Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design
Metric | Description |
---|---|
Outdoor metrics | |
Outdoor STOK | Background concentration obtained from STOK. |
Outdoor on-road | Concentration from on-road vehicular emission modeled with R-LINE. |
Outdoor hybrid | Summation of outdoor STOK and outdoor on-road |
Indoor metrics | |
Indoor STOK | Indoor concentration obtained from Equation (1) using outdoor STOK as input |
Indoor on-road | Same as above using outdoor on-road as input |
Indoor hybrid | Same as above using outdoor hybrid as input |
2.2. Outdoor Background Concentration
2.3. Outdoor on-Road Concentration
2.4. Outdoor Hybrid Concentration
2.5 Indoor Concentration and Air Exchange Rate
Pollutant | Penetration Factor | Deposition Rate (h−1) | Source |
---|---|---|---|
CO | 1 | 0 | Dionisio et al. [42] |
NOx | 1 | 0.5 | Weschler et al. [43] |
PM2.5 | 0.84 | 0.21 | Breen et al. [44] |
EC | 0.98 | 0.29 | Meng et al. [45] |
2.6. Data Analysis
3. Results
3.1. The Effect of on-Road Component
3.2. The Effect of Indoor Infiltration
3.3. The Overall Effect on Exposure Error
Percentile | Concentration (μg/m3) | Indoor Hybrid | |||||
---|---|---|---|---|---|---|---|
0–20 | 20–40 | 40–60 | 60–80 | 80–100 | |||
(347.4, 362.1) | (362.1, 372.0) | (372.0, 385.4) | (385.4, 411.6) | (411.6, 2242.2) | |||
Outdoor hybrid | 0%–20% | (330.2, 345.9) | 91 | 10 | 0 | 0 | 0 |
20%–40% | (345.9, 353.9) | 9 | 81 | 11 | 0 | 0 | |
40%–60% | (353.9, 365.7) | 0 | 9 | 85 | 6 | 0 | |
60%–80% | (365.7, 388.0) | 0 | 0 | 4 | 92 | 3 | |
80%–100% | (388.0, 2024.4) | 0 | 0 | 0 | 2 | 97 | |
Indoor on-road | 0%–20% | (6.7, 25.2) | 79 | 21 | 0 | 0 | 0 |
20%–40% | (25.2, 35.4) | 15 | 64 | 21 | 0 | 0 | |
40%–60% | (35.4, 49.2) | 6 | 13 | 70 | 11 | 0 | |
60%–80% | (49.2, 76.6) | 0 | 2 | 9 | 83 | 6 | |
80%–100% | (76.6, 1903.4) | 0 | 0 | 0 | 6 | 94 | |
Outdoor on-road | 0%–20% | (5.8, 21.3) | 78 | 23 | 0 | 0 | 0 |
20%–40% | (21.3, 30.0) | 16 | 61 | 24 | 0 | 0 | |
40%–60% | (30.0, 42.2) | 6 | 14 | 66 | 13 | 0 | |
60%–80% | (42.2, 66.5) | 0 | 2 | 10 | 82 | 6 | |
80%–100% | (66.5, 1694.4) | 0 | 0 | 0 | 5 | 94 | |
Indoor STOK | 0%–20% | (317.2, 336.1) | 25 | 16 | 12 | 22 | 25 |
20%–40% | (336.1, 339.3) | 10 | 18 | 18 | 23 | 30 | |
40%–60% | (339.3, 341.3) | 12 | 27 | 30 | 17 | 14 | |
60%–80% | (341.3, 343.7) | 6 | 16 | 26 | 29 | 23 | |
80%–100% | (343.7, 347.7) | 47 | 22 | 14 | 9 | 8 | |
Outdoor STOK | 0%–20% | (322.3, 337.6) | 24 | 16 | 12 | 22 | 27 |
20%–40% | (337.6, 340.7) | 12 | 18 | 18 | 24 | 28 | |
40%–60% | (340.7, 342.2) | 8 | 27 | 34 | 17 | 15 | |
60%–80% | (342.2, 343.7) | 8 | 17 | 23 | 29 | 22 | |
80%–100% | (343.7, 347.7) | 48 | 23 | 13 | 8 | 8 |
Percentile | Concentration (μg/m3) | Indoor Hybrid | |||||
---|---|---|---|---|---|---|---|
0–20 | 20–40 | 40–60 | 60–80 | 80–100 | |||
(3.4, 9.3) | (9.3, 11.1) | (11.1, 13.5) | (13.5, 17.7) | (17.7, 307.9) | |||
Outdoor hybrid | 0%–20% | (18.4, 23.3) | 49 | 31 | 17 | 3 | 0 |
20%–40% | (23.3, 25.4) | 32 | 34 | 25 | 10 | 0 | |
40%–60% | (25.4, 28.6) | 13 | 26 | 33 | 26 | 1 | |
60%–80% | (28.6, 35.1) | 4 | 8 | 20 | 41 | 26 | |
80%–100% | (35.1, 594.7) | 1 | 1 | 4 | 20 | 73 | |
Indoor on-road | 0%–20% | (0.5, 2.6) | 69 | 26 | 5 | 0 | 0 |
20%–40% | (2.6, 3.7) | 28 | 49 | 22 | 2 | 0 | |
40%–60% | (3.7, 5.3) | 3 | 24 | 55 | 18 | 0 | |
60%–80% | (5.3, 8.9) | 0 | 1 | 18 | 70 | 10 | |
80%–100% | (8.9, 299.0) | 0 | 0 | 0 | 10 | 90 | |
Outdoor on-road | 0%–20% | (1.7, 6.1) | 49 | 32 | 17 | 3 | 0 |
20%–40% | (6.1, 8.3) | 33 | 33 | 26 | 9 | 0 | |
40%–60% | (8.3, 11.4) | 13 | 26 | 33 | 26 | 1 | |
60%–80% | (11.4, 18.0) | 4 | 8 | 20 | 42 | 25 | |
80%–100% | (18.0, 577.4) | 1 | 1 | 4 | 20 | 73 | |
Indoor STOK | 0%–20% | (2.4, 6.5) | 68 | 18 | 6 | 4 | 4 |
20%–40% | (6.5, 7.3) | 22 | 40 | 20 | 11 | 8 | |
40%–60% | (7.3, 8.2) | 9 | 26 | 31 | 21 | 13 | |
60%–80% | (8.2, 9.3) | 2 | 13 | 30 | 31 | 24 | |
80%–100% | (9.3, 14.4) | 0 | 2 | 13 | 33 | 52 | |
Outdoor STOK | 0%–20% | (18.9, 19.0) | 22 | 23 | 24 | 18 | 14 |
20%–40% | (19.0, 19.3) | 13 | 16 | 19 | 22 | 30 | |
40%–60% | (19.3, 19.3) | 16 | 15 | 16 | 20 | 31 | |
60%–80% | (19.3, 19.4) | 18 | 21 | 21 | 26 | 14 | |
80%–100% | (19.4, 20.2) | 31 | 25 | 21 | 14 | 10 |
Percentile | Concentration (μg/m3) | Indoor Hybrid | |||||
---|---|---|---|---|---|---|---|
0–20 | 20–40 | 40–60 | 60–80 | 80–100 | |||
(1.72, 4.03) | (4.03, 4.45) | (4.45, 4.83) | (4.83, 5.28) | (5.28, 21.21) | |||
Outdoor hybrid | 0%–20% | (7.91, 8.43) | 27 | 24 | 22 | 19 | 8 |
20%–40% | (8.43, 8.79) | 27 | 21 | 20 | 19 | 13 | |
40%–60% | (8.79, 8.90) | 26 | 27 | 23 | 15 | 10 | |
60%–80% | (8.90, 9.17) | 15 | 19 | 22 | 24 | 20 | |
80%–100% | (9.17, 34.29) | 6 | 8 | 13 | 23 | 50 | |
Indoor on-road | 0%–20% | (0.03, 0.15) | 42 | 26 | 20 | 10 | 2 |
20%–40% | (0.15, 0.21) | 34 | 30 | 19 | 13 | 5 | |
40%–60% | (0.21, 0.29) | 16 | 27 | 28 | 22 | 8 | |
60%–80% | (0.29, 0.47) | 7 | 13 | 24 | 31 | 26 | |
80%–100% | (0.47, 16.33) | 2 | 4 | 11 | 23 | 60 | |
Outdoor on-road | 0%–20% | (0.07, 0.26) | 28 | 26 | 24 | 17 | 6 |
20%–40% | (0.26, 0.34) | 33 | 27 | 20 | 15 | 6 | |
40%–60% | (0.34, 0.47) | 22 | 25 | 23 | 20 | 9 | |
60%–80% | (0.47, 0.74) | 12 | 14 | 20 | 25 | 29 | |
80%–100% | (0.74, 26.00) | 5 | 8 | 13 | 23 | 51 | |
Indoor STOK | 0%–20% | (1.67, 3.85) | 90 | 8 | 1 | 1 | 1 |
20%–40% | (3.85, 4.21) | 11 | 73 | 11 | 3 | 2 | |
40%–60% | (4.21, 4.53) | 0 | 19 | 62 | 14 | 5 | |
60%–80% | (4.53, 4.89) | 0 | 0 | 25 | 59 | 16 | |
80%–100% | (4.89, 6.55) | 0 | 0 | 0 | 24 | 76 | |
Outdoor STOK | 0%–20% | (8.46, 8.61) | 15 | 16 | 18 | 23 | 27 |
20%–40% | (8.61, 8.69) | 32 | 27 | 22 | 12 | 7 | |
40%–60% | (8.69, 8.72) | 15 | 15 | 17 | 22 | 31 | |
60%–80% | (8.72, 8.76) | 18 | 19 | 20 | 23 | 20 | |
80%–100% | (8.76, 9.14) | 20 | 23 | 23 | 20 | 14 |
Percentile | Concentration (μg/m3) | Indoor Hybrid | |||||
---|---|---|---|---|---|---|---|
0–20 | 20–40 | 40–60 | 60–80 | 80–100 | |||
(0.15, 0.37) | (0.37, 0.43) | (0.43, 0.50) | (0.50, 0.62) | (0.62, 12.74) | |||
Outdoor hybrid | 0%–20% | (0.65, 0.74) | 49 | 32 | 17 | 2 | 0 |
20%–40% | (0.74, 0.79) | 32 | 35 | 27 | 7 | 0 | |
40%–60% | (0.79, 0.86) | 14 | 25 | 34 | 26 | 1 | |
60%–80% | (0.86, 1.01) | 4 | 7 | 19 | 46 | 23 | |
80%–100% | (1.01, 19.61) | 1 | 1 | 3 | 18 | 76 | |
Indoor on-road | 0%–20% | (0.02, 0.09) | 65 | 28 | 7 | 0 | 0 |
20%–40% | (0.09, 0.12) | 30 | 45 | 23 | 2 | 0 | |
40%–60% | (0.12, 0.17) | 5 | 25 | 52 | 18 | 0 | |
60%–80% | (0.17, 0.28) | 0 | 2 | 18 | 69 | 11 | |
80%–100% | (0.28, 12.38) | 0 | 0 | 0 | 11 | 89 | |
Outdoor on-road | 0%–20% | (0.04, 0.15) | 48 | 32 | 18 | 2 | 0 |
20%–40% | (0.15, 0.20) | 33 | 34 | 26 | 8 | 0 | |
40%–60% | (0.20, 0.28) | 14 | 25 | 33 | 26 | 1 | |
60%–80% | (0.28, 0.43) | 5 | 7 | 19 | 45 | 23 | |
80%–100% | (0.43, 19.00) | 1 | 1 | 3 | 18 | 76 | |
Indoor STOK | 0%–20% | (0.11, 0.27) | 69 | 17 | 6 | 4 | 4 |
20%–40% | (0.27, 0.30) | 22 | 41 | 18 | 11 | 9 | |
40%–60% | (0.30, 0.33) | 8 | 26 | 30 | 20 | 15 | |
60%–80% | (0.33, 0.36) | 1 | 13 | 31 | 29 | 25 | |
80%–100% | (0.36, 0.49) | 0 | 2 | 15 | 36 | 47 | |
Outdoor STOK | 0%–20% | (0.55, 0.55) | 13 | 20 | 22 | 22 | 23 |
20%–40% | (0.55, 0.55) | 10 | 15 | 17 | 22 | 36 | |
40%–60% | (0.55, 0.55) | 31 | 26 | 24 | 13 | 6 | |
60%–80% | (0.55, 0.56) | 14 | 16 | 20 | 26 | 23 | |
80%–100% | (0.56, 0.56) | 31 | 23 | 18 | 16 | 12 |
4. Discussion and Limitations
5. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- McConnell, R.; Islam, T.; Shankardass, K.; Jerrett, M.; Lurmann, F.; Gilliland, F.; Gauderman, J.; Avol, E.; Künzli, N.; Yao, L.; et al. Childhood incident asthma and traffic-related air pollution at home and school. Environ. Health Perspect. 2010, 118, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Anderson, H.R.; Favarato, G.; Atkinson, R. Long-term exposure to air pollution and the incidence of asthma: Meta-analysis of cohort studies. Air Qual. Atmos. Health 2013, 6, 47–56. [Google Scholar] [CrossRef]
- Lindgren, A.; Björk, J.; Stroh, E.; Jakobsson, K. Adult asthma and traffic exposure at residential address, workplace address, and self-reported daily time outdoor in traffic: A two-stage case-control study. BMC Public Health 2010, 10, 716–728. [Google Scholar] [CrossRef] [PubMed]
- Anderson, H.R.; Favarato, G.; Atkinson, R. Long-term exposure to outdoor air pollution and the prevalence of asthma: Meta-analysis of multi-community prevalence studies. Air Qual. Atmos. Health 2013, 6, 57–68. [Google Scholar] [CrossRef]
- Dockery, D.; Pope, C.I.; Xu, X.; Spengler, J.D.; Ware, J.; Fay, M.; Ferris, B.; Speizer, F. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Dionisio, K.L.; Isakov, V.; Baxter, L.K.; Sarnat, J.A.; Sarnat, S.E.; Burke, J.; Rosenbaum, A.; Graham, S.E.; Cook, R.; Mulholland, J.; et al. Development and evaluation of alternative approaches for exposure assessment of multiple air pollutants in Atlanta, Georgia. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Van Roosbroeck, S.; Wichmann, J.; Janssen, N.A.H.; Hoek, G.; van Wijnen, J.H.; Lebret, E.; Brunekreef, B. Long-term personal exposure to traffic-related air pollution among school children, a validation study. Sci. Total Environ. 2006, 368, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Michikawa, T.; Nakai, S.; Nitta, H.; Tamura, K. Validity of using annual mean particulate matter concentrations as measured at fixed site in assessing personal exposure: An exposure assessment study in Japan. Sci. Total Environ. 2014, 466–467, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Quintana, P.J.E.; Floro, J.; Gastañaga, V.M.; Samimi, B.S.; Kleinman, M.T.; Liu, L.J.S.; Bufalino, C.; Wu, C.F.; McLaren, C.E. Association of FEV1 in asthmatic children with personal and microenvironmental exposure to airborne particulate matter. Environ. Health Perspect. 2004, 112, 932–941. [Google Scholar] [CrossRef] [PubMed]
- De Nazelle, A.; Arunachalam, S.; Serre, M.L. Bayesian maximum entropy integration of ozone observations and model predictions: An application for attainment demonstration in North Carolina. Environ. Sci. Technol. 2010, 44, 5707–5713. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, S.; Valencia, A.; Akita, Y.; Serre, M.L.; Omary, M.; Garcia, V.; Isakov, V. A method for estimating urban background concentrations in support of hybrid air pollution modeling for environmental health studies. Int. J. Environ. Res. Public Health 2014, 11, 10518–10536. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.C.; Roberts, J.M.; Catov, J.M.; Talbott, E.O.; Ritz, B. First trimester exposure to ambient air pollution, pregnancy complications and adverse birth outcomes in Allegheny County, PA. Matern. Child Health J. 2013, 17, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.C.; Talbott, E.O.; Roberts, J.M.; Catov, J.M.; Sharma, R.K.; Ritz, B. Particulate air pollution exposure and C-reactive protein during early pregnancy. Epidemiology 2011, 22, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Coogan, P.F.; White, L.F.; Jerrett, M.; Brook, R.D.; Su, J.G.; Seto, E.; Burnett, R.; Palmer, J.R.; Rosenberg, L. Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles. Circulation 2012, 125, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Serre, M.L.; van Donkelaar, A.; Martin, R.V; Burnett, R.T.; Jerrett, M. Comparison of geostatistical interpolation and remote sensing thechniques for estimating long-term exposure to ambient PM2.5 concentrations across the continental United States. Environ. Health Perspect. 2012, 120, 1727–1732. [Google Scholar] [PubMed]
- Karner, A.A.; Eisinger, D.S.; Niemeier, D.A. Near-roadway air quality: Synthesizing the findings from real-world data. Environ. Sci. Technol. 2010, 44, 5334–5344. [Google Scholar] [CrossRef] [PubMed]
- Clougherty, J.E.; Kheirbek, I.; Eisl, H.M.; Ross, Z.; Pezeshki, G.; Gorczynski, J.E.; Johnson, S.; Markowitz, S.; Kass, D.; Matte, T. Intra-urban spatial variability in wintertime street-level concentrations of multiple combustion-related air pollutants: The New York City Community Air Survey (NYCCAS). J. Expo. Sci. Environ. Epidemiol. 2013, 23, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Lindström, J.; Szpiro, A.A.; Sampson, P.D.; Oron, A.P.; Richards, M.; Larson, T.V.; Sheppard, L. A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates. Environ. Ecol. Stat. 2013, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Isakov, V.; Arunachalam, S.; Batterman, S.; Bereznicki, S.; Burke, J.; Dionisio, K.; Garcia, V.; Heist, D.; Perry, S.; Snyder, M.; et al. Air quality modeling in support of the near-road exposures and effects of urban air pollutants study (NEXUS). Int. J. Environ. Res. Public Health 2014, 11, 8777–8793. [Google Scholar] [CrossRef] [PubMed]
- Snyder, M.; Arunachalam, S.; Isakov, V.; Talgo, K.; Naess, B.; Valencia, A.; Omary, M.; Davis, N.; Cook, R.; Hanna, A. Creating locally-resolved mobile-source emissions inputs for air quality modeling in support of an exposure study in Detroit, Michigan, USA. Int. J. Environ. Res. Public Health 2014, 11, 12739–12763. [Google Scholar] [CrossRef] [PubMed]
- Van Ryswyk, K.; Wheeler, A.J.; Wallace, L.; Kearney, J.; You, H.; Kulka, R.; Xu, X. Impact of microenvironments and personal activities on personal PM2.5 exposures among asthmatic children. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, B.; Weschler, C. Assessing the Influence of Indoor Exposure to “Outdoor Ozone” on the Relationship between Ozone and Short-term Mortality in U.S. Communities. Environ. Health Perspect. 2012, 120, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, J.A.; Sarnat, S.E.; Flanders, W.D.; Chang, H.H.; Mulholland, J.; Baxter, L.; Isakov, V.; Özkaynak, H. Spatiotemporally resolved air exchange rate as a modifier of acute air pollution-related morbidity in Atlanta. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Hodas, N.; Meng, Q.; Lunden, M.M.; Turpin, B.J. Toward refined estimates of ambient PM2.5 exposure: Evaluation of a physical outdoor-to-indoor transport model. Atmos. Environ. 2014, 83, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Zauli Sajani, S.; Ricciardelli, I.; Trentini, A.; Bacco, D.; Maccone, C.; Castellazzi, S.; Lauriola, P.; Poluzzi, V.; Harrison, R.M. Spatial and indoor/outdoor gradients in urban concentrations of ultrafine particles and PM2.5 mass and chemical components. Atmos. Environ. 2015, 103, 307–320. [Google Scholar] [CrossRef]
- Hering, S.V.; Lunden, M.M.; Thatcher, T.L.; Kirchstetter, T.W.; Brown, N.J. Using Regional Data and Building Leakage to Assess Indoor Concentrations of Particles of Outdoor Origin. Aerosol Sci. Technol. 2007, 41, 639–654. [Google Scholar] [CrossRef]
- Vette, A.; Burke, J.; Norris, G.; Landis, M.; Batterman, S.; Breen, M.; Isakov, V.; Lewis, T.; Gilmour, M.I.; Kamal, A.; et al. The Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS): Study design and methods. Sci. Total Environ. 2013, 448, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.M.; Zufall, M.J.; Ozkaynak, H. A population exposure model for particulate matter: Case study results for PM2.5 in Philadelphia, PA. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 470–489. [Google Scholar] [CrossRef] [PubMed]
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency. Total Risk Integrated Methodology (TRIM)—Air Pollutants Exposure Model Documentation (TRIM.Expo/APEX, Version 4.4); Volume I: User’s Guide, EPA-452/B-12-001a; Research Triangle Park: Durham, NC, USA, 2012.
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency. Total Risk Integrated Methodology (TRIM)—Air Pollutants Exposure Model Documentation (TRIM.Expo/APEX, Version 4.4); Volume II: Technical Support, EPA-452/B-12-001b Document; Research Triangle Park: Durham, NC, USA, 2012.
- Wu, J.; Houston, D.; Lurmann, F.; Ong, P.; Winer, A. Exposure of PM2.5 and EC from diesel and gasoline vehicles in communities near the Ports of Los Angeles and Long Beach, California. Atmos. Environ. 2009, 43, 1962–1971. [Google Scholar] [CrossRef]
- Batterman, S.; Chambliss, S.; Isakov, V. Spatial resolution requirements for traffic-related air pollutant exposure evaluations. Atmos. Environ. 2014, 94, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Serre, M.L. Environmental Spatiotemporal Mapping and Ground Water Flow Modeling Using the BME and ST Methods; University of North Carolina: Chapel Hill, NC, USA, 1999. [Google Scholar]
- Serre, M.L.; Christakos, G. Modern geostatistics: Computational BME analysis in the light of uncertain physical knowledge—The Equus Beds study. Stoch. Environ. Res. Risk Assess. 1999, 13, 1–26. [Google Scholar] [CrossRef]
- Snyder, M.G.; Venkatram, A.; Heist, D.K.; Perry, S.G.; Petersen, W.B.; Isakov, V. RLINE: A line source dispersion model for near-surface releases. Atmos. Environ. 2013, 77, 748–756. [Google Scholar] [CrossRef]
- Venkatram, A.; Snyder, M.G.; Heist, D.K.; Perry, S.G.; Petersen, W.B.; Isakov, V. Re-formulation of plume spread for near-surface dispersion. Atmos. Environ. 2013, 77, 846–855. [Google Scholar] [CrossRef]
- Federal Highway Administration Freight Analysis Framework 3 User Guide. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24558170 (accessed on 6 May 2014).
- Chang, S.Y.; Vizuete, W.; Valencia, A.; Naess, B.; Isakov, V.; Palma, T.; Breen, M.; Arunachalam, S. A modeling framework for characterizing near-road air pollutant concentration at community scales. Sci. Total Environ. 2015, 538, 905–921. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. An Overview of Methods for EPA’s National-Scale Air Toxics Assessment. Available online: http://www.epa.gov/ttn/atw/nata2005/05pdf/nata_tmd.pdf (accessed on 20 November 2015).
- Breen, M.S.; Burke, J.M.; Batterman, S.A.; Vette, A.F.; Godwin, C.; Croghan, C.W.; Schultz, B.D.; Long, T.C. Modeling spatial and temporal variability of residential air exchange rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS). Int. J. Environ. Res. Public Health 2014, 11, 11481–11504. [Google Scholar] [CrossRef] [PubMed]
- Dionisio, K.L.; Baxter, L.K.; Chang, H.H. An empirical assessment of exposure measurement error and effect attenuation in bipollutant epidemiologic models. Environ. Health Perspect. 2014, 122, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Weschler, C.J.; Shields, H.C.; Nalk, D.V. Indoor chemistry involving O3, NO, and NO2 as evidenced by 14 months of measurements at a site in Southern California. Environ. Sci. Technol. 1994, 28, 2120–2132. [Google Scholar] [CrossRef] [PubMed]
- Breen, M.S.; Long, T.C.; Schultz, B.D.; Williams, R.W.; Richmond-Bryant, J.; Breen, M.; Langstaff, J.E.; Devlin, R.B.; Schneider, A.; Burke, J.M.; et al. Air Pollution Exposure Model for Individuals (EMI) in health studies: Evaluation for ambient PM2.5 in Central North Carolina. Environ. Sci. Technol. 2015, 11. [Google Scholar] [CrossRef]
- Meng, Q.Y.; Turpin, B.J.; Polidori, A.; Lee, J.H.; Weisel, C.; Morandi, M.; Colome, S.; Stock, T.; Winer, A.; Zhang, J. PM2.5 of ambient origin: Estimates and exposure errors relevant to PM epidemiology. Environ. Sci. Technol. 2005, 39, 5105–5112. [Google Scholar] [CrossRef] [PubMed]
- Breen, M.S.; Breen, M.; Williams, R.W.; Schultz, B.D. Predicting residential air exchange rates from questionnaires and meteorology: Model evaluation in central North Carolina. Environ. Sci. Technol. 2010, 44, 9349–9356. [Google Scholar] [CrossRef] [PubMed]
- Sherman, M.; Grimsrud, D.T. Infiltration-pressurization correlation: Simplified physical modeling. ASHRAE Trans. 1980, 86, 778–807. [Google Scholar]
- Chan, W.R.; Nazaroff, W.W.; Price, P.N.; Sohn, M.D.; Gadgil, A.J. Analyzing a database of residential air leakage in the United States. Atmos. Environ. 2005, 39, 3445–3455. [Google Scholar] [CrossRef]
- U.S. Census Bureau, American Community Survey (ACS). Available online: http://www.census.gov/programs-surveys/acs/data/summary-file.html (accessed on 3 December 2015).
- Goldman, G.T.; Mulholland, J.A.; Russell, A.G.; Srivastava, A.; Strickland, M.J.; Klein, M.; Waller, L.A.; Tolbert, P.E.; Edgerton, E.S. Ambient air pollutant measurement error: Characterization and impacts in a time-series epidemiologic study in atlanta. Environ. Sci. Technol. 2010, 44, 7692–7698. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.Y.; Vizuete, W.; Breen, M.; Isakov, V.; Arunachalam, S. Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies. Int. J. Environ. Res. Public Health 2015, 12, 15605-15625. https://doi.org/10.3390/ijerph121215007
Chang SY, Vizuete W, Breen M, Isakov V, Arunachalam S. Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies. International Journal of Environmental Research and Public Health. 2015; 12(12):15605-15625. https://doi.org/10.3390/ijerph121215007
Chicago/Turabian StyleChang, Shih Ying, William Vizuete, Michael Breen, Vlad Isakov, and Saravanan Arunachalam. 2015. "Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies" International Journal of Environmental Research and Public Health 12, no. 12: 15605-15625. https://doi.org/10.3390/ijerph121215007
APA StyleChang, S. Y., Vizuete, W., Breen, M., Isakov, V., & Arunachalam, S. (2015). Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies. International Journal of Environmental Research and Public Health, 12(12), 15605-15625. https://doi.org/10.3390/ijerph121215007