Development of Novel Drugs from Marine Surface Associated Microorganisms
Abstract
:1. Introduction
2. Exploring the Under-Explored–Marine Microorganisms as a Source of New Drugs
2.1. Marine Surface Associated Microoorganisms
3. The Challenges of Microbial Bioactive Natural Product Development from Marine Epibiotic Microorganisms
3.1. Improving the Culturability and Production of Bioactives from Marine Microorganisms
3.2. De-Replication
3.3. Purification of Bioactives from Crude Extracts
4. Is There an Alternative to Natural Product Discovery and Development?
5. Conclusions
Acknowledgements
References
- Berdy, J. Bioactive microbial metabolites. A personal view. J Antibiot (Tokyo) 2005, 58, 1–26. [Google Scholar]
- Monaghan, RL; Tkacz, JS. Bioactive microbial products: Focus upon mechanism of action. Annu Rev Microbiol 1990, 44, 271–301. [Google Scholar]
- Capon, RJ. Marine bioprospecting–Trawling for treasure and pleasure. European J Org Chem 2001, 633–645. [Google Scholar]
- Basilio, A; Gonzalez, I; Vicente, MF; Gorrochategui, J; Cabello, A; Gonzalez, A; Genilloud, O. Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity. J Appl Microbiol 2003, 95, 814–823. [Google Scholar]
- Pelaez, F; Genilloud, O. Discovering new drugs from microbial natural products. In Microorganisms for Health Care, Food and Enzyme Production; Barredo, JL, Ed.; Research Signpost: Trivendrum, India, 2003; pp. 1–23. [Google Scholar]
- Watve, MG; Tickoo, R; Jog, MM; Bhole, BD. How many antibiotics are produced by the genus Streptomyces. Arch Microbiol 2001, 176, 386–390. [Google Scholar]
- Rheinheimer, G. Aquatic microbiology; Wiley: Chichester; New York, NY, USA, 1992. [Google Scholar]
- Fenical, W; Jensen, PR. Developing a new resource for drug discovery: Marine actinomycete bacteria. Nat Chem Biol 2006, 2, 666–673. [Google Scholar]
- Perez-Matos, AE; Rosado, W; Govind, NS. Bacterial diversity associated with the Caribbean tunicate Ecteinascidia turbinata. Antonie van Leeuwenhoek 2007, 92, 155–164. [Google Scholar]
- Longford, SR; Tujula, NA; Crocetti, GR; Holmes, AJ; Holmstrom, C; Kjelleberg, S; Steinberg, PD; Taylor, MW. Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat Microb Ecol 2007, 48, 217–229. [Google Scholar]
- Santiago-Vazquez, LZ; Bruck, TB; Bruck, WM; Duque-Alarcon, AP; McCarthy, PJ; Kerr, RG. The diversity of the bacterial communities associated with the azooxanthellate hexacoral Cirrhipathes lutkeni. ISME J 2007, 1, 654–659. [Google Scholar]
- Rohwer, F; Seguritan, V; Azam, F; Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 2002, 243, 1–10. [Google Scholar]
- Martinez-Garcia, M; Diaz-Valdes, M; Wanner, G; Ramos-Espla, A; Anton, J. Microbial community associated with the colonial ascidian Cystodytes dellechiajei. Environ Microbiol 2007, 9, 521–534. [Google Scholar]
- Webster, NS; Bourne, D. Bacterial community structure associated with the Antarctic soft coral Alcyonium antarcticum. FEMS Microbiol Ecol 2007, 59, 81–94. [Google Scholar]
- Bourne, DG; Munn, CB. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 2005, 7, 1162–1174. [Google Scholar]
- Enticknap, JJ; Kelly, M; Peraud, O; Hill, RT. Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol 2006, 72, 3724–3732. [Google Scholar]
- Penesyan, A; Marshall-Jones, Z; Holmstrom, C; Kjelleberg, S; Egan, S. Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs: Research article. FEMS Microbiol Ecol 2009, 69, 113–124. [Google Scholar]
- Hentschel, U; Schmid, M; Wagner, M; Fieseler, L; Gernert, C; Hacker, J. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 2001, 35, 305–312. [Google Scholar]
- Muscholl-Silberhorn, A; Thiel, V; Imhoff, J. Abundance and bioactivity of cultured sponge-sssociated bacteria from the Mediterranean sea. Microb Ecol 2008, 55, 94–106. [Google Scholar]
- Burgess, JG; Jordan, EM; Bregu, M; Mearns-Spragg, A; Boyd, KG. Microbial antagonism: A neglected avenue of natural products research. J Biotechnol 1999, 70, 27–32. [Google Scholar]
- Egan, S; Thomas, T; Kjelleberg, S. Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr Opin Microbiol 2008, 11, 219–225. [Google Scholar]
- Zobell, CE. Marine microbiology: A Monograph on Hydrobacteriology; Chronica Botanica Co.: Waltham, MA, USA, 1946. [Google Scholar]
- Sogin, ML; Morrison, HG; Huber, JA; Welch, DM; Huse, SM; Neal, PR; Arrieta, JM; Herndl, GJ. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 2006, 103, 12115–12120. [Google Scholar]
- Stach, JEM; Bull, AT. Estimating and comparing the diversity of marine actinobacteria. Antonie van Leeuwenhoek 2005, 87, 3–9. [Google Scholar]
- Holler, U; Wright, AD; Matthee, GF; Konig, GM; Draeger, S; Aust, HJ; Schulz, B. Fungi from marine sponges: Diversity, biological activity and secondary metabolites. Mycol Res 2000, 104, 1354–1365. [Google Scholar]
- Haefner, B. Drugs from the deep: Marine natural products as drug candidates. Drug Discov Today 2003, 8, 536–544. [Google Scholar]
- Blunt, JW; Copp, BR; Hu, WP; Munro, MHG; Northcote, PT; Prinsep, MR. Marine natural products. Nat Prod Rep 2009, 26, 170–244. [Google Scholar]
- Andrighetti-Frohner, CR; Antonio, RV; Creczynski-Pasa, TB; Barardi, CRM; Simoes, CMO. Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem Inst Oswaldo Cruz 2003, 98, 843–848. [Google Scholar]
- Lichstein, HC; Van de Sand, VF. Violacein, an antibiotic pigment produced by Chromobacterium violaceum. J Infect Dis 1945, 76, 47–51. [Google Scholar]
- Matz, C; Deines, P; Boenigk, J; Arndt, H; Eberl, L; Kjelleberg, S; Jurgens, K. Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 2004, 70, 1593–1599. [Google Scholar]
- James, SG; Holmstrom, C; Kjelleberg, S. Purification and characterization of a novel antibacterial protein from the marine bacterium D2. Appl Environ Microbiol 1996, 62, 2783–2788. [Google Scholar]
- Franks, A; Haywood, P; Holmstrom, C; Egan, S; Kjelleberg, S; Kumar, N. Isolation and structure elucidation of a novel yellow pigment from the marine bacterium Pseudoalteromonas tunicata. Molecules 2005, 10, 1286–1291. [Google Scholar]
- Feling, RH; Buchanan, GO; Mincer, TJ; Kauffman, CA; Jensen, PR; Fenical, W. Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angewandte Chemie–International Edition 2003, 42, 355–357. [Google Scholar]
- Ratnayake, R; Lacey, E; Tennant, S; Gill, JH; Capon, RJ. Kibdelones: Novel anticancer polyketides from a rare Australian actinomycete. Chemistry–A European Journal 2007, 13, 1610–1619. [Google Scholar]
- Fremlin, LJ; Piggott, AM; Lacey, E; Capon, RJ. Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus versicolor. J Nat Prod 2009, 72, 666–670. [Google Scholar]
- Xu, Y; He, H; Schulz, S; Liu, X; Fusetani, N; Xiong, H; Xiao, X; Qian, PY. Potent antifouling compounds produced by marine. Streptomyces Bioresource Technol 2010, 101, 1331–1336. [Google Scholar]
- Dash, S; Jin, C; Lee, OO; Xu, Y; Qian, PY. Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. J Ind Microbiol Biotechnol 2009, 36, 1047–1056. [Google Scholar]
- Xiong, H; Qi, S; Xu, Y; Miao, L; Qian, P.-Y. Antibiotic and antifouling compound production by the marine-derived fungus Cladosporium sp. F14. J Hydro-environ Res 2009, 2, 264–270. [Google Scholar]
- Zhang, L; An, R; Wang, J; Sun, N; Zhang, S; Hu, J; Kuai, J. Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol 2005, 8, 276–281. [Google Scholar]
- Molinski, TF; Dalisay, DS; Lievens, SL; Saludes, JP. Drug development from marine natural products. Nat Rev Drug Discov 2009, 8, 69–85. [Google Scholar]
- Sarkar, S; Saha, M; Roy, D; Jaisankar, P; Das, S; Gauri Roy, L; Gachhui, R; Sen, T; Mukherjee, J. Enhanced production of antimicrobial compounds by three salt-tolerant actinobacterial strains isolated from the Sundarbans in a niche-mimic bioreactor. Mar Biotechnol 2008, 10, 518–526. [Google Scholar]
- Rohwer, F; Breitbart, M; Jara, J; Azam, F; Knowlton, N. Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reef 2001, 20, 85–91. [Google Scholar]
- Dobretsov, S; Dahms, HU; Tsoi, MY; Qian, PY. Chemical control of epibiosis by Hong Kong sponges: The effect of sponge extracts on micro- and macrofouling communities. Mar Ecol Prog Ser 2005, 297, 119–129. [Google Scholar]
- Taylor, MW; Schupp, PJ; Dahllof, I; Kjelleberg, S; Steinberg, PD. Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 2004, 6, 121–130. [Google Scholar]
- Provasoli, L; Pintner, IJ. Effect of media and inoculum on morphology of. Ulva J Phycol 1977, 13, 56–56. [Google Scholar]
- Provasoli, L; Pintner, IJ. Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca (Chlorophceae). J Phycol 1980, 16, 196–201. [Google Scholar]
- Nakanishi, K; Nishijima, M; Nishimura, M; Kuwano, K; Saga, N. Bacteria that induce morphogenesis in Ulva pertusa (Chlorophyta) grown under axenic conditions. J Phycol 1996, 32, 479–482. [Google Scholar]
- Nakanishi, K; Nishijima, M; Nomoto, AM; Yamazaki, A; Saga, N. Requisite morphologic interaction for attachment between Ulva pertusa (Chlorophyta) and symbiotic bacteria. Mar Biotechnol 1999, 1, 107–111. [Google Scholar]
- Matsuo, Y; Suzuki, M; Kasai, H; Shizuri, Y; Harayama, S. Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum. Environ Microbiol 2003, 5, 25–35. [Google Scholar]
- Sharp, KH; Eam, B; John Faulkner, D; Haygood, MG. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 2007, 73, 622–629. [Google Scholar]
- Schmitt, S; Weisz, JB; Lindquist, N; Hentschel, U. Vertical transmission of a phylogenetically complex microbial consortium in the viviparous sponge Ircinia felix. Appl Environ Microbiol 2007, 73, 2067–2078. [Google Scholar]
- Cary, SC. Verticial transmission of a chemoautotrophic symbiont in the protobranch bivalve Solemya reidi. Mol Mar Biol Biotechnol 1994, 3, 121–130. [Google Scholar]
- Hirose, E; Fukuda, T. Vertical transmission of photosymbionts in the colonial ascidian Didemnum molle: The larval tunic prevents symbionts from attaching to the anterior part of larvae. Zool Sci 2006, 23, 669–674. [Google Scholar]
- Buchan, A; Gonzalez, JM; Moran, MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005, 71, 5665–5677. [Google Scholar]
- Wagner-Dobler, I; Biebl, H. Environmental Biology of the Marine Roseobacter Lineage. Annu Rev Microbiol 2006, 60, 255–280. [Google Scholar]
- Wilkinson, CR. Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In Biologie des Spongiaires; Levi, C, Boury-Esnault, N, Eds.; Colloques Internationionaux du Centre National de la Recherche Scientifique: Paris France, 1979; pp. 373–380. [Google Scholar]
- Wilkinson, CR. Net primary productivity in coral reef sponges. Science 1983, 219, 410–412. [Google Scholar]
- Stierle, AC; Cardellina Ii, JH; Singleton, FL. A marine Micrococcus produces metabolites ascribed to the sponge. Tedania ignis Experientia 1988, 44, 1021. [Google Scholar]
- Kobayashi, J; Ishibashi, M. Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 1993, 93, 1753–1769. [Google Scholar]
- Unson, MD; Faulkner, DJ. Cyanobacterial symbiont synthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia 1993, 44, 1021–1022. [Google Scholar]
- Unson, MD; Holland, ND; Faulkner, DJ. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 1994, 119, 1–12. [Google Scholar]
- Oclarit, JM; Okada, H; Ohta, S; Kaminura, K; Yamaoka, Y; Iizuka, T; Miyashiro, S; Ikegami, S. Anti-bacillus substance in the marine sponge, Hyatella species, produced by an associated Vibrio species bacterium. Microbios 1994, 78, 7–16. [Google Scholar]
- Bewley, CA; Holland, ND; Faulkner, DJ. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 1996, 52, 716–722. [Google Scholar]
- Schmidt, EW; Obraztsova, AY; Davidson, SK; Faulkner, DJ; Haygood, MG. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel delta-proteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol 2000, 136, 969–977. [Google Scholar]
- Schmidt, EW. From chemical structure to environmental biosynthetic pathways: Navigating marine invertebrate-bacteria associations. Trends Biotechnol 2005, 23, 437–440. [Google Scholar]
- Konig, GM; Kehraus, S; Seibert, SF; Abdel-Lateff, A; Muller, D. Natural products from marine organisms and their associated microbes. Chembiochem 2006, 7, 229–238. [Google Scholar]
- Sudek, S; Lopanik, NB; Waggoner, LE; Hildebrand, M; Anderson, C; Liu, H; Patel, A; Sherman, DH; Haygood, MG. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J Nat Prod 2007, 70, 67–74. [Google Scholar]
- Lopanik, N; Gustafson, KR; Lindquist, N. Structure of bryostatin 20: A symbiont-produced chemical defense for larvae of the host bryozoan Bugula neritina. J Nat Prod 2004, 67, 1412–1414. [Google Scholar]
- Harder, T. Marine epibiosis: Concepts, ecological consequences and host defence. In Marine and Industrial Biofouling; Costerton, JW, Ed.; Springer-Verlag: Berlin, Germany, 2009; pp. 219–231. [Google Scholar]
- Egan, S; James, S; Holmstrom, C; Kjelleberg, S. Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. FEMS Microbiol Ecol 2001, 35, 67–73. [Google Scholar]
- Egan, S; James, S; Holmstrom, C; Kjelleberg, S. Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata. Environ Microbiol 2002, 4, 433–442. [Google Scholar]
- Franks, A; Egan, S; Holmstrom, C; James, S; Lappin-Scott, H; Kjelleberg, S. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Appl Environ Microbiol 2006, 72, 6079–6087. [Google Scholar]
- Holmstrom, C; James, S; Neilan, BA; White, DC; Kjelleberg, S. Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int J Syst Bacteriol 1998, 48, 1205–1212. [Google Scholar]
- Gil-Turnes, MS; Fenical, W. Embryos of Homarus americanus are protected by epibiotic bacteria. Biol Bull 1992, 182, 105–108. [Google Scholar]
- Lemos, ML; Toranzo, AE; Barja, JL. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microb Ecol 1985, 11, 149–163. [Google Scholar]
- Wilson, GS; Raftos, DA; Corrigan, SL; Nair, SV. Diversity and antimicrobial activities of surface-attached marine bacteria from Sydney Harbour, Australia. Microbiol Res 2009. [Google Scholar]
- Singh, SB; Barrett, JF. Empirical antibacterial drug discovery – Foundation in natural products. Biochem Pharmacol 2006, 71, 1006–1015. [Google Scholar]
- Pelaez, F. The historical delivery of antibiotics from microbial natural products – Can history repeat. Biochem Pharmacol 2006, 71, 981–990. [Google Scholar]
- Staley, JT; Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 1985, 39, 321–346. [Google Scholar]
- Pace, NR. A molecular view of microbial diversity and the biosphere. Science 1997, 276, 734–740. [Google Scholar]
- Ward, DM; Weller, R; Bateson, MM. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 1990, 345, 63–65. [Google Scholar]
- Jensen, PR; Kauffman, CA; Fenical, W. High recovery of culturable bacteria from the surfaces of marine algae. Marine Biology 1996, 126, 1–7. [Google Scholar]
- DeLong, EF. The microbial ocean from genomes to biomes. Nature 2009, 459, 200–206. [Google Scholar]
- Tripp, HJ; Kitner, JB; Schwalbach, MS; Dacey, JWH; Wilhelm, LJ; Giovannoni, SJ. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 2008, 452, 741–744. [Google Scholar]
- Kaeberlein, T; Lewis, K; Epstein, SS. Isolating “uncultivabte” microorganisms in pure culture in a simulated natural environment. Science 2002, 296, 1127–1129. [Google Scholar]
- Osinga, R; Armstrong, E; Grant Burgess, J; Hoffmann, F; Reitner, J; Schumann-Kindel, G. Sponge-microbe associations and their importance for sponge bioprocess engineering. Hydrobiologia 2001, 461, 55–62. [Google Scholar]
- Hinde, R; Pironet, F; Borowitzka, MA. Isolation of Oscillatoria spongeliae, the filamentous cyanobacterial symbiont of the marine sponge Dysidea herbacea. Mar Biol 1994, 119, 99–104. [Google Scholar]
- Betina, V. Bioactive secondary metabolites of microorganisms. Prog Ind Microbiol 1994, 30. [Google Scholar]
- Aharonowitz, Y. Nitrogen metabolite regulation of antibiotic biosynthesis. Annu Rev Microbiol 1980, 34, 209–233. [Google Scholar]
- Barberel, SI; Walker, JRL. The effect of aeration upon the secondary metabolism of microorganisms. Biotechnol Genet Eng Rev 2000, 17, 281–323. [Google Scholar]
- Pfefferle, C; Theobald, U; Gurtler, H; Fiedler, H. Improved secondary metabolite production in the genus Streptosporangium by optimization of the fermentation conditions. J Biotechnol 2001, 23, 135–142. [Google Scholar]
- Schimana, J; Gebhardt, K; Holtzel, A; Schmid, DG; Sussmuth, R; Muller, J; Pukall, R; Fiedler, HP. Arylomycins A and B new biaryl-bridged lipopeptide antibiotics produced by Streptomyces sp. Tu 6075I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo) 2002 55, 565–570.
- Saitoh, K; Tenmyo, O; Yamamoto, S; Furumai, T; Oki, T. Pradimicin S, a new pradimicin analog I. Taxonomy, fermentation and biological activities. J Antibiot (Tokyo) 1993, 46, 580–588. [Google Scholar]
- Shimada, N; Hasegawa, S; Harada, T. Oxetanocin, a novel nucleoside from bacteria. J Antibiot (Tokyo) 1986, 39, 1623–1625. [Google Scholar]
- Bills, GF; Platas, G; Fillola, A; Jimenez, MR; Collado, J; Vicente, F; Martin, J; Gonzalez, A; Bur-Zimmermann, J; Tormo, JR; Pelaez, F. Enhancement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays. J Appl Microbiol 2008, 104, 1644–1658. [Google Scholar]
- Minas, W; Bailey, JE; Duetz, W. Streptomycetes in micro-cultures: Growth, production of secondary metabolites, and storage and retrieval in the 96-well format. Anton Leeuwenhoek Int J Gen M 2000, 78, 297–305. [Google Scholar]
- Knight, V; Sanglier, JJ; DiTullio, D; Braccili, S; Bonner, P; Waters, J; Hughes, D; Zhang, L. Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol 2003, 62, 446–458. [Google Scholar]
- Matz, C; Webb, JS; Schupp, PJ; Phang, SY; Penesyan, A; Egan, S; Steinberg, P; Kjelleberg, S. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS ONE 2008, 3, e2744. [Google Scholar]
- Yan, L; Boyd, KG; Grant Burgess, J. Surface attachment induced production of antimicrobial compounds by marine epiphytic bacteria using modified roller bottle cultivation. Mar Biotechnol 2002, 4, 356–366. [Google Scholar]
- Okazaki, T; Kitahara, T; Okami, Y. Studies on marine microorganisms. IV. A new antibiotic SS-228 Y produced by Chainia isolated from shallow sea mud. J Antibiot (Tokyo) 1975, 28, 176–184. [Google Scholar]
- Tyson, GW; Lo, I; Baker, BJ; Allen, EE; Hugenholtz, P; Banfield, JF. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 2005, 71, 6319–6324. [Google Scholar]
- Handelsman, J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 2004, 68, 669–685. [Google Scholar]
- Handelsman, J. How to find new antibiotics. Scientist 2005, 19, 20–21. [Google Scholar]
- Langer, M; Gabor, EM; Liebeton, K; Meurer, G; Niehaus, F; Schulze, R; Eck, J; Lorenz, P. Metagenomics: An inexhaustible access to nature’s diversity. Biotechnol J 2006, 1, 815–821. [Google Scholar]
- Sleator, RD; Shortall, C; Hill, C. Metagenomics. Lett Appl Microbiol 2008, 47, 361–366. [Google Scholar]
- Osburne, MS; Grossman, TH; August, PR; MacNeil, IA. Tapping into microbial diversity for natural products drug discovery. ASM News 2000, 66, 411–417. [Google Scholar]
- Daniel, R. The soil metagenome–A rich resource for the discovery of novel natural products. Curr Opin Biotechnol 2004, 15, 199–204. [Google Scholar]
- Wang, GYS; Graziani, E; Waters, B; Pan, W; Li, X; McDermott, J; Meurer, G; Saxena, G; Andersen, RJ; Davies, J. Novel natural products from soil DNA libraries in a streptomycete host. Org Lett 2000, 2, 2401–2404. [Google Scholar]
- Brady, SF; Clardy, J. Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA [20]. J Am Chem Soc 2000, 122, 12903–12904. [Google Scholar]
- MacNeil, IA; Tiong, CL; Minor, C; August, PR; Grossman, TH; Loiacono, KA; Lynch, BA; Phillips, T; Narula, S; Sundaramoorthi, R; Tyler, A; Aldredge, T; Long, H; Gilman, M; Holt, D; Osburne, MS. Expression and isolation of antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol 2001, 3, 301–308. [Google Scholar]
- Uria, A; Piel, J. Cultivation-independent approaches to investigate the chemistry of marine symbiotic bacteria. Phytochem Rev 2009, 1–14. [Google Scholar]
- Burke, C; Thomas, T; Egan, S; Kjelleberg, S. The use of functional genomics for the identification of a gene cluster encoding for the biosynthesis of an antifungal tambjamine in the marine bacterium Pseudoalteromonas tunicata: Brief report. Environ Microbiol 2007, 9, 814–818. [Google Scholar]
- Lefevre, F; Robe, P; Jarrin, C; Ginolhac, A; Zago, C; Auriol, D; Vogel, TM; Simonet, P; Nalin, R. Drugs from hidden bugs: Their discovery via untapped resources. Res Microbiol 2008, 159, 153–161. [Google Scholar]
- Brady, SF; Chao, CJ; Clardy, J. Long-chain N-acyltyrosine synthases from environmental DNA. Appl Environ Microbiol 2004, 70, 6865–6870. [Google Scholar]
- Henne, A; Schmitz, RA; Bomeke, M; Gottschalk, G; Daniel, R. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 2000, 66, 3113–3116. [Google Scholar]
- Schloss, PD; Handelsman, J. Biotechnological prospects from metagenomics. Curr Opin Biotechnol 2003, 14, 303–310. [Google Scholar]
- Handelsman, J. Sorting out metagenomes. Nat Biotechnol 2005, 23, 38–39. [Google Scholar]
- Sarovich, DS; Pemberton, JM. pPSX: A novel vector for the cloning and heterologous expression of antitumor antibiotic gene clusters. Plasmid 2007, 57, 306–313. [Google Scholar]
- Díaz, M; Ferreras, E; Moreno, R; Yepes, A; Berenguer, J; Santamaría, R. High-level overproduction of Thermus enzymes in Streptomyces lividans. Appl Microbiol Biotechnol 2008, 79, 1001–1008. [Google Scholar]
- Butzin, NC; Owen, HA; Collins, MLP. A new system for heterologous expression of membrane proteins: Rhodospirillum rubrum. Protein Expr Purif.
- Li, C; Hazzard, C; Florova, G; Reynolds, KA. High titer production of tetracenomycins by heterologous expression of the pathway in a Streptomyces cinnamonensis industrial monensin producer strain. Metab Eng 2009, 11, 319–327. [Google Scholar]
- Foerstner, KU; Doerks, T; Creevey, CJ; Doerks, A; Bork, P. A computational screen for type I polyketide synthases in metagenomics shotgun data. PLoS ONE 2008, 3. [Google Scholar]
- Thomas, T; Evans, FF; Schleheck, D; Mai-Prochnow, A; Burke, C; Penesyan, A; Dalisay, DS; Stelzer-Braid, S; Saunders, N; Johnson, J; Ferriera, S; Kjelleberg, S; Egan, S. Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment. PLoS ONE 2008, 3, e3252. [Google Scholar]
- Blasiak, LC; Clardy, J. Discovery of 3-formyl-tyrosine metabolites from Pseudoalteromonas tunicata through heterologous expression. J Am Chem Soc 2009. [Google Scholar]
- Silakowski, B; Kunze, B; Muller, R. Multiple hybrid polyketide synthase/non-ribosomal peptide synthetase gene clusters in the myxobacterium Stigmatella aurantiaca. Gene 2001, 275, 233–240. [Google Scholar]
- Bok, JW; Hoffmeister, D; Maggio-Hall, LA; Murillo, R; Glasner, JD; Keller, NP. Genomic mining for Aspergillus natural products. Chem Biol 2006, 13, 31–37. [Google Scholar]
- Firn, RD; Jones, CG. The evolution of secondary metabolism–a unifying model. Mol Microbiol 2000, 37, 989–994. [Google Scholar]
- Handelsman, J; Rondon, MR; Brady, SF; Clardy, J; Goodman, RM. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chem Biol 1998, 5, R245–249. [Google Scholar]
- Lane, DJ. 16S/23S rRNA sequencing. In Nucleic acid techniques in bacterial systematics; Stackebrandt, E, Goodfellow, M, Eds.; John WIley & Sons: New York, NY, USA, 1991; pp. 115–147. [Google Scholar]
- Mitova, MI; Murphy, AC; Lang, G; Blunt, JW; Cole, ALJ; Ellis, G; Munro, MHG. Evolving trends in the dereplication of natural product extracts. 2. The isolation of chrysaibol, an antibiotic peptaibol from a New Zealand sample of the mycoparasitic fungus S. epedonium chrysospermum. J Nat Prod 2008, 71, 1600–1603. [Google Scholar]
- Nielen, MWF; Hooijerink, H; Claassen, FC; van Engelen, MC; van Beek, TA. Desorption electrospray ionisation mass spectrometry: A rapid screening tool for veterinary drug preparations and forensic samples from hormone crime investigations. Anal Chim Acta 2009, 637, 92–100. [Google Scholar]
- Williams, JP; Scrivens, JH. Rapid accurate mass desorption electrospray ionisation tandem mass spectrometry of pharmaceutical samples. Rapid Commun Mass Spectrom 2005, 19, 3643–3650. [Google Scholar]
- Jensen, PR; Mincer, TJ; Williams, PG; Fenical, W. Marine actinomycete diversity and natural product discovery. Anton Leeuwenhoek 2005, 87, 43–48. [Google Scholar]
- Maldonado, LA; Fenical, W; Jensen, PR; Kauffman, CA; Mincer, TJ; Ward, AC; Bull, AT; Goodfellow, M. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 2005, 55, 1759–1766. [Google Scholar]
- Williams, PG; Buchanan, GO; Feling, RH; Kauffman, CA; Jensen, PR; Fenical, W. New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica. J Org Chem 2005, 70, 6196–6203. [Google Scholar]
- Boonlarppradab, C; Kauffman, CA; Jensen, PR; Fenical, W. Marineosins A and B, cytotoxic spiroaminals from a sarine-serived Actinomycete. Org Lett 2008, 10, 5505–5508. [Google Scholar]
- Taori, K; Paul, VJ; Luesch, H. Structure and activity of largazole, a potent anti-proliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 2008, 130, 1806–1807. [Google Scholar]
- Hill, RA. Marine natural products. Annu Rep Prog Chem Sect B: Org Chem 2009, 105, 150–166. [Google Scholar]
- Jensen, PR; Fenical, W. Strategies for the discovery of secondary metabolites from marine bacteria: Ecological perspectives. Annu Rev Microbiol 1994, 48, 559–584. [Google Scholar]
- Williams, PG. Panning for chemical gold: Marine bacteria as a source of new therapeutics. Trends Biotechnol 2009, 27, 45–52. [Google Scholar]
- Monaghan, RL; Polishook, JD; Pecore, VJ; Bills, GF; Nallin-Omstead, M; Streicher, SL. Discovery of novel secondary metabolites from fungi–Is it really a random walk through a random forest. Can J Bot 1995, 73, S925–931. [Google Scholar]
- Koehn, FE; Carter, GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 2005, 4, 206–220. [Google Scholar]
- Strobel, GA. Rainforest endophytes and bioactive products. Crit Rev Biotechnol 2002, 22, 315–333. [Google Scholar]
- Frenich, AG; Vidal, JLM; Romero-Gonzalez, R; Aguilera-Luiz, MdM. Simple and high-throughput method for the multimycotoxin analysis in cereals and related foods by ultra-high performance liquid chromatography/tandem mass spectrometry. Food Chem 2009, 117, 705–712. [Google Scholar]
- Rowe, B; Schmidt, JJ; Smith, LA; Ahmed, SA. Rapid product analysis and increased sensitivity for quantitative determinations of botulinum neurotoxin proteolytic activity. Anal Biochem 2010, 396, 188–193. [Google Scholar]
- Bull, AT; Stach, JEM. Marine actinobacteria: New opportunities for natural product search and discovery. Trends Microbiol 2007, 15, 491–499. [Google Scholar]
- Cardellina, JH. A place for natural products. Screening 2006, 7, 28–30. [Google Scholar]
- Koehn, FE. High impact technologies for natural products screening. Prog Drug Res 2008, 65, 176–210. [Google Scholar]
- Lam, KS. New aspects of natural products in drug discovery. Trends Microbiol 2007, 15, 279–289. [Google Scholar]
- Bugni, TS; Richards, B; Bhoite, L; Cimbora, D; Harper, MK; Ireland, CM. Marine natural product libraries for high-throughput screening and rapid drug discovery. J Nat Prod 2008, 71, 1095–1098. [Google Scholar]
- Floss, HG. Combinatorial biosynthesis-Potential and problems. J Biotechnol 2006, 124, 242–257. [Google Scholar]
- Alksne, LE; Dunman, PM. Target-based antimicrobial drug discovery. Methods Mol Biol 2007, 431, 271–283. [Google Scholar]
- Alvarez, J; Vicente, M. Using genomics to identify new targets and counteract resistance to antibiotics. Expert Opin Ther Pat 2007, 17, 667–674. [Google Scholar]
- Dougherty, TJ; Barrett, JF; Pucci, MJ. Microbial genomics and novel antibiotic discovery: New technology to search for new drugs. Curr Pharm Des 2002, 8, 1119–1135. [Google Scholar]
- Dougherty, TJ; Miller, PF. Microbial genomics and drug discovery: Exploring innovative routes of drug discovery in the postgenomic era. IDrugs 2006, 9, 420–422. [Google Scholar]
- Monaghan, RL; Barrett, JF. Antibacterial drug discovery–Then, now and the genomics future. Biochem Pharmacol 2006, 71, 901–909. [Google Scholar]
- Payne, DJ; Gwynn, MN; Holmes, DJ; Pompliano, DL. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 2007, 6, 29–40. [Google Scholar]
- Walsh, C. Where will new antibiotics come from. Nat Rev Microbiol 2003, 1, 65–70. [Google Scholar]
- Butler, MS. The role of natural product chemistry in drug discovery. J Nat Prod 2004, 67, 2141–2153. [Google Scholar]
- Muller-Kuhrt, L. Putting nature back into drug discovery. Nat Biotechnol 2003, 21, 602. [Google Scholar]
- Newman, DJ; Cragg, GM; Snader, KM. Natural products as a source of new drugs over the period 1981–2002. J. Nat. Prod 2003, 66, 1002–1037. [Google Scholar]
- Overbye, KM; Barrett, JF. Antibiotics: Where did we go wrong. Drug Discov Today 2005, 10, 45–52. [Google Scholar]
- Norrby, SR; Nord, CE; Finch, R. Lack of development of new antimicrobial drugs: A potential serious threat to public health. Lancet Infect Dis 2005, 5, 115–119. [Google Scholar]
- Projan, SJ. Why is big pharma getting out of antibacterial drug discovery. Curr Opin Microbiol 2003, 6, 427–430. [Google Scholar]
- Larsson, J; Gottfries, J; Muresan, S; Backlund, A. ChemGPS-NP: Tuned for navigation in biologically relevant chemical space. J Nat Prod 2007, 70, 789–794. [Google Scholar]
- Larsen, TO; Smedsgaard, J; Nielsen, KF; Hansen, ME; Frisvad, JC. Phenotypic taxonomy and metabolite profiling in microbial drug discovery. ChemInform 2006, 37. [Google Scholar]
- Nicolaou, KC; Frederick, MO; Petrovic, G; Cole, KP; Loizidou, EZ. Total synthesis and confirmation of the revised structures of azaspiracid-2 and azaspiracid-3. Angew Chem Int Ed 2006, 45, 2609–2615. [Google Scholar]
- Nicolaou, KC; Zhang, H; Chen, JS; Crawford, JJ; Pasunoori, L. Total synthesis and stereochemistry of uncialamycin. Angew Chem Int Ed 2007, 46, 4704–4707. [Google Scholar]
- Tillmann, U; Elbrächter, M; Krock, B; John, U; Cembella, A. Azadinium spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins. Eur J Phycol 2009, 44, 63–79. [Google Scholar]
- Crimmins, MT; Zuccarello, JL; Ellis, JM; McDougall, PJ; Haile, PA; Parrish, JD; Emmitte, KA. Total synthesis of Brevetoxin A. Org Lett 2009, 11, 489–492. [Google Scholar]
- Haywood, AJ; Scholin, CA; Marin Iii, R; Steidinger, KA; Heil, C; Ray, J. Molecular detection of the brevetoxin-producing dinoflagellate Karenia brevis and closely related species using rRNA-targeted probes and a semiautomated sandwich hybridization assay. J Phycol 2007, 43, 1271–1286. [Google Scholar]
- Feher, M; Schmidt, JM. Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 2003, 43, 218–227. [Google Scholar]
- Henkel, T; Brunne, RM; Muller, H; Reichel, F. Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew Chem Int Ed 1999, 38, 643–647. [Google Scholar]
- Verdine, G. The combinatorial chemistry of nature. Nature 1996, 384, 11–13. [Google Scholar]
- Tulp, M; Bohlin, L. Unconventional natural sources for future drug discovery. Drug Discov Today 2004, 9, 450–458. [Google Scholar]
- Newman, D; Cragg, G; Kingston, D. Natural products as pharmaceuticals and sources for lead structures. In The Practice of Medicinal Chemistry, 2nd ed; Wermuth, CG, Ed.; Academic Press: London, UK, 2003; pp. 91–110. [Google Scholar]
- Nisbet, LJ; Moore, M. Will natural products remain an important source of drug research for the future. Curr Opin Biotechnol 1997, 8, 708–712. [Google Scholar]
- Nicolaou, KC; Chen, JS; Edmonds, DJ; Estrada, AA. Recent advances in the chemistry and biology of naturally occurring antibiotics. Angew Chem Int Ed 2009, 48, 660–719. [Google Scholar]
- Breinbauer, R; Vetter, IR; Waldmann, H. From protein domains to drug candidates--natural products as guiding principles in compound library design and synthesis. Ernst Schering Res Found Workshop 2003, 167–188. [Google Scholar]
- Urizar, NL; Liverman, AB; Dodds, DT; Silva, FV; Ordentlich, P; Yan, YZ; Gonzalez, FJ; Heyman, RA; Mangelsdorf, DJ; Moore, DD. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 2002, 296, 1703–1706. [Google Scholar]
- Von Nussbaum, F; Brands, M; Hinzen, B; Weigand, S; Habich, D. Antibacterial natural products in medicinal chemistry–Exodus or revival. Angew Chem Int Ed 2006, 45, 5072–5129. [Google Scholar]
- Demain, AL; Sanchez, S. Microbial drug discovery: 80 Years of progress. J Antibiot (Tokyo) 2009, 62, 5–16. [Google Scholar]
- Walters, WP; Murcko, A; Murcko, MA. Recognizing molecules with drug-like properties. Curr Opin Chem Biol 1999, 3, 384–387. [Google Scholar]
- Leeson, PD; Davis, AM; Steele, J. Drug-like properties: Guiding principles for design–Or chemical prejudice. Drug Discov Today 2004, 1, 189–195. [Google Scholar]
- Jenkins, ID; Lacrampe, F; Ripper, J; Alcaraz, L; Van Le, P; Nikolakopoulos, G; De Leone, PA; White, RH; Quinn, RJ. Synthesis of four novel natural product inspired scaffolds for drug discovery. J Org Chem 2009, 74, 1304–1313. [Google Scholar]
- Bollag, DM; McQueney, PA; Zhu, J; Hensens, O; Koupal, L; Liesch, J; Goetz, M; Lazarides, E; Woods, CM. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 1995, 55, 2325–2333. [Google Scholar]
- Nicolaou, K; Scarpelli, R; Bollbuck, B; Werschkun, B; Pereira, M; Wartmann, M; Altmann, KH; Zaharevitz, D; Gussio, R; Giannakakou, P. Chemical synthesis and biological properties of pyridine epothilones. Chem Biol 2000, 7, 593–599. [Google Scholar]
- Nicolaou, KC; Pratt, BA; Arseniyadis, S; Wartmann, M; O’Brate, A; Giannakakou, P. Molecular design and chemical synthesis of a highly potent epothilone. ChemMedChem 2006, 1, 41–44. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Penesyan, A.; Kjelleberg, S.; Egan, S. Development of Novel Drugs from Marine Surface Associated Microorganisms. Mar. Drugs 2010, 8, 438-459. https://doi.org/10.3390/md8030438
Penesyan A, Kjelleberg S, Egan S. Development of Novel Drugs from Marine Surface Associated Microorganisms. Marine Drugs. 2010; 8(3):438-459. https://doi.org/10.3390/md8030438
Chicago/Turabian StylePenesyan, Anahit, Staffan Kjelleberg, and Suhelen Egan. 2010. "Development of Novel Drugs from Marine Surface Associated Microorganisms" Marine Drugs 8, no. 3: 438-459. https://doi.org/10.3390/md8030438
APA StylePenesyan, A., Kjelleberg, S., & Egan, S. (2010). Development of Novel Drugs from Marine Surface Associated Microorganisms. Marine Drugs, 8(3), 438-459. https://doi.org/10.3390/md8030438