Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities
Abstract
:1. Introduction
2. Data and Methods
- µt Daily count of mortality in the community for all non-accidental causes
- α Model intercept
- f(T) The basis used to model lag 0, 1 temperature using a natural cubic spline, 3 degrees of freedom (df)
- δ Vector of coefficients for day of week
- D Day of week for day t
- f(H) Function of mean dew point temperature on day t (adjusted for daily mean temperature), modeled as a natural cubic spline, 3 degrees of freedom (df)
- f(L) Function of time, modeled as a natural cubic spline with 7 df/year (used to model long-term and seasonal trends)
Climate Model Acronym | Institution | GCM Resolution (Degrees Latitude × Longitude) |
---|---|---|
BCCR | Bjerknes Center for Climate Research | 1.9 × 1.9 |
CCCMA | Canadian Center for Climate Modeling and Analysis , Canada | 2.8 × 2.8 |
CNRM | National Weather Research Center, METEO-FRANCE, France | 2.8 × 2.8 |
CSIRO | CSIRO Atmospheric Research, Australia | 1.9 × 1.9 |
GFDL1 (CM2.0) | Geophysical Fluid Dynamics Laboratory, USA | 2.0 × 2.5 |
GFDL2 (CM2.1) | Geophysical Fluid Dynamics Laboratory, USA | 2.0 × 2.5 |
GISS | NASA Goddard Institute for Space Studies | 4.0 × 5.0 |
INMCM | Institute for Numerical Mathematics, Russia | 4.0 × 5.0 |
IPSL | Pierre Simon Laplace Institute, France | 2.5 × 3.75 |
MIROC | Frontier Research Center for Global Change, Japan | 2.8 × 2.8 |
MIUB | Meteorological Institute of the University of Bonn, Germany | 3.75 × 3.75 |
MPI | Max Planck Institute for Meteorology, Germany | 1.9 × 1.9 |
MRI | Meteorological Research Institute, Japan | 2.8 × 2.8 |
NCAR CCSM | National Center for Atmospheric Research, USA | 1.4 × 1.4 |
NCAR PCM | National Center for Atmospheric Research, USA | 2.8 × 2.8 |
UKMO | Hadley Center for Climate Prediction, Met Office, UK | 2.5 × 3.75 |
- ΔMortality Daily heat-related additional premature deaths
- Y0 Daily mortality rate (per 100,000 population)
- POP City population (divided by 100,000)
- RR City-specific exposure-response function
3. Results
City | State | County | City Population (2010) | County Population (2010) | County-Specific Crude Mortality Rate per 100,000 (2010) |
---|---|---|---|---|---|
Chicago | IL | Cook County | 2,707,120 | 5,194,675 | 747.0 |
Cincinnati | OH | Hamilton County | 296,943 | 802,374 | 939.3 |
Cleveland | OH | Cuyahoga County | 396,815 | 1,280,122 | 1046.0 |
Columbus | OH | Franklin County | 787,033 | 1,163,414 | 733.0 |
Detroit | MI | Wayne County | 713,777 | 1,820,584 | 986.3 |
Minneapolis | MN | Hennepin County | 387,753 | 1,152,425 | 673.6 |
Philadelphia | PA | Philadelphia County | 1,526,006 | 1,526,006 | 920.6 |
Pittsburgh | PA | Allegheny County | 305,704 | 1,223,348 | 1101.8 |
Portland | OR | Multnomah County | 593,820 | 735,334 | 712.3 |
St. Paul | MN | Ramsey County | 288,448 | 508,640 | 752.8 |
Toledo | OH | Lucas County | 287,208 | 441,815 | 947.5 |
Washington | DC | District of Columbia | 601,723 | 601,723 | 776.4 |
City | 1980s | 2010-2039 (2020s) | 2040-2069(2050s) | 2070-2099(2080s) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Low emissions Scenario | High emissions Scenario | Low emissions Scenario | High emissions Scenario | Low emissions Scenario | High emissions Scenario | ||||||||
(B1) | (A2) | (B1) | (A2) | (B1) | (A2) | ||||||||
Number of deaths | Deaths in excess of the 1980s baseline | Number of deaths | Deaths in excess of the 1980s baseline | Number of deaths | Deaths in excess of the 1980s baseline | Number of deaths | Deaths in excess of the 1980s baseline | Number of deaths | Deaths in excess of the 1980s baseline | Number of deaths | Deaths in excess of the 1980s baseline | ||
Chicago | 257 | 321 | 64 | 335 | 77 | 369 | 112 | 423 | 166 | 419 | 161 | 566 | 308 |
Cincinnati | 14 | 17 | 3 | 17 | 3 | 19 | 4 | 21 | 6 | 20 | 6 | 25 | 11 |
Cleveland | 41 | 53 | 11 | 55 | 13 | 60 | 19 | 69 | 28 | 68 | 27 | 93 | 51 |
Columbus | 61 | 76 | 15 | 78 | 17 | 86 | 25 | 99 | 38 | 99 | 38 | 130 | 69 |
Detroit | 116 | 148 | 32 | 152 | 36 | 168 | 52 | 185 | 69 | 187 | 71 | 250 | 134 |
Minneapolis | 23 | 29 | 6 | 30 | 7 | 34 | 11 | 38 | 15 | 37 | 14 | 49 | 26 |
Philadelphia | 278 | 334 | 56 | 345 | 67 | 375 | 97 | 416 | 138 | 415 | 137 | 526 | 248 |
Pittsburgh | 26 | 33 | 7 | 34 | 8 | 37 | 12 | 43 | 17 | 43 | 17 | 56 | 30 |
Portland | 62 | 80 | 18 | 81 | 19 | 92 | 30 | 103 | 41 | 104 | 42 | 142 | 80 |
St. Paul | 19 | 24 | 5 | 25 | 6 | 28 | 9 | 32 | 13 | 31 | 11 | 41 | 22 |
Toledo | 26 | 34 | 8 | 35 | 9 | 39 | 12 | 44 | 18 | 43 | 17 | 60 | 34 |
Washington | 113 | 136 | 23 | 138 | 25 | 152 | 38 | 166 | 52 | 163 | 49 | 207 | 93 |
City | Cumulative Deaths | Extra Deaths from High Emissions Scenario Relative to Low Emissions Scenario (1970–2099) | |||||
---|---|---|---|---|---|---|---|
1970 to 2039 | 1970 to 2069 | 1970 to 2099 | |||||
Low Emissions Scenario (B1) | High Emissions Scenario (A2) | Low Emissions Scenario (B1) | High Emissions Scenario (A2) | Low Emissions Scenario (B1) | High Emissions Scenario (A2) | ||
Chicago | 20,334 | 20,869 | 31,409 | 33,565 | 43,971 | 50,530 | 6559 |
Cincinnati | 1098 | 1117 | 1664 | 1742 | 2277 | 2507 | 229 |
Cleveland | 3309 | 3388 | 5110 | 5457 | 7157 | 8238 | 1081 |
Columbus | 4792 | 4894 | 7384 | 7858 | 10,358 | 11,768 | 1410 |
Detroit | 9271 | 9438 | 14,325 | 14,980 | 19,939 | 22,490 | 2551 |
Minneapolis | 1826 | 1857 | 2835 | 2999 | 3937 | 4474 | 537 |
Philadelphia | 21,464 | 21,914 | 32,706 | 34,389 | 45,144 | 50,164 | 5021 |
Pittsburgh | 2063 | 2100 | 3187 | 3384 | 4466 | 5060 | 594 |
Portland | 4968 | 5018 | 7725 | 8110 | 10,854 | 12,374 | 1520 |
St. Paul | 1518 | 1544 | 2357 | 2493 | 3273 | 3719 | 446 |
Toledo | 2097 | 2144 | 3252 | 3476 | 4556 | 5274 | 718 |
Washington | 8757 | 8861 | 13,304 | 13,840 | 18,184 | 20,050 | 1866 |
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Berko, J.; Ingram, D.D.; Saha, S.; Parker, J.D. Deaths Attributed to Heat, Cold, and other Weather Events in the United States, 2006–2010, National Health Statistics Reports; U.S. Department of Health and Human Services: Hyattsville, MD, USA, 2014. [Google Scholar]
- Hartmann, D.L.; Klein Tank, A.M.G.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A. Observations: Atmosphere and surface. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Baccini, M.; Biggeri, A.; Accetta, G.; Kosatsky, T.; Katsouyanni, K.; Analitis, A.; Anderson, H.R.; Bisanti, L.; D’Ippoliti, D.; Danova, J.; et al. Heat effects on mortality in 15 European cities. Epidemiology 2008, 19, 711–719. [Google Scholar]
- Dessai, S. Heat stress and mortality in Lisbon Part II. An assessment of the potential impacts of climate change. Int. J. Biometeorol. 2003, 48, 37–44. [Google Scholar]
- Gosling, S.N.; McGregor, G.R.; Lowe, J.A. Climate change and heat-related mortality in six cities Part 2: Climate model evaluation and projected impacts from changes in the mean and variability of temperature with climate change. Int. J. Biometeorol. 2009, 53, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Hayhoe, K.; Cayan, D.; Field, C.B.; Frumhoff, P.C.; Maurer, E.P.; Miller, N.L.; Moser, S.C.; Schneider, S.H.; Cahill, K.N.; Cleland, E.E.; et al. Emissions pathways, climate change, and impacts on California. Proc. Natl. Acad. Sci. USA 2004, 101, 12422–12427. [Google Scholar] [CrossRef]
- Hayhoe, K.; Sheridan, S.; Kalkstein, L.; Greene, S. Climate change, heat waves, and mortality projections for Chicago. J. Great Lakes Res. 2010, 36 (Suppl 2), 65–73. [Google Scholar] [CrossRef]
- Jackson, J.E.; Yost, M.; Karr, C.; Fitzpatrick, C.; Lamb, B.; Chung, S.; Chen, J.; Avise, J.; Rosenblatt, R.; Fenske, R. Public health impacts of climate change in Washington State: Projected mortality risks due to heat events and air pollution. Clim. Change 2010, 102, 159–186. [Google Scholar] [CrossRef]
- Knowlton, K.; Lynn, B.; Goldberg, R.A.; Rosenzweig, C.; Hogrefe, C.; Rosenthal, J.K.; Kinney, P.L. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 2007, 97, 2028–2034. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.D.; Bobb, J.F.; Tebaldi, C.; McDaniel, L.; Bell, M.L.; Dominici, F. Toward a quantitative estimate of future heat wave mortality under global climate change. Environ. Health Perspect. 2011, 119, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, S.; Allen, M.; Lee, C.; Kalkstein, L. Future heat vulnerability in California, Part II: Projecting future heat-related mortality. Clim. Change 2012, 115, 311–326. [Google Scholar] [CrossRef]
- Ostro, B.; Barrera-Gomez, J.; Ballester, J.; Basagana, X.; Sunyer, J. The impact of future summer temperature on public health in Barcelona and Catalonia, Spain. Int. J. Biometeorol. 2012, 56, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Horton, R.M.; Kinney, P.L. Projections of seasonal patterns in temperature-related deaths for Manhattan, New York. Nature Clim. Change 2013, 3, 717–721. [Google Scholar] [CrossRef]
- Petkova, E.P.; Horton, R.M.; Bader, D.A.; Kinney, P.L. Projected heat-related mortality in the US urban northeast. Int. J. Environ. Res. Public Health 2013, 10, 6734–6747. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.G.; Bell, M.L. Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology 2009, 20, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Lawrimore, J.H.; Menne, M.J.; Gleason, B.E.; Williams, C.N.; Wuertz, D.B.; Vose, R.S.; Rennie, J. An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Gasparrini, A. Distributed lag linear and non-linear models in R: The package DLNM. J. Stat. Softw. 2011, 43, 1–20. [Google Scholar] [PubMed]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grübler, A.; Jung, T.Y.; Kram, T.; et al. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2000; pp. 1–599. [Google Scholar]
- Le Quere, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.N.; et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar]
- Horton, R.M.; Gornitz, V.; Bader, D.A.; Ruane, A.C.; Goldberg, R.; Rosenzweig, C. Climate hazard assessment for stakeholder adaptation planning in New York city. J. Appl. Meteorol. Climatol. 2011, 50, 2247–2266. [Google Scholar] [CrossRef]
- Maurer, E.P.; Brekke, L.; Pruitt, T.; Duffy, P.B. Fine-resolution climate projections enhance regional climate change impact studies. EOS Trans. Am. Geophys. Union 2007, 88. [Google Scholar] [CrossRef]
- Horton, R.; Rosenzweig, C.; Gornitz, V.; Bader, D.; O’Grady, M. Climate risk information. Ann. NY Acad. Sci. 2010, 1196, 147–228. [Google Scholar] [CrossRef] [PubMed]
- Anenberg, S.C.; Horowitz, L.W.; Tong, D.Q.; West, J.J. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ. Health Perspect. 2010, 118, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- U.S. Census 2010. U.S. Department of Commerce (USDOC). 2010. Available online: http://www.census.gov/2010census/ (accessed on 9 July 2014).
- U.S. Centers for Disease Control and Prevention (USCDC); National Center for Health Statistics. Compressed Mortality File 1999–2011 on CDC WONDER Online Database. Available online: http://wonder.cdc.gov/cmf-icd10.html (accessed on 15 January 2013).
- Davis, R.E.; Knappenberger, P.C.; Michaels, P.J.; Novicoff, W.M. Changing heat-related mortality in the United States. Environ. Health Perspect. 2003, 111, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.; Hajat, S.; Armstrong, B.; Wilkinson, P. Declining vulnerability to temperature-related mortality in London over the 20th century. Am. J. Epidemiol. 2006, 164, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Astrom, D.O.; Forsberg, B.; Edvinsson, S.; Rocklov, J. Acute fatal effects of short-lasting extreme temperatures in Stockholm, Sweden: Evidence across a century of change. Epidemiology 2013, 24, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Bobb, J.F.; Peng, R.D.; Bell, M.L.; Dominici, F. Heat-related mortality and adaptation to heat in the United States. Environ. Health Perspect. 2014, 8. [Google Scholar] [CrossRef]
- Petkova, E.P.; Gasparrini, A.; Kinney, P.L. Heat and mortality in New York City since the beginning of the 20th century. Epidemiology 2014, 25, 554–560. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petkova, E.P.; Bader, D.A.; Anderson, G.B.; Horton, R.M.; Knowlton, K.; Kinney, P.L. Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities. Int. J. Environ. Res. Public Health 2014, 11, 11371-11383. https://doi.org/10.3390/ijerph111111371
Petkova EP, Bader DA, Anderson GB, Horton RM, Knowlton K, Kinney PL. Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities. International Journal of Environmental Research and Public Health. 2014; 11(11):11371-11383. https://doi.org/10.3390/ijerph111111371
Chicago/Turabian StylePetkova, Elisaveta P., Daniel A. Bader, G. Brooke Anderson, Radley M. Horton, Kim Knowlton, and Patrick L. Kinney. 2014. "Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities" International Journal of Environmental Research and Public Health 11, no. 11: 11371-11383. https://doi.org/10.3390/ijerph111111371