 1.60 (1.03–2.50) * | 1.26 (0.91–1.73) |
Respiratory | 1.12 (0.67–1.85) | 0.92 (0.61–1.41) |
Heat stress | 0.37 (0.20–0.67) * | 0.37 (0.22–0.63) ** |
Heart | 0.54 (0.2–1.49) | 0.43 (0.17–1.13) # |
Renal | 0.50 (0.09–2.77) | 0.42 (0.08–2.20) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nitschke, M.; Krackowizer, A.; Hansen, A.L.; Bi, P.; Tucker, G.R. Heat Health Messages: A Randomized Controlled Trial of a Preventative Messages Tool in the Older Population of South Australia. Int. J. Environ. Res. Public Health 2017, 14, 992. https://doi.org/10.3390/ijerph14090992
Nitschke M, Krackowizer A, Hansen AL, Bi P, Tucker GR. Heat Health Messages: A Randomized Controlled Trial of a Preventative Messages Tool in the Older Population of South Australia. International Journal of Environmental Research and Public Health. 2017; 14(9):992. https://doi.org/10.3390/ijerph14090992
Chicago/Turabian StyleNitschke, Monika, Antoinette Krackowizer, Alana L. Hansen, Peng Bi, and Graeme R. Tucker. 2017. "Heat Health Messages: A Randomized Controlled Trial of a Preventative Messages Tool in the Older Population of South Australia" International Journal of Environmental Research and Public Health 14, no. 9: 992. https://doi.org/10.3390/ijerph14090992