Neuroprotective Effects of Marine Algae
Abstract
:1. Introduction
2. Bioactivities and Neuroprotective Effects of Marine Algae
2.1. Antioxidant
2.2. Anti-Neuroinflammation
2.3. Cholinesterase Inhibitory Activity
2.4. Inhibition of Neuronal Death
2.5. Antineurotoxicity
2.6. Other Neuroprotective Activities
3. Prospects of Marine Algae as Neuroprotective Agents
4. Conclusions
Acknowledgments
- Samples Availability: Available from the authors.
References
- Kim, S; Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J Funct Foods 2010, 2, 1–9. [Google Scholar]
- Swing, J. What future for the oceans. Foreign Aff 2003, 82, 139–152. [Google Scholar]
- Alonso, D; Castro, A; Martinez, A. Marine compounds for the therapeutic treatment of neurological disorders. Expert Opin Ther Patents 2005, 15, 1377–1386. [Google Scholar]
- Heo, SJ; Hwang, JY; Choi, JI; Han, JS; Kim, HJ; Jeon, YJ. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent [alpha]-glucosidase and [alpha]-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol 2009, 615, 252–256. [Google Scholar]
- Pangestuti, R; dan Limantara, L. Rumput Laut, Zamrud Tak Tergali Dari Laut. BioS 2010, 2, 2–10. [Google Scholar]
- Khan, S; Kong, C; Kim, J; Kim, S. Protective effect of Amphiroa dilatata on ROS induced oxidative damage and MMP expressions in HT1080 cells. Biotech Bioproc Eng 2010, 15, 191–198. [Google Scholar]
- Burtin, P. Nutritional value of seaweeds. EJEAFChe 2003, 2, 498–503. [Google Scholar]
- Matsubara, K; Matsuura, Y; Hori, K; Miyazawa, K. An anticoagulant proteoglycan from the marine green alga, Codium pugniformis. J Appl Phycol 2000, 12, 9–14. [Google Scholar]
- Athukorala, Y; Lee, K; Kim, S; Jeon, Y. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour Technol 2007, 98, 1711–1716. [Google Scholar]
- Artan, M; Li, Y; Karadeniz, F; Lee, S; Kim, M; Kim, S. Anti-HIV-1 activity of phloroglucinol derivative, 6, 6′-bieckol, from Ecklonia cava. Bioorgan Med Chem 2008, 16, 7921–7926. [Google Scholar]
- Huheihel, M; Ishanu, V; Tal, J; Arad, S. Activity of Porphyridium sp. polysaccharide against herpes simplex viruses in vitro and in vivo. J Biochem Biophys Meth 2002, 50, 189–200. [Google Scholar]
- Heo, SJ; Park, EJ; Lee, KW; Jeon, YJ. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 2005, 96, 1613–1623. [Google Scholar]
- Park, P; Heo, S; Park, E; Kim, S; Byun, H; Jeon, B; Jeon, Y. Reactive oxygen scavenging effect of enzymatic extracts from Sargassum thunbergii. J Agr Food Chem 2005, 53, 6666–6672. [Google Scholar]
- Zou, Y; Qian, Z; Li, Y; Kim, M; Lee, S; Kim, S. Antioxidant effects of phlorotannins isolated from Ishige okamurae in free radical mediated oxidative systems. J Agr Food Chem 2008, 56, 7001–7009. [Google Scholar]
- Li, Y; Lee, S; Le, Q; Kim, M; Kim, S. Anti-allergic effects of phlorotannins on histamine release via binding inhibition between IgE and Fc RI. J Agr Food Chem 2008, 56, 12073–12080. [Google Scholar]
- Kong, CS; Kim, JA; Yoon, NY; Kim, SK. Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food Chem Toxicol 2009, 47, 1653–1658. [Google Scholar]
- Kim, M; Rajapakse, N; Kim, S. Anti inflammatory effect of Ishige okamurae ethanolic extract via inhibition of NF B transcription factor in RAW 264.7 cells. Phytother Res 2009, 23, 628–634. [Google Scholar]
- Maeda, H; Hosokawa, M; Sashima, T; Miyashita, K. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay Mice. J Agr Food Chem 2007, 55, 7701–7706. [Google Scholar]
- Tsukui, T; Konno, K; Hosokawa, M; Maeda, H; Sashima, T; Miyashita, K. Fucoxanthin and fucoxanthinol enhance the amount of docosahexaenoic acid in the liver of KKAy obese/diabetic mice. J Agr Food Chem 2007, 55, 5025–5029. [Google Scholar]
- Kong, C; Kim, J; Ahn, B; Vo, T; Yoon, N; Kim, S. 1-(3,5-Dihydroxyphenoxy)-7-(2,4,6-trihydroxyphenoxy)-2,4,9-trihydroxydibenzo-1,4-dioxin inhibits adipocyte differentiation of 3T3-L1 fibroblasts. Mar Biotechnol 2010, 12, 299–307. [Google Scholar]
- Zarros, A. In which cases is neuroprotection useful. Adv Altern Think Neurosci 2009, 1, 3–5. [Google Scholar]
- Barnham, KJ; Masters, CL; Bush, AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 2004, 3, 205–214. [Google Scholar]
- Akyol, Ö; Herken, H; Uz, E; FadIllIolu, E; Ünal, S; Söüt, S; Özyurt, H; Sava, H. The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients* 1:: The possible role of oxidant/antioxidant imbalance. Progr Neuro-Psychopharmacol Biol Psychiatr 2002, 26, 995–1005. [Google Scholar]
- Migliore, L; Coppedè, F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res-Gen Tox En 2009, 674, 73–84. [Google Scholar]
- Behl, C; Moosmann, B. Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Rad Biol Med 2002, 33, 182–191. [Google Scholar]
- Andersen, J. Oxidative stress in neurodegeneration: Cause or consequence. Nat Rev Neurosci 2004, 5, S18–S25. [Google Scholar]
- Moosmann, B; Behl, C. Antioxidants as treatment for neurodegenerative disorders. Expert Opin Investig Drugs 2002, 11, 1407–1435. [Google Scholar]
- Lim, C; Jin, D; Sung, J; Lee, J; Choi, H; Ha, I; Han, J. Antioxidant and anti-inflammatory activities of the methanolic extract of Neorhodomela aculeate in hippocampal and microglial cells. Biol Pharm Bull 2006, 29, 1212–1216. [Google Scholar]
- Fallarero, A; Loikkanen, JJ; Männistö, PT; Castañeda, O; Vidal, A. Effects of aqueous extracts of Halimeda incrassata (Ellis) Lamouroux and Bryothamnion triquetrum (S.G.Gmelim) Howe on hydrogen peroxide and methyl mercury-induced oxidative stress in GT1–7 mouse hypothalamic immortalized cells. Phytomedicine 2003, 10, 39–47. [Google Scholar]
- Vidal Novoa, A; Motidome, M; Mancini Filho, J; Fallarero Linares, A; Tanae, M; Torres, L; Lapa, A. Actividad antioxidante y ácidos fenólicos del alga marina Bryothamnion triquetrum (SG Gmelim) Howe; Antioxidant activity related to phenolic acids in the aqueous extract of the marine seaweed Bryothamnin triquetrum (SG Gmelim) Howe. Rev Bras Ciênc Farm(Impr) 2001, 37, 373–382. [Google Scholar]
- Jung, W; Heo, S; Jeon, Y; Lee, C; Park, Y; Byun, H; Choi, Y; Park, S; Choi, I. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J Agr Food Chem 2009, 57, 4439–4446. [Google Scholar]
- Wijesekara, I; Yoon, N; Kim, S. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. BioFactors 2010, 306, 408–414. [Google Scholar]
- Yan, X; Chuda, Y; Suzuki, M; Nagata, T. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci Biotech Biochem 1999, 63, 605–607. [Google Scholar]
- Nomura, T; Kikuchi, M; Kubodera, A; Kawakami, Y. Proton-donative antioxidant activity of fucoxanthin with 1, 1-diphenyl-2-picrylhydrazyl (DPPH). IUBMB Life 1997, 42, 361–370. [Google Scholar]
- Young, AJ; Lowe, GM. Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 2001, 385, 20–27. [Google Scholar]
- Sangeetha, R; Bhaskar, N; Baskaran, V. Comparative effects of β-carotene and fucoxanthin on retinol deficiency induced oxidative stress in rats. Mol Cell Biochem 2009, 331, 59–67. [Google Scholar]
- Ravi Kumar, S; Narayan, B; Vallikannan, B. Fucoxanthin restrains oxidative stress induced by retinol deficiency through modulation of Na+ Ka+-ATPase and antioxidant enzyme activities in rats. Eur J Nutr 2008, 47, 432–441. [Google Scholar]
- Heo, S; Ko, S; Kang, S; Kang, H; Kim, J; Kim, S; Lee, K; Cho, M; Jeon, Y. Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage. Eur Food Res Tech A 2008, 228, 145–151. [Google Scholar]
- Wijesekara, I; Pangestuti, R; Kim, S. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohyd Polym 2010, 84, 14–21. [Google Scholar]
- Jiao, G; Yu, G; Zhang, J; Ewart, H. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011, 9, 196–223. [Google Scholar]
- Qi, H; Zhang, Q; Zhao, T; Chen, R; Zhang, H; Niu, X; Li, Z. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int J Biol Macromol 2005, 37, 195–199. [Google Scholar]
- Zhang, Q; Li, N; Zhou, G; Lu, X; Xu, Z; Li, Z. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol Res 2003, 48, 151–155. [Google Scholar]
- Allen, N; Barres, B. Neuroscience: Glia—More than just brain glue. Nature 2009, 457, 675–677. [Google Scholar]
- Liu, BIN; Gao, HM; Wang, JY; Jeohn, GH; Cooper, CL; Hong, JS. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci 2002, 962, 318–331. [Google Scholar]
- Block, M; Zecca, L; Hong, J. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat Rev Neurosci 2007, 8, 57–69. [Google Scholar]
- Kim, S; de Vellis, J. Microglia in health and disease. J Neurosci Res 2005, 81, 302–313. [Google Scholar]
- Lull, ME; Block, ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics 2010, 7, 354–365. [Google Scholar] [Green Version]
- Abad, M; Bedoya, L; Bermejo, P. Natural marine anti-inflammatory products. Mini Rev Med Chem 2008, 8, 740–754. [Google Scholar]
- Maegawa, M; Yokohama, Y; Aruga, Y. Critical light conditions for young Ecklonia cava and Eisenia bicyclis with reference to photosynthesis. Hydrobiologia 1987, 151, 447–455. [Google Scholar]
- Serisawa, Y; Yokohama, Y; Aruga, Y; Tanaka, J. Photosynthesis and respiration in bladelets of Ecklonia cava Kjellman (Laminariales, Phaeophyta) in two localities with different temperature conditions. Phycol Res 2001, 49, 1–11. [Google Scholar]
- Jung, WK; Ahn, YW; Lee, SH; Choi, YH; Kim, SK; Yea, SS; Choi, I; Park, SG; Seo, SK; Lee, SW; Choi, IW. Ecklonia cava ethanolic extracts inhibit lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV2 microglia via the MAP kinase and NF-[kappa]B pathways. Food Chem Toxicol 2009, 47, 410–417. [Google Scholar]
- Zhao, J; Fan, X; Wang, S; Li, S; Shang, S; Yang, Y; Xu, N; Lü, Y; Shi, J. Bromophenol derivatives from the red alga Rhodomela confervoides. J Nat Prod 2004, 67, 1032–1035. [Google Scholar]
- Xu, N; Fan, X; Yan, X; Li, X; Niu, R; Tseng, CK. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 2003, 62, 1221–1224. [Google Scholar]
- Fan, X; Xu, NJ; Shi, JG. Bromophenols from the red alga Rhodomela confervoides. J Nat Prod 2003, 66, 455–458. [Google Scholar]
- Ma, M; Zhao, J; Wang, S; Li, S; Yang, Y; Shi, J; Fan, X; He, L. Bromophenols coupled with methyl γ-ureidobutyrate and bromophenol sulfates from the red alga Rhodomela confervoides. J Nat Prod 2006, 69, 206–210. [Google Scholar]
- Cui, Y; Zhang, L; Zhang, T; Luo, D; Jia, Y; Guo, Z; Zhang, Q; Wang, X; Wang, XM. Inhibitory effect of fucoidan on nitric oxide production in lipopolysaccharide activated primary microglia. Clin Exp Pharmacol Physiol 2010, 37, 422–428. [Google Scholar]
- Heales, S; Bolaños, J; Stewart, V; Brookes, P; Land, J; Clark, J. Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1999, 1410, 215–228. [Google Scholar]
- Lee, J; Grabb, M; Zipfel, G; Choi, D. Brain tissue responses to ischemia. J Clin Invest 2000, 106, 723–731. [Google Scholar]
- Jin, D; Lim, C; Sung, J; Choi, H; Ha, I; Han, J. Ulva conglobata, a marine algae, has neuroprotective and anti-inflammatory effects in murine hippocampal and microglial cells. Neurosci Lett 2006, 402, 154–158. [Google Scholar]
- Salvemini, D; Manning, P; Zweifel, B; Seibert, K; Connor, J; Currie, M; Needleman, P; Masferrer, J. Dual inhibition of nitric oxide and prostaglandin production contributes to the antiinflammatory properties of nitric oxide synthase inhibitors. J Clin Invest 1995, 96, 301–308. [Google Scholar]
- Vane, J; Botting, R. New insights into the mode of action of anti-inflammatory drugs. Inflamm Res 1995, 44, 1–10. [Google Scholar]
- Boscá, L; Zeini, M; Través, P; Hortelano, S. Nitric oxide and cell viability in inflammatory cells: A role for NO in macrophage function and fate. Toxicology 2005, 208, 249–258. [Google Scholar]
- Blasko, I; Stampfer-Kountchev, M; Robatscher, P; Veerhuis, R; Eikelenboom, P; Grubeck-Loebenstein, B. How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: The role of microglia and astrocytes. Aging Cell 2004, 3, 169–176. [Google Scholar]
- Pietrini, P; Alexander, G; Furey, M; Hampel, H; Guazzelli, M. The neurometabolic landscape of cognitive decline: In vivo studies with positron emission tomography in Alzheimer’s disease. Int J Psychophysiol 2000, 37, 87–98. [Google Scholar]
- Bartus, RT. On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 2000, 163, 495–529. [Google Scholar]
- Tabet, N. Acetylcholinesterase inhibitors for Alzheimer’s disease: Anti-inflammatories in acetylcholine clothing! Age Ageing 2006, 35, 336–338. [Google Scholar]
- Pangestuti, R; Kim, SK. Neuroprotective properties of chitosan and its derivatives. Mar Drugs 2010, 8, 2117–2128. [Google Scholar]
- Cheng, DH; Ren, H; Tang, XC. Huperzine A, a novel promising acetylcholinesterase inhibitor. Neuroreport 1996, 8, 97–101. [Google Scholar]
- Houghton, PJ; Agbedahunsi, JM; Adegbulugbe, A. Choline esterase inhibitory properties of alkaloids from two Nigerian Crinum species. Phytochemistry 2004, 65, 2893–2896. [Google Scholar]
- Stirk, W; Reinecke, D; van Staden, J. Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. J Appl Phycol 2007, 19, 271–276. [Google Scholar]
- Yoon, N; Chung, H; Kim, H; Choi, J. Acetyl and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from. Ecklonia stolonifera Fish Sci 2008, 74, 200–207. [Google Scholar]
- Yoon, NY; Lee, SH; Yong, L; Kim, SK. Phlorotannins from Ishige okamurae and their acetyl- and butyrylcholinesterase inhibitory effects. J Funct Foods 2009, 1, 331–335. [Google Scholar]
- Suganthy, N; Karutha Pandian, S; Pandima Devi, K. Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar marine biosphere reserve): Cholinesterase inhibitory effect of Hypnea valentiae and Ulva reticulata. Neurosci Lett 2010, 468, 216–219. [Google Scholar]
- Myung, C; Shin, H; Bao, H; Yeo, S; Lee, B; Kang, J. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: Possible involvement of the inhibition of acetylcholinesterase. Arch Pharm Res 2005, 28, 691–698. [Google Scholar]
- Greig, N; Lahiri, D; Sambamurti, K. Butyrylcholinesterase: An important new target in Alzheimer’s disease therapy. Int Psychogeriatr 2002, 14, 77–91. [Google Scholar]
- Mattson, MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000, 1, 120–130. [Google Scholar]
- Bains, JS; Shaw, CA. Neurodegenerative disorders in humans: The role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 1997, 25, 335–358. [Google Scholar]
- Jhamandas, JH; Wie, MB; Harris, K; MacTavish, D; Kar, S. Fucoidan inhibits cellular and neurotoxic effects of β-amyloid (Aβ) in rat cholinergic basal forebrain neurons. Eur J Neurosci 2005, 21, 2649–2659. [Google Scholar]
- Cowan, CM; Thai, J; Krajewski, S; Reed, JC; Nicholson, DW; Kaufmann, SH; Roskams, AJ. Caspases 3 and 9 send a pro-apoptotic signal from synapse to cell body in olfactory receptor neurons. J Neurosci 2001, 21, 7099–7109. [Google Scholar]
- Vila, M; Przedborski, S. Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 2003, 4, 365–375. [Google Scholar]
- Fallarero, A; Peltoketo, A; Loikkanen, J; Tammela, P; Vidal, A; Vuorela, P. Effects of the aqueous extract of Bryothamnion triquetrum on chemical hypoxia and aglycemia-induced damage in GT1–7 mouse hypothalamic immortalized cells. Phytomedicine 2006, 13, 240–245. [Google Scholar]
- Patockaa, J; Stredab, L. Brief review of natural nonprotein neurotoxins. ASA Newslett 2002, 89, 16–24. [Google Scholar]
- Segura-Aguilar, J; Kostrzewa, R. Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotox Res 2004, 6, 615–630. [Google Scholar]
- Butterfield, DA. Amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity: Implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Rad Res 2002, 36, 1307–1313. [Google Scholar]
- Garrido, J; Godoy, J; Alvarez, A; Bronfman, M; Inestrosa, N. Protein kinase C inhibits amyloid {beta} peptide neurotoxicity by acting on members of the Wnt pathway. FASEB J 2002, 16, 1982–1984. [Google Scholar]
- Luo, D; Zhang, Q; Wang, H; Cui, Y; Sun, Z; Yang, J; Zheng, Y; Jia, J; Yu, F; Wang, X. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur J Pharmacol 2009, 617, 33–40. [Google Scholar]
- Eftekharzadeh, B; Khodagholi, F; Abdi, A; Maghsoudi, N. Alginate protects NT2 neurons against H2O2-induced neurotoxicity. Carbohyd Polym 2010, 79, 1063–1072. [Google Scholar]
- Khodosevich, K; Monyer, H. Signaling involved in neurite outgrowth of postnatally born subventricular zone neurons in vitro. BMC Neurosci 2010, 11, 18:1–18:11. [Google Scholar]
- Tsang, C; Ina, A; Goto, T; Kamei, Y. Sargachromenol, a novel nerve growth factor-potentiating substance isolated from Sargassum macrocarpum, promotes neurite outgrowth and survival via distinct signaling pathways in PC12D cells. Neuroscience 2005, 132, 633–643. [Google Scholar]
- Tsang, C; Kamei, Y. Sargaquinoic acid supports the survival of neuronal PC12D cells in a nerve growth factor-independent manner. Eur J Pharmacol 2004, 488, 11–18. [Google Scholar]
- Kamei, Y; Sagara, A. Neurite outgrowth promoting activity of marine algae from Japan against rat adrenal medulla pheochromocytoma cell line, PC12D. Cytotechnology 2002, 40, 99–106. [Google Scholar]
- Tsang, C; Sagara, A; Kamei, Y. Structure-activity relationship of a neurite outgrowth-promoting substance purified from the brown alga, Sargassum macrocarpum, and its analogues on PC12D cells. J Appl Phycol 2001, 13, 349–357. [Google Scholar]
- Ina, A; Hayashi, K; Nozaki, H; Kamei, Y. Pheophytin a, a low molecular weight compound found in the marine brown alga Sargassum fulvellum, promotes the differentiation of PC12 cells. Int J Dev Neurosci 2007, 25, 63–68. [Google Scholar]
- Ina, A; Kamei, Y. Vitamin B 12, a chlorophyll-related analog to pheophytin a from marine brown algae, promotes neurite outgrowth and stimulates differentiation in PC12 cells. Cytotechnology 2006, 52, 181–187. [Google Scholar]
- Jung, H; Oh, S; Choi, J. Molecular docking studies of phlorotannins from Eisenia bicyclis with BACE1 inhibitory activity. Bioorgan Med Chem Lett 2010, 20, 3211–3215. [Google Scholar]
- Tang, K; Hynan, L; Baskin, F; Rosenberg, R. Platelet amyloid precursor protein processing: A bio-marker for Alzheimer’s disease. J Neurol Sci 2006, 240, 53–58. [Google Scholar]
- Lee, HR; Do, H; Lee, SR; Sohn, ES; Pyo, S; Son, E. Effects of fucoidan on neuronal cell proliferation-association with NO production through the iNOS pathway. J Food Sci Nutr 2007, 12, 74–78. [Google Scholar]
- Bjarkam, CR; Sørensen, JC; Sunde, NÅ; Geneser, FA; Østergaard, K. New strategies for the treatment of Parkinson’s disease hold considerable promise for the future management of neurodegenerative disorders. Biogerontology 2001, 2, 193–207. [Google Scholar]
- Ansari, J; Siraj, A; Inamdar, N. Pharmacotherapeutic approaches of Parkinson’s disease. Int J Pharmacol 2010, 6, 584–590. [Google Scholar]
- Narang, S; Gibson, D; Wasan, AD; Ross, EL; Michna, E; Nedeljkovic, SS; Jamison, RN. Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J Pain 2008, 9, 254–264. [Google Scholar]
- Gilgun-Sherki, Y; Melamed, E; Offen, D. Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 2001, 40, 959–975. [Google Scholar]
- Mishra, S; Palanivelu, K. The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Ann Indian Acad Neurol 2008, 11, 13–19. [Google Scholar]
- Jorm, AF; Jolley, D. The incidence of dementia: A meta-analysis. Neurology 1998, 51, 728–733. [Google Scholar]
- Smit, AJ. Medicinal and pharmaceutical uses of seaweed natural products: A review. J Appl Phycol 2004, 16, 245–262. [Google Scholar]
Marine algae | Extracts/Compounds | IC50 | Ref |
---|---|---|---|
Caulerpa racemosa | MeOH extracts | 5.5 mg mL−1 | [70] |
Codium capitatum | MeOH extracts | 7.8 mg mL−1 | [70] |
Ulva fasciata | MeOH extracts | 4.8 mg mL−1 | [70] |
Halimeda cuneata | MeOH extracts | 5.7 mg mL−1 | [70] |
Amphiora ephedraea | MeOH extracts | 5.1 mg mL−1 | [70] |
Amphiora bowerbankii | MeOH extracts | 5.3 mg mL−1 | [70] |
Dictyota humifusa | MeOH extracts | 4.8 mg mL−1 | [70] |
Hypnea valentiae | MeOH extracts | 2.6 mg mL−1 | [71] |
Padina gymnospora | MeOH extracts | 3.5 mg mL−1 | [71] |
Ulva reticulate | MeOH extracts | 10 mg mL−1 | [71] |
Gracilaria edulis | MeOH extracts | 3 mg mL−1 | [71] |
Ecklonia stolonifera | EtOH extracts | 108.11 μg mL−1 | [72] |
Ecklonia stolonifera | 24–hydroperoxy–24–vinylcholesterol | 389.1 μM | [72] |
Ecklonia stolonifera | Eckstolonol | 42.66 μM | [72] |
Ecklonia stolonifera | Eckol | 20.56 μM | [72] |
Ecklonia stolonifera | Phlorofucofluoroeckol–A | 4.89 μM | [72] |
Ecklonia stolonifera | Dieckol | 17.11 μM | [72] |
Ecklonia stolonifera | 2–phloroeckol | 38.13 μM | [72] |
Ecklonia stolonifera | 7–phloroeckol | 21.11 μM | [72] |
Ishige okamurae | MeOH extracts | 163.07 μM | [73] |
Ishige okamurae | EtOAc extracts | 137.25 μM | [73] |
Ishige okamurae | 6,6′–bieckol | 46.42 μM | [73] |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pangestuti, R.; Kim, S.-K. Neuroprotective Effects of Marine Algae. Mar. Drugs 2011, 9, 803-818. https://doi.org/10.3390/md9050803
Pangestuti R, Kim S-K. Neuroprotective Effects of Marine Algae. Marine Drugs. 2011; 9(5):803-818. https://doi.org/10.3390/md9050803
Chicago/Turabian StylePangestuti, Ratih, and Se-Kwon Kim. 2011. "Neuroprotective Effects of Marine Algae" Marine Drugs 9, no. 5: 803-818. https://doi.org/10.3390/md9050803
APA StylePangestuti, R., & Kim, S. -K. (2011). Neuroprotective Effects of Marine Algae. Marine Drugs, 9(5), 803-818. https://doi.org/10.3390/md9050803