Agarase: Review of Major Sources, Categories, Purification Method, Enzyme Characteristics and Applications
Abstract
:1. Introduction
2. Agar
2.1. Sources of Agar
2.2. Structures of Agar
3. Agarases
3.1. Sources of Agarases
3.2. Cleavage Pattern
3.3. Families of Agarase
4. Methods for Detecting Agarase Activity
4.1. Qualitative Assays
4.2. Quantitative Assays for Agarase Activity
4.3. Agarase Isolation and Purification
5. Characterization of Agarase
5.1. Native Agarase from Marine Environment
5.2. Native Agarase from Fresh Water and Terrestrial Environments
5.3. Cloned α-Agarase
5.4. Cloned β-Agarases
6. Applications of Agarases
6.1. Recovery of DNA from Agarose Gel
6.2. Production of Agar-Derived Oligosaccharides
6.3. Research on Seaweed Bio-Substances and Preparation of Seaweed Protoplasts
7. Concluding Remarks
Acknowledgments
References
- Araki, CH. Acetylation of agar like substance of Gelidium amansii. J Chem Soc 1937, 58, 1338–1350. [Google Scholar]
- Potin, P; Richard, C; Rochas, C; Kloareg, B. Purification and characterization of the α-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. Eur J Biochem 1993, 214, 599–607. [Google Scholar]
- Kirimura, K; Masuda, N; Iwasaki, Y; Nakagawa, H; Kobayashi, R; Usami, S. Purification and characterization of a novel β-agarase from an alkalophilic bacterium, Alteromonas sp. E-1. J Biosci Bioeng 1999, 87, 436–441. [Google Scholar]
- Wang, J; Jiang, X; Mou, H; Guan, H. Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. J Appl Phycol 2004, 16, 333–340. [Google Scholar]
- Araki, T; Lu, Z; Morishita, T. Optimization of parameters for isolation of protoplasts from Gracilaria verrucosa (Rhodophyta). J Mar Biotechnol 1998, 6, 193–197. [Google Scholar]
- Sugano, Y; Terada, I; Arita, M; Noma, M. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol 1993, 59, 1549–1554. [Google Scholar]
- Dong, J; Tamaru, Y; Araki, T. A unique β-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl Microbiol Biotechnol 2007, 74, 1248–1255. [Google Scholar]
- Zhang, WW; Sun, L. Cloning, characterization and molecular application of a beta-agarase gene from Vibrio sp. V134. Appl Environ Microbiol 2007, 73, 2825–2831. [Google Scholar]
- Allouch, J; Helbert, W; Henrissat, B; Czjzek, M. Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose. Structure 2004, 12, 623–632. [Google Scholar]
- Fu, XT; Pan, CH; Lin, H; Kim, SM. Gene cloning, expression, and characterization of a β-Agarase, AgaB34, from Agarivorans albus YKW-34. J Microbiol Biotechnol 2009, 19, 257–264. [Google Scholar]
- Armisén, R; Galatas, F; Hispanagar, SA. Phillips, GO, Williams, PA, Eds.; Agar. In Handbook of Hydrocolloids; Woodhead Publishing Ltd: Cambridge, UK, 2000; pp. 21–40. [Google Scholar]
- Ji, MH. Ji, MH, Ed.; Agar. In Seaweed Chemistry; Science Press: Beijing, China, 1997; pp. 5–26. [Google Scholar]
- Hamer, GK; Bhattacharjee, SS; Yaphe, W. Analysis of the enzymic hydrolysis products of agarose by 13C-n.m.r. spectroscopy. Carbohydr Res 1977, 54, 7–l0. [Google Scholar]
- Armisen, R; Galatas, F. McHugh, DJ, Ed.; Production, properties and uses of agar. In Production and Utilization of Products from Commercial Seaweeds, FAO Fisheries Technical Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1987; pp. 1–57. [Google Scholar]
- Wang, L; Liu, L; Wang, YM; Yuan, QY; Li, ZE; Xu, ZH. Comparative research on the structures and physical-chemical properties of agars from several agarophyta. Oceanologia Etlimnologia Sinica 2001, 36, 658–664. [Google Scholar]
- Leon, O; Quintana, L; Peruzzo, G; Slebe, JC. Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl Environ Microbiol 1992, 58, 4060–4063. [Google Scholar]
- Duckworth, M; Turvey, JR. An extracellular agarase from a Cytophaga species. Biochem J 1969, 113, 139–142. [Google Scholar]
- Araki, T; Hayakawa, M; Zhang, L; Karita, S; Morishita, T. Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J Mar Biotechnol 1998, 6, 260–265. [Google Scholar]
- Ohta, Y; Hatada, Y; Miyazaki, M; Nogi, Y; Ito, S; Horikoshi, K. Purification and characterization of a novel α-agarase from a Thalassomonas sp. Curr Microbiol 2005, 50, 212–216. [Google Scholar]
- Hu, Z; Lin, BK; Xu, Y; Zhong, MQ; Liu, GM. Production and purification of agarase from a marine agarolytic bacterium Agarivorans sp. HZ105. J Appl Microbiol 2008, 106, 181–190. [Google Scholar]
- Wang, JX; Mou, HJ; Jiang, XL; Guan, HS. Characterization of a novel β-agarase from marine Alteromonas sp. SY37–12 and its degrading products. Appl Microbiol Biotechnol 2006, 71, 833–839. [Google Scholar]
- Vera, J; Alvarez, R; Murano, E; Slebe, JC; Leon, O. Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl Environ Microbiol 1998, 64, 4378–4383. [Google Scholar]
- Morrice, LM; McLean, MW; Williamson, FB; Long, WF. beta-agarases I and II from Pseudomonas atlantica. Purifications and some properties. Eur J Biochem 1983, 135, 553–558. [Google Scholar]
- Aoki, T; Araki, T; Kitamikado, M. Purification and characterization of a novel β-agarase from Vibrio sp. AP-2. Eur J Biochem 1990, 187, 461–465. [Google Scholar]
- Fu, XT; Lin, H; Kim, SM. Purification and characterization of a novel β-agarase, AgaA34, from Agarivorans albus YKW-34. Appl Microbiol Biotechnol 2008, 78, 265–273. [Google Scholar]
- Van der Meulen, HJ; Harder, W. Production and characterization of the agarase of Cytoplaga flevensis. Antonie Van Leeuwenhoek 1975, 41, 431–447. [Google Scholar]
- Suzuki, H; Sawai, Y; Suzuki, T; Kawai, K. Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. J Biosci Bioeng 2003, 93, 456–463. [Google Scholar]
- Lakshmikanth, M; Manohar, S; Souche, Y; Lalitha, J. Extracellular β-agarase LSL-1 producing neoagarobiose from a newly isolated agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. World J Microbiol Biotechnol 2006, 22, 1087–1094. [Google Scholar]
- Malmqvist, M. Purification and characterization of two different agarose degrading enzymes. Biochim Biophys Acta 1978, 537, 31–43. [Google Scholar]
- Groleau, D; Yaphe, W. Enzymatic hydrolysis of agar: purification and characterization of beta-neoagarotetraose hydrolase from Pseudomonas atlantica. Can J Microbiol 1977, 23, 672–679. [Google Scholar]
- Lakshmikanth, M; Manohar, S; Lalitha, J. Purification and characterization of β-agarase from agar-liquefying soi bacterium Acinetobacter sp., AG LSL-1. Process Biochem 2009, 44, 999–1003. [Google Scholar]
- Henshaw, J; Horne-Bitschy, A; van Bueren, AL; Money, VA; Bolam, DN; Czjzek, M; Ekborg, NA; Weiner, RM; Hutcheson, SW; Davies, GJ; Boraston, AB; Gilbert, HJ. Family 6 carbohydrate binding modules in beta-agarases display exquisite selectivity for the non-reducing termini of agarose chains. J Biol Chem 2006, 281, 17099–17107. [Google Scholar]
- Allouch, J; Jam, M; Helbert, W; Barbeyron, T; Kloareg, B; Henrissat, B; Czjzek, M. The three-dimensional structures of two beta-agarases. J Biol Chem 2003, 278, 47171–47180. [Google Scholar]
- Ekborg, NA; Taylor, LE; Longmire, AG; Henrissat, B; Weiner, RM; Hutcheson, SW. Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2–40. Appl Environ Microbiol 2006, 72, 3396–3405. [Google Scholar]
- Ohta, Y; Hatada, Y; Nogi, Y; Li, Z; Ito, S; Horikoshi, K. Cloning, expression, and characterization of a glycoside hydrolase family 86 β-agarase from a deep-sea Microbulbifer-like isolate. Appl Microbiol Biotechnol 2004, 66, 266–275. [Google Scholar]
- Ohta, Y; Hatada, Y; Nogi, Y; Miyazaki, M; Li, Z; Akita, M; Hidaka, Y; Goda, S; Ito, S; Horikoshi, K. Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea Microbulbifer. Appl Microbiol Biotechnol 2004, 64, 505–514. [Google Scholar]
- Nelson, N. A photometric adaptation of the somogyi method for the determination of glucose. J Biol Chem 1944, 153, 375–380. [Google Scholar]
- Bernfeld, P. Colowick, SP, Kaplan, ND, Eds.; Amylases, α and β. In Methods Enzymol; Academic Press: New York, NY, USA, 1955; pp. 149–158. [Google Scholar]
- Ha, JC; Kim, GT; Kim, SK; Oh, TK; Yu, JH; Kong, IS. beta-agarase from Pseudomonas sp. W7: purification of the recombinant enzyme from Escherichia coli and the effects of salt on its activity. Biotechnol Appl Biochem 1997, 26, 1–6. [Google Scholar]
- Dong, J; Tamaru, Y; Araki, T. Molecular cloning, expression, and characterization of a β-agarase gene, agaD, from a marine bacterium, Vibrio sp. strain PO-303. Biosci Biotechnol Biochem 2007, 71, 38–46. [Google Scholar]
- Long, MX; Yu, ZN; Xu, X. A Novel β-Agarase with high pH stability from marine Agarivorans sp. LQ48. Mar Biotechnol 2009. [Google Scholar] [CrossRef]
- Lee, DG; Park, GT; Kim, NY; Lee, EJ; Jang, MK; Shin, YG; Park, GS; Kim, TM; Lee, JH; Lee, JH; Kim, SJ; Lee, SH. Cloning, expression, and characterization of a glycoside hydrolase family 50 β-agarase from a marine Agarivorans isolate. Biotechnol Lett 2006, 28, 1925–1932. [Google Scholar]
- Jam, M; Flament, D; Allouch, J; Potin, P; Thion, L; Kloareg, B; Czjzek, M; Helbert, W; Michel, G; Barbeyron, T. The endo-β-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochem J 2005, 385, 703–713. [Google Scholar]
- Hatada, Y; Ohta, Y; Horikoshi, K. Hyperproduction and application of alpha-agarase to enzymatic enhancement of antioxidant activity of porphyran. J Agric Food Chem 2006, 54, 9895–9900. [Google Scholar]
- Ohta, Y; Hatada, Y; Ito, S; Horikoshi, K. High-level expression of a neoagarobiose-producing β-agarase gene from Agarivorans sp. JAMB-A11 in Bacillus subtilis and enzymic properties of the recombinant enzyme. Biotechnol Appl Biochem 2005, 41, 183–191. [Google Scholar]
- Ohta, Y; Nogi, Y; Miyazaki, M; Li, Z; Hatada, Y; Ito, S; Horikoshi, K. Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from the novel marine isolate JAMB-A94. Biosci Biotechnol Biochem 2004, 68, 1073–1081. [Google Scholar]
- Dong, J; Hashikawa, S; Konishi, T; Tamaru, Y; Araki, T. Cloning of the novel gene encoding beta-agarase C from a marine bacterium, Vibrio sp. strain PO-303, and characterization of the gene product. Appl Environ Microbiol 2006, 72, 6399–6401. [Google Scholar]
- Kang, NY; Choi, YL; Cho, YS; Kim, BK; Jeon, BS; Cha, JY; Kim, CH; Lee, YC. Cloning, expression and characterization of a beta-agarase gene from a marine bacterium, Pseudomonas sp. SK38. Biotechnol Lett 2003, 25, 1165–1170. [Google Scholar]
- Sugano, Y; Matsumoto, T; Noma, M. Sequence analysis of the agaB gene encoding a new beta-agarase from Vibrio sp. strain JT0107. Biochim Biophys Acta 1994, 1218, 105–108. [Google Scholar]
- Sugano, Y; Matsumoto, T; Kodama, H; Noma, M. Cloning and sequencing of agaA, a unique agarase 0107 gene from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol 1993, 59, 3750–3746. [Google Scholar]
- Ma, C; Lu, X; Shi, C; Li, J; Gu, Y; Ma, Y; Chu, Y; Han, F; Gong, Q; Yu, W. Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J Biol Chem 2007, 282, 3747–3754. [Google Scholar]
- TaKaRa Agarose Gel DNA Purification Kit product protocol.
- Gold, P. Use of a novel agarose gel-digesting enzyme for easy and rapid purification of PCR-amplified DNA for sequencing. Biotechniques 1992, 13, 132–134. [Google Scholar]
- Li, J; Han, F; Lu, X; Fu, X; Ma, C; Chu, Y; Yu, W. A simple method of preparing diverse neoagaro-oligosaccharides with beta-agarase. Carbohydr Res 2007, 342, 1030–1033. [Google Scholar]
- Wu, SC; Pan, CL. Preparation of algal-oligosaccharide mixtures by bacterial agarases and their antioxidative properties. Fish Sci 2004, 70, 1164–1173. [Google Scholar]
- Wu, SC; Wen, TN; Pan, CL. Algal-oligosaccharide-lysates prepared by two bacterial agarases stepwise hydrolyzed and their anti-oxidative properties. Fish Sci 2005, 71, 1149–1159. [Google Scholar]
- Giordano, A; Andreotti, G; Tramice, A; Trincone, A. Marine glycosyl hydrolases in the hydrolysis and synthesis of oligosaccharides. Biotechnol J 2006, 1, 511–530. [Google Scholar]
- Kobayashi, R; Takimasa, M; Suzuki, T; Kirimura, K; Usami, S. Neoagarobiose as a novel moisturizer with whitening effect. Biosci Biotechnol Biochem 1997, 61, 162–163. [Google Scholar]
- Yaphe, W. The use of agarase from Pseudomonas atlantica in the identification of agar in marine algae (Rhodophyceae). Can J Microbiol 1957, 3, 987–993. [Google Scholar]
- Carlson, PS. The use of protoplasts for genetic research. Proc Natl Acad Sci 1973, 70, 598–602. [Google Scholar]
- Araki, T; Lu, Z; Morishita, T. Optimization of parameters for isolation of protoplasts from Gracilaria verrucosa (Rhodophyta). J Mar Biotechnol 1998, 6, 193–197. [Google Scholar]
Source | Localization | Category (α/β agarase) | Mr(kDa) | Specific activity (U/mg) | Optimal T (°C) | Stable up to T (°C) | Optimal pH | Stable pH | Product | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Sea water | ||||||||||
Vibrio sp. JT0107 | extracellular | β | 107 | 6.3 | 30 | 40 | 8.0 | - | NA2, NA4 | [6] |
Alteromonas sp. C-1 | extracellular | β | 52 | 234 | 30 | 30 | 6.5 | - | NA4 | [16] |
Cytophaga sp. | extracellular | β | - | - | 40 | - | 7.2 | - | - | [17] |
Alteromonas agarlyticus GJ1B | extracellular | α | 180 (SDS-PAGE) 360 (gel filtration) | - | - | 45 | 7.2 | >6.5 | A4 | [2] |
Marine sediment | ||||||||||
Vibrio sp. PO-303 | extracellular | β | 87.5 115 57 | 7.54 28.4 20.8 | 38–55 | - | 6.5–7.5 | - | NA4, NA6 NA2 - | [18] |
Thalassomonas sp. JAMB-A33 | intracellular | α | 85 | 40.7 | 45 | 40 | 8.5 | 6–11 | A2, A4 (main), A6 | [19] |
Agarivorans sp. HZ105 | extracellular | β | 58 54 | 76.8 57.45 | - | 25 | 6.0–9.0 | - | - | [20] |
Marine algae | ||||||||||
Alteromonas sp. SY37-12 | extracellular | β | 39.5 | 83.5 | 35 | 50 | 7.0 | - | NA4, NA6 (main), NA8 | [21] |
Pseudoalteromonas antarctica N-1 | extracellular | β | 33 | 292 | - | 30 | 7 | - | NA4, NA6 | [22] |
Pseudomonas atlantica | intracellular | β | 32 | - | - | 30 | 7.0 | 6.5–7.5 | NA2 | [23] |
Vibrio sp. AP-2 | extracellular | β | 20 | - | - | 45 | 5.5 | 4.0–9.0 | NA2 | [24] |
Marine mollusks | ||||||||||
Agarivorans albus YKW-34 | extracellular | β | 50 | 25.54 | 40 | 50 | 8.0 | 6.0–9.0 | NA2 (main), NA4 | [25] |
Fresh water | ||||||||||
Cytophaga flevensis | extracellular | β | 26 | - | 35 | 40 | 6.3 | 6.0–9.0 | NA2, NA4, NA6…NA16 | [26] |
Soil | ||||||||||
Bacillus sp. MK03 | extracellular | β | 92 (SDS-PAGE) 113 (gel filtration) | 14.2 | 40 | 35 | 7.6 | 7.1–8.2 | NA2, NA4(main) | [27] |
Alteromonas sp. E-l | intracellular | β | 82 (SDS-PAGE) 180(gel filtration) | 34 | 40 | 40 | 7.5 | 7–9 | NA2 | [3] |
Acinetobacter sp. AGLSL-1 | extracellular | β | 100 | 397 | 40 | 45 | 6.0 | 5.0–9.0 | NA2 | [31] |
Unknown | ||||||||||
Pseudomonas-like bacteria | extracellular | β | 210 63 | - | 38 43 | - - | 6.7 6.7 | - - | NA2, NA4, NA6 NA4 | [29] |
Pseudomonas atlantica | intracellular | β | - | - | - | - | - | - | NA4, NA6, NA8, NA10 | [30] |
Source | Expression strain | Name of the gene | Localization | Production | GH Family | Mr (kDa) | Specific activity (U/mg) | Optimal T (°C) | Stable up to T (°C) | Optimal pH | Stable pH | Product | GeneBank accession number | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(U/L) | (mg/L) | ||||||||||||||
β-agarase | |||||||||||||||
Pseudomonas sp. W7 | Escherichia coli JM83 | - | extracellular | - | 16 | 59 | - | 20–40 | - | 7.8 | - | NA4 | AAF82611 | [39] | |
Vibrio sp. PO-303 | Escherichia coli BL21 | agaA | intracellular | - | 16 | 106 | 16.4 | 40 | - | 7.5 | - | NA4, NA6 | BAF62129 | [7] | |
Vibrio sp. PO-303 | Escherichia coli DH5α | agaD | intracellular | 620 | 10 | 16 | 51 | 63.6 | 40 | 45 | 7.5 | 4–9 | NA4(main), NA2, NA6 | BAF34350 | [40] |
Vibrio sp. PO-303 | Escherichia coli BL21 | agaC | intracellular | 7130 | 22 | 86 | 51 | 329 | 35 | 37 | 6.0 | 4–8 | NA4, NA6, NA8(main) | BAF03590 | [47] |
Agarivorans sp. JA-1 | Escherichia coli DH5α | - | intracellular | 554 | 3 | 50 | 109 | 167 | 40 | 60 (70%) | 8.0 | - | NA2, NA4 | ABK97391 | [42] |
Saccharophagus degradans 2–40 | Escherichia coli EPI300 | aga50A | intracellular | - | 50 | 87 | - | - | - | - | - | - | ABD80438 | [34] | |
aga16B | 16 | 64 | ABD80437 | ||||||||||||
aga86C | 86 | 86 | ABD81910 | ||||||||||||
Aga50D | 50 | 89 | ABD81904 | ||||||||||||
aga86E | 86 | 146 | ABD81915 | ||||||||||||
Microbulbifer-like JAMB-A94 | Bacillus subtilis | agaO | extracellular | 7816 | 80 | 86 | 127 | 98 | 45 | 40 | 7.5 | 6–9 | NA6 (main) | BAD86832 | [35] |
Zobellia galactanivorans | Escherichia coli DH5α | agaA | intracellular | 160 | 1 | 16 | 60 | 160 | - | - | - | - | NA4, NA6 | AAF21820 | [43] |
agaB | 800 | 8 | 31 | 100 | NA2, NA4 | AAF21821 | |||||||||
Agarivorans sp. JAMB-A11 | Bacillus subtilis | agaA11 | extracellular | 19000 | 51 | 50 | 105 | 371 | 40 | 40 | 7.5–8.0 | 6–11 | NA2 (main) | BAD99519 | [45] |
Microbulbifer thermotolerans JAMB-A94 | Bacillus subtilis | agaA | extracellular | 45000 | 87 | 16 | 48 | 517 | 55 | 60 | 7.0 | 6–9 | NA4 (main) | BAD29947 | [46] |
Microbulbifer sp. JAMB-A7 | Bacillus subtilis | agaA7 | extracellular | 25831 | 65 | 16 | 49 | 398 | 50 | 50 | 7.0 | 5–8 | NA4 | BAC99022 | [36] |
Pseudomonas sp. SK38 | Escherichia coli BL21 | pagA | intracellular | - | 16 | 37 | 32.3 | 30 | 37 | 9.0 | 8–9 | - | AF534639 | [48] | |
Vibrio sp. JT0107 | Escherichia coli DH5α | agaA | intracellular | - | 50 | 105 | - | - | - | - | - | - | BAA03541 | [50] | |
agaB | - | 50 | 103 | BAA04744 | [49] | ||||||||||
Vibrio sp. V134 | Escherichia coli BL21 | agaV | extracellular/intracellular | - | 16 | 52 | - | 40 | - | 7.0 | - | NA4, NA6 | ABL06969 | [8] | |
Agarivorans albus YKW-34 | Escherichia coli DH5α | agaB34 | extracellular | 1670 | 7 | 16 | 30 | 242 | 30 | 50 | 7.0 | 5–9 | NA4 (main) | ABW77762 | [10] |
Agarivorans sp. LQ48 | Escherichia coli BL21 | agaA | extracellular/intracellular | - | 16 | 51 | 349.3 | 40 | 50 | 7.0 | 3–11 | NA4, NA6 | ACM50513 | [41] | |
Pseudoalteromonas sp. CY24 | Escherichia coli BL21 | agaB | extracellular | 17000 | 3 | Novel | 51 | 5000 | 40 | 35 | 6.0 | 5.7–10.6 | NA8, NA10 | - | [51] |
α-agarase | |||||||||||||||
Thalassomonas sp. JAMB-A33 | Bacillus subtilis | agaA33 | extracellular | 6950 | 155 | 96 | 87 | 44.7 | 45 | - | 8.5 | 6.5–10.5 | NA4 (main) | BAF44076.1 | [44] |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fu, X.T.; Kim, S.M. Agarase: Review of Major Sources, Categories, Purification Method, Enzyme Characteristics and Applications. Mar. Drugs 2010, 8, 200-218. https://doi.org/10.3390/md8010200
Fu XT, Kim SM. Agarase: Review of Major Sources, Categories, Purification Method, Enzyme Characteristics and Applications. Marine Drugs. 2010; 8(1):200-218. https://doi.org/10.3390/md8010200
Chicago/Turabian StyleFu, Xiao Ting, and Sang Moo Kim. 2010. "Agarase: Review of Major Sources, Categories, Purification Method, Enzyme Characteristics and Applications" Marine Drugs 8, no. 1: 200-218. https://doi.org/10.3390/md8010200
APA StyleFu, X. T., & Kim, S. M. (2010). Agarase: Review of Major Sources, Categories, Purification Method, Enzyme Characteristics and Applications. Marine Drugs, 8(1), 200-218. https://doi.org/10.3390/md8010200