Bioactivity of Benthic and Picoplanktonic Estuarine Cyanobacteria on Growth of Photoautotrophs: Inhibition versus Stimulation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth Stimulation versus Inhibition
2.2. Potential Allelopathic Effects
3. Experimental Section
3.1. Cyanobacterial Isolates
3.2. Extracts Preparation
3.3. Microalgal Growth Assay
3.3.1. Target Strains
3.3.2. Assessment of Microalgal Growth
- Cell density Chlorella (cell.mL−1) = 3E+07 * A750 nm + 3.28E+05 (r2 = 0.999)
- Cell density Nannochloropsis (cell.mL−1) = 4E+07 * A750 nm – 6.48E+04 (r2 = 0.997)
- Cell density Microcystis (cell.mL−1) = 4E+08 * A750 nm + 6.54E+05 (r2 = 0.999)
- Cell density Synechocystis (cell.mL−1) = 5E+08 * A750 nm + 4.00E+06 (r2 = 0.998)
3.3.3. Bioassay
3.3.4. Statistical Analysis
4. Conclusions
Acknowledgments
- Samples Availability: Available from the authors.
References
- Boone, DR; Castenholz, RW. The archaea and the deeply branching and phototrophic bacteria. In Bergey’s Manual of Systematic Bacteriology, 2nd ed; Garrity, GM, Ed.; Springer-Verlag: New York, NY, USA, 2001; Volume 1, 721. [Google Scholar]
- Jaiswal, P; Singh, PK; Prasanna, R. Cyanobacterial bioactive molecules-an overview of their toxic properties. Can J Microbiol 2008, 54, 701–717. [Google Scholar]
- Mundt, S; Kreitlow, S; Nowotny, A; Effmert, U. Biochemical and pharmacological investigations of selected cyanobacteria. Int J Hyg Environ Heal 2001, 203, 327–334. [Google Scholar]
- Berry, JP; Gantar, M; Perez, MH; Berry, G; Noriega, FG. Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar Drugs 2008, 6, 117–146. [Google Scholar]
- Suikkanen, S; Fistarol, GO; Granéli, E. Effects of cyanobacterial allelochemicals on a natural plankton community. Mar Ecol Prog Ser 2005, 287, 1–9. [Google Scholar]
- Carey, CC; Rengefors, K. The cyanobacterium Gloeotrichia echinulata stimulates the growth of other phytoplankton. J Plankton Res 2010, 32, 1349–1354. [Google Scholar]
- Karjalainen, M; Engstrom-Ost, J; Korpinen, S; Peltonen, H; Paakkonen, JP; Ronkkonen, S; Suikkanen, S; Viitasalo, M. Ecosystem consequences of cyanobacteria in the northern Baltic sea. Ambio 2007, 36, 195–202. [Google Scholar]
- Granéli, E; Hansen, PJ. Allelopathy in harmful algae: A mechanism to compete for resources? In Ecology of Harmful Algae; Granéli, E, Turner, JT, Eds.; Springer: Berlin, Heidelberg, Germany, 2006; Volume 189, pp. 189–201. [Google Scholar]
- Suikkanen, S; Fistarol, GO; Granéli, E. Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 2004, 308, 85–101. [Google Scholar]
- Suikkanen, S; Engstrom-Ost, J; Jokela, J; Sivonen, K; Viitasalo, M. Allelopathy of Baltic sea cyanobacteria: No evidence for the role of nodularin. J Plankton Res 2006, 28, 543–550. [Google Scholar]
- Valdor, R; Aboal, M. Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon 2007, 49, 769–779. [Google Scholar]
- Kearns, KD; Hunter, MD. Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environ Microbiol 2000, 2, 291–297. [Google Scholar]
- Windust, AJ; Quilliam, MA; Wright, JLC; McLachlan, JL. Comparative toxicity of the diarrhetic shellfish poisons, okadaic acid, okadaic acid diol-ester and dinophysistoxin-4, to the diatom thalassiosira weissflogii. Toxicon 1997, 35, 1591–1603. [Google Scholar]
- Zulpa, G; Zaccaro, MC; Boccazzi, F; Parada, JL; Storni, M. Bioactivity of intra and extracellular substances from cyanobacteria and lactic acid bacteria on “Wood blue stain” Fungi. Biol Control 2003, 27, 345–348. [Google Scholar]
- Prasanna, R; Sood, A; Jaiswal, P; Nayak, S; Gupta, V; Chaudhary, V; Joshi, M; Natarajan, C. Rediscovering cyanobacteria as valuable sources of bioactive compounds (review). Appl Biochem Microbiol 2010, 46, 119–134. [Google Scholar]
- Ravikumar, S; Shiefa, AN; Nanitha, KS. Effect of phytohormones on the growth dynamics and macromolecular contents of two extreme halophilic cyanobacteria (Phormidium sp.). J Environ Biol 2005, 26, 55–59. [Google Scholar]
- Carey, CC; Rengefors, K. The cyanobacterium Gloeotrichia echinulata stimulates the growth of other phytoplankton. J Plankton Res 2010, 32, 1349–1354. [Google Scholar]
- Gantar, M; Berry, JP; Thomas, S; Wang, M; Perez, R; Rein, KS. Allelopathic activity among cyanobacteria and microalgae isolated from florida freshwater habitats. FEMS Microb Ecol 2008, 64, 55–64. [Google Scholar]
- Wagner, H. Trends and challenges in phytomedicines: Research in the new millenium. In Handbook of Medicinal Plants; Yaniv, Z, Bachrach, U, Eds.; The Haworth Medicinal Press: Binghamton, NY, USA, 2005; p. 3. [Google Scholar]
- Leflaive, J; Ten-Hage, L. Algal and cyanobacterial secondary metabolites in freshwaters: A comparison of allelopathic compounds and toxins. Freshw Biol 2007, 52, 199–214. [Google Scholar]
- Rice, EL. Allelopathy, 2nd ed; Academic Press: Orlando, FL, USA, 1984. [Google Scholar]
- Tittel, J; Kamjunke, N. Metabolism of dissolved organic carbon by planktonic bacteria and mixotrophic algae in lake neutralisation experiments. Freshw Biol 2004, 49, 1062–1071. [Google Scholar]
- Legrand, C; Rengefors, K; Fistarol, GO; Granéli, E. Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia 2003, 42, 406–419. [Google Scholar]
- Leão, PN; Pereira, AR; Liu, W-T; Ng, J; Pevzner, PA; Dorrestein, PC; König, GM; Vasconcelos, VM; Gerwick, WH. Synergistic allelochemicals from a freshwater cyanobacterium. Proc Natl Acad Sci USA 2010, 107, 11183–11188. [Google Scholar]
- Mattson, MP. Hormesis defined. Ageing Res Rev 2008, 7, 1–7. [Google Scholar]
- Volk, R-B. Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and nodularia harveyana. J Appl Phycol 2005, 17, 339–347. [Google Scholar]
- Gross, EM. Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 2003, 22, 313–339. [Google Scholar]
- Gross, EM. Allelochemical reactions. In Encyclopedia of Inland Waters; Gene, EL, Ed.; Academic Press: Oxford, UK, 2009; pp. 715–726. [Google Scholar]
- Mohamed, ZA. Allelopathic activity of spirogyra sp.: Stimulating bloom formation and toxin production by Oscillatoria agardhii in some irrigation canals, Egypt. J Plankton Res 2002, 24, 137–141. [Google Scholar]
- Kotai, J. Instructions for Preparation of Modified Nutrient Solution Z8 for Algae; Norwegian Institute for Water Research, Blindern: Oslo, Norway, 1972. [Google Scholar]
- Allen, MM; Stanier, RY. Growth and division of some unicellular blue-green algae. J Gen Microbiol 1968, 51, 199–202. [Google Scholar]
- Lopes, V; Fernández, N; Martins, R; Vasconcelos, V. Primary screening of the bioactivity of brackishwater cyanobacteria: Toxicity of crude extracts to Artemia salina larvae and Paracentrotus lividus embryos. Mar Drugs 2010, 8, 471–482. [Google Scholar]
Isolate LEGE/Species name | Extract | Conc. (mg.mL −1) | Growth fold induction a | |||
---|---|---|---|---|---|---|
N b | C | S | M | |||
06069 Leptolyngbya sp.1 | ME c | H d | 1.4 | 5.9 | 3.0 | 3.9 |
L | 1.0 | 0.4 e | 1.3 | 0.9 | ||
WE | H | 2.2 | 6.2 | 6.9 | 103.5 f | |
L | 1.3 | 1.6 | 0.6 | 19.0 | ||
06070 Leptolyngbya sp.2 | ME | H | 20.4 | 1.6 | 2.9 | 6.4 |
L | 10.2 | 1.0 | 0.9 | 2.1 | ||
WE | H | 10.2 | 1.3 | 2.4 | 1.9 | |
L | 10.9 | 1.1 | 1.4 | 1.6 | ||
06072 Phormidium cf. animale | ME | H | 0.3 | 1.2 | 0.6 | 7.1 |
L | 2.1 | 1.1 | 1.1 | 1.7 | ||
WE | H | 4.7 | 1.3 | 1.6 | 7.8 | |
L | 3.7 | 1.0 | 1.2 | 1.6 | ||
06078 Phormidium cf. chalybeum | ME | H | 0.7 | 2.5 | 0.4 | 9.5 |
L | 4.2 | 1.2 | 1.9 | 2.7 | ||
WE | H | 10.0 | 2.0 | 1.6 | 5.5 | |
L | 3.3 | 1.3 | 0.9 | 1.3 | ||
07080 Leptolyngbya sp.1 | ME | H | 15.7 | 2.5 | 3.3 | 5.2 |
L | 7.4 | 1.2 | 0.4 | 1.0 | ||
WE | H | 24.2 | 2.5 | 2.4 | 16.3 | |
L | 6.7 | 1.0 | 0.3 | 3.9 | ||
07075 | ME | H | 7.9 | 1.7 | 2.3 | 4.5 |
Leptolyngbya sp.2 | L | 5.0 | 1.1 | 1.3 | 1.5 | |
WE | H | 0.5 | 0.4 | 0.5 | 3.3 | |
L | 4.0 | 1.1 | 1.3 | 2.1 | ||
07076 | ME | H | 8.5 | 1.4 | 1.9 | 5.8 |
Microcoleus vaginatus | L | 5.1 | 1.1 | 1.3 | 2.9 | |
WE | H | 41.7 | 1.9 | 2.7 | 8.6 | |
L | 9.5 | 0.6 | 0.5 | 4.4 | ||
07084 Leptolyngbya sp.1 | ME | H | 6.3 | 2.0 | 4.6 | 21.8 |
L | 1.5 | 1.8 | 1.2 | 2.9 | ||
WE | H | 1.7 | 1.5 | 2.8 | 6.8 | |
L | 1.4 | 1.4 | 1.2 | 2.7 | ||
07085 Leptolyngbya aff. bijugata | ME | H | 1.3 | 1.7 | 0.8 | 3.5 |
L | 1.9 | 1.2 | 1.4 | 1.4 | ||
WE | H | 7.8 | 1.2 | 0.5 | 3.6 | |
L | 0.7 | 1.1 | 1.4 | 1.2 | ||
07091 Leptolyngbya sp.1 | ME | H | 3.0 | 0.9 | 10.3 | 74.3 |
L | 2.1 | 1.3 | 0.9 | 20.3 | ||
WE | H | 8.3 | 1.4 | 22.2 | 123.0* | |
L | 2.6 | 1.2 | 0.9 | 34.3 | ||
07092 Microcoleus chthonoplastes | ME | H | 2.2 | 5.9 | 3.0 | 4.5 |
L | 1.3 | 0.4 | 1.3 | 1.6 | ||
WE | H | 20.4 | 6.2 | 6.9 | 7.1 | |
L | 10.2 | 1.6 | 0.6 | 1.7 |
Isolate LEGE/Species name | Extract | Conc. (mg.mL−1) | Growth fold induction | |||
---|---|---|---|---|---|---|
N | C | S | M | |||
06071 Nodularia sp. | ME | H | 9.8* | 1.6 | 5.7 | 3.8 |
L | 6.9* | 1.4 | 0.6 | 0.3 | ||
WE | H | 3.8 | 1.8 | 1.9 | 2.8 | |
L | 3.1 | 1.7 | 0.1 | 0.6 | ||
06077 Nostoc sp. | ME | H | 3.5 | 0.8 | 0.1 | 0.5 |
L | 2.3 | 1.1 | 0.0 | 0.3 | ||
WE | H | 0.6 | 1.0 | 0.4 | 2.7 | |
L | 0.4 | 1.0 | 0.2 | 0.5 |
Isolate LEGE/Species name | Extract | Conc. (mg.mL−1) | Growth fold induction | |||
---|---|---|---|---|---|---|
N | C | S | M | |||
06068 Cyanobium sp. | ME | H | 5.4 | 2.6 | 3.6 | 6.4 |
L | 1.5 | 1.1 | 1.0 | 1.5 | ||
WE | H | 4.9 | 3.4 | 3.8 | 8.3* | |
L | 1.5 | 1.4 | 0.8 | 0.7 | ||
06079 Synechocystis salina | ME | H | 5.0 | 2.6 | 0.6 | 3.4 |
L | 3.5 | 1.1 | 0.0 | 0.0 | ||
WE | H | 2.1 | 3.4 | 0.4 | 2.9 | |
L | 2.1 | 1.4 | 0.1 | 0.3 | ||
06083 Synechocystis cf. salina | ME | H | 5.0 | 1.9 | 3.2 | 7.8* |
L | 3.5 | 1.1 | 0.3 | 0.2 | ||
WE | H | 2.1 | 1.7 | 0.5 | 1.7 | |
L | 2.1 | 0.8 | 0.5 | 0.2 | ||
07073 Synechocystis cf. salina | ME | H | 2.6 | 1.2 | 0.6 | 3.4 |
L | 1.6 | 0.9 | 0.0 | 0.0 | ||
WE | H | 7.9* | 2.2 | 0.4 | 2.9 | |
L | 0.4 | 1.0 | 0.0 | 0.3 | ||
07074 Synechococcus sp. | ME | H | 6.2 | 1.8 | 4.3 | 1.1 |
L | 0.3 | 1.2 | 1.7 | 3.9 | ||
WE | H | 0.5 | 2.4 | 0.7 | 2.6 | |
L | 2.2 | 1.3 | 1.6 | 1.5 |
Order No. LEGE | Taxa (genus/species) | Habitat | Coordinates source (Lat./Lon.) | |
---|---|---|---|---|
Chroococcales | ||||
06068 | Cyanobium sp. | benthos | N 41° 8′ 50. 77″ | W 8°39′ 12. 89″ |
06079 | Synechocystis salina | benthos | N 41° 8′ 12. 20″ | W 8°39′ 54. 65″ |
06083 | Synechocystis cf. salina | picoplankton | N 41° 8′ 48. 17″ | W 8°39′ 3 8. 79″ |
07073 | Synechocystis cf. salina | picoplankton | N 40° 40′ 16. 42″ | W 8°43′ 24. 36″ |
07074 | Synechococcus sp. | benthos | N 41° 8′ 48. 17″ | W 8°39′ 3 8. 79″ |
Oscillatoriales | ||||
07075 | Leptolyngbya sp.2 | benthos | N 41° 8′ 50. 45″ | W 8°3 8′ 2. 13″ |
07080 | Leptolyngbya sp.1 | benthos | N 41° 52′ 2. 50″ | W 8°51′35. 90″ |
07084 | Leptolyngbya sp.1 | benthos | N 41° 52′ 16. 76″ | W 8°50′ 39. 66″ |
07085 | Leptolyngbya aff. bijugata | benthos | N 41° 8′ 50. 77″ | W 8°39′ 12. 89″ |
07091 | Leptolyngbya sp.1 | benthos | N 40° 40′ 16. 42″ | W 8°43′ 24. 36″ |
06069 | Leptolyngbya sp.1 | benthos | N 41° 8′ 50. 45″ | W 8°3 8′ 2. 13″ |
06070 | Leptolyngbya sp.2 | benthos | N 41° 8′ 50. 45″ | W 8°3 8′ 2. 13″ |
07076 | Microcoleus vaginatus | benthos | N 41° 54′5. 00″ | W 8°4 8′ 51. 88″ |
07092 | Microcoleus chthonoplastes | benthos | N 40° 40′ 16. 42″ | W 8°43′ 24. 36″ |
06072 | Phormidium cf. animale | benthos | N 40° 40′ 16. 42″ | W 8°43′ 24. 36″ |
06078 | Phormidium cf. chalybeum | benthos | N 41° 8′ 12. 20″ | W 8°39′ 54. 65″ |
Nostocales | ||||
06071 | Nodularia sp. | benthos | N 40° 38′ 32. 87″ | W 8°39′ 47. 85″ |
06077 | Nostoc sp. | picoplankton | N 41° 52′ 40. 13″ | W 8°50′ 6. 33″ |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lopes, V.R.; Vasconcelos, V.M. Bioactivity of Benthic and Picoplanktonic Estuarine Cyanobacteria on Growth of Photoautotrophs: Inhibition versus Stimulation. Mar. Drugs 2011, 9, 790-802. https://doi.org/10.3390/md9050790
Lopes VR, Vasconcelos VM. Bioactivity of Benthic and Picoplanktonic Estuarine Cyanobacteria on Growth of Photoautotrophs: Inhibition versus Stimulation. Marine Drugs. 2011; 9(5):790-802. https://doi.org/10.3390/md9050790
Chicago/Turabian StyleLopes, Viviana R., and Vitor M. Vasconcelos. 2011. "Bioactivity of Benthic and Picoplanktonic Estuarine Cyanobacteria on Growth of Photoautotrophs: Inhibition versus Stimulation" Marine Drugs 9, no. 5: 790-802. https://doi.org/10.3390/md9050790
APA StyleLopes, V. R., & Vasconcelos, V. M. (2011). Bioactivity of Benthic and Picoplanktonic Estuarine Cyanobacteria on Growth of Photoautotrophs: Inhibition versus Stimulation. Marine Drugs, 9(5), 790-802. https://doi.org/10.3390/md9050790