Next Article in Journal
Extraction of Rice Heavy Metal Stress Signal Features Based on Long Time Series Leaf Area Index Data Using Ensemble Empirical Mode Decomposition
Previous Article in Journal
Effects of Visual Stimulation with Bonsai Trees on Adult Male Patients with Spinal Cord Injury
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Int. J. Environ. Res. Public Health 2017, 14(9), 1016;

Evaluation of VIIRS Land Aerosol Model Selection with AERONET Measurements

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, China
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Collaborative Innovation Center for Geospatial Technology, Wuhan 430079, China
Wuhan Environmental Monitoring Center, Wuhan 430015, China
Author to whom correspondence should be addressed.
Received: 29 July 2017 / Revised: 2 September 2017 / Accepted: 2 September 2017 / Published: 5 September 2017
(This article belongs to the Section Environmental Science and Engineering)
Full-Text   |   PDF [3787 KB, uploaded 5 September 2017]   |  


The Visible Infrared Imaging Radiometer Suite (VIIRS) is a next-generation polar-orbiting operational environmental sensor with a capability for global aerosol observations. Identifying land aerosol types is important because aerosol types are a basic input in retrieving aerosol optical properties for VIIRS. The VIIRS algorithm can automatically select the optimal land aerosol model by minimizing the residual between the derived and expected spectral surface reflectance. In this study, these selected VIIRS aerosol types are evaluated using collocated aerosol types obtained from the Aerosol Robotic Network (AERONET) level 1.5 from 23 January 2013 to 28 February 2017. The spatial distribution of VIIRS aerosol types and the aerosol optical depth bias (VIIRS minus AERONET) demonstrate that misidentifying VIIRS aerosol types may lead to VIIRS retrieval being overestimated over the Eastern United States and the developed regions of East Asia, as well as underestimated over Southern Africa, India, and Northeastern China. Approximately 22.33% of VIIRS aerosol types are coincident with that of AERONET. The agreements between VIIRS and AERONET for fine non-absorbing and absorbing aerosol types are approximately 36% and 57%, respectively. However, the agreement between VIIRS and AERONET is extremely low (only 3.51%). The low agreement for coarse absorbing dust may contribute to the poor performance of VIIRS retrieval under the aerosol model (R = 0.61). Results also show that an appropriate aerosol model can improve the retrieval performance of VIIRS over land, particularly for dust type (R increases from 0.61 to 0.72). View Full-Text
Keywords: aerosol model; VIIRS; AOD; AERONET aerosol model; VIIRS; AOD; AERONET

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Wang, W.; Pan, Z.; Mao, F.; Gong, W.; Shen, L. Evaluation of VIIRS Land Aerosol Model Selection with AERONET Measurements. Int. J. Environ. Res. Public Health 2017, 14, 1016.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top