Next Article in Journal
Effect of Shisha (Waterpipe) Smoking on Lung Functions and Fractional Exhaled Nitric Oxide (FeNO) among Saudi Young Adult Shisha Smokers
Next Article in Special Issue
Modeling Population Exposure to Ultrafine Particles in a Major Italian Urban Area
Previous Article in Journal
Health Consequence Scales for Use in Health Impact Assessments of Climate Change
Previous Article in Special Issue
Altered Gene Transcription in Human Cells Treated with Ludox® Silica Nanoparticles
Article Menu

Export Article

Open AccessReview
Int. J. Environ. Res. Public Health 2014, 11(9), 9621-9637;

When Neurons Encounter Nanoobjects: Spotlight on Calcium Signalling

Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, Torino 10123, Italy
NIS Interdipartimental Centre, University of Torino, via Pietro Giuria 7, Torino 10125, Italy
Neuroscience Institute of Torino, University of Torino, Torino 10125, Italy
Author to whom correspondence should be addressed.
Received: 16 May 2014 / Revised: 1 September 2014 / Accepted: 5 September 2014 / Published: 16 September 2014
(This article belongs to the Special Issue Ultrafine Particles and Potential Health Effects)
Full-Text   |   PDF [582 KB, uploaded 17 September 2014]   |  


Nanosized objects are increasingly present in everyday life and in specialized technological applications. In recent years, as a consequence of concern about their potential adverse effects, intense research effort has led to a better understanding of the physicochemical properties that underlie their biocompatibility or potential toxicity, setting the basis for a rational approach to their use in the different fields of application. Among the functional parameters that can be perturbed by interaction between nanoparticles (NPs) and living structures, calcium homeostasis is one of the key players and has been actively investigated. One of the most relevant biological targets is represented by the nervous system (NS), since it has been shown that these objects can access the NS through several pathways; moreover, engineered nanoparticles are increasingly developed to be used for imaging and drug delivery in the NS. In neurons, calcium homeostasis is tightly regulated through a complex set of mechanisms controlling both calcium increases and recovery to the basal levels, and even minor perturbations can have severe consequences on neuronal viability and function, such as excitability and synaptic transmission. In this review, we will focus on the available knowledge about the effects of NPs on the mechanisms controlling calcium signalling and homeostasis in neurons. We have taken into account the data related to environmental NPs, and, in more detail, studies employing engineered NPs, since their more strictly controlled chemical and physical properties allow a better understanding of the relevant parameters that determine the biological responses they elicit. The literature on this specific subject is all quite recent, and we have based the review on the data present in papers dealing strictly with nanoparticles and calcium signals in neuronal cells; while they presently amount to about 20 papers, and no related review is available, the field is rapidly growing and some relevant information is already available. A few general findings can be summarized: most NPs interfere with neuronal calcium homeostasis by interactions at the plasmamembrane, and not following their internalization; influx from the extracellular medium is the main mechanism involved; the effects are dependent in a complex way from concentration, size and surface properties. View Full-Text
Keywords: nanoparticles; neurons; calcium signalling; calcium homeostasis nanoparticles; neurons; calcium signalling; calcium homeostasis

Figure 1

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Lovisolo, D.; Gilardino, A.; Ruffinatti, F.A. When Neurons Encounter Nanoobjects: Spotlight on Calcium Signalling. Int. J. Environ. Res. Public Health 2014, 11, 9621-9637.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top