Conotoxins: Therapeutic Potential and Application
Abstract
:1. Introduction
2. Therapeutic Applications
2.1. Pain
2.1.1. Conotoxins acting on Spinal Pain Targets
2.1.2. MVIIA (Prialt®)
2.1.3. CVID (AM336)
2.1.4. Contulakin-G (CGX-1160)
2.1.5. MrIA (and Xen-2174)
2.1.6. Conantokins (i.e. CGX-1007)
2.1.7. Conotoxins Acting on Systemic Pain Targets
2.1.8. Vc1.1 (ACV-1)
2.1.9. Conotoxin Inhibitors of Voltage-Gated Sodium Channels
2.2. Stroke
2.2.1. MVIIA (Prialt®)
2.2.2. Conantokins (i.e. CGX-1007)
2.3. Neuromuscular Block
2.4. Cardioprotection
3. Conclusions
Abbreviations
5-HT3R | type 3 serotonin receptor |
AChR | nicotinic acetylcholine receptor |
CaV | voltage-gated calcium channel |
CNS | central nervous system |
KV | voltage-gated potassium channel |
NaV | voltage-gated sodium channel |
NMDAR | N-methyl-D-aspartate receptor |
TCA | tricyclic antidepressant |
TTX | tetrodotoxin |
- Samples Availability: Available from the authors.
References
- Bogin, O. Venom Peptides and their Mimetics as Potential Drugs. Modulator 2005, 19, 14–20. [Google Scholar]
- Lewis, R. J.; Garcia, M. L. Therapeutic potential of venom peptides. Nat. Rev. Drug Discov. 2003, 2, 790–802. [Google Scholar]
- Rash, L.; Hodgson, W. Pharmacology and biochemistry of spider venoms. Toxicon 2002, 40, 225–254. [Google Scholar]
- Olivera, B. M.; Rivier, J.; Clark, C.; Ramilo, C. A.; Corpuz, G. P.; Abogadie, F. C.; Mena, E. E.; Woodward, S. R.; Hillyard, D. R.; Cruz, L. J. Diversity of Conus neuropeptides. Science 1990, 249, 257–263. [Google Scholar]
- Terlau, H.; Olivera, B. M. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol. Rev. 2004, 84, 41–68. [Google Scholar]
- Livett, B. G.; Gayler, K. R.; Khalil, Z. Drugs from the sea: conopeptides as potential therapeutics. Curr. Med. Chem. 2004, 11, 1715–1723. [Google Scholar]
- McIntosh, J. M.; Jones, R. M. Cone venom--from accidental stings to deliberate injection. Toxicon 2001, 39, 1447–1451. [Google Scholar]
- Shen, G. S.; Layer, R. T.; McCabe, R. T. Conopeptides: From deadly venoms to novel therapeutics. Drug Discov. Today 2000, 5, 98–106. [Google Scholar]
- Jones, R. M.; Bulaj, G. Conotoxins - new vistas for peptide therapeutics. Curr. Pharm. Des. 2000, 6, 1249–1285. [Google Scholar]
- Myers, R. A.; Zafaralla, G. C.; Gray, W. R.; Abbott, J.; Cruz, L. J.; Olivera, B. M. alpha-Conotoxins, small peptide probes of nicotinic acetylcholine receptors. Biochemistry 1991, 30, 9370–9377. [Google Scholar]
- Shon, K. J.; Hasson, A.; Spira, M. E.; Cruz, L. J.; Gray, W. R.; Olivera, B. M. Delta-conotoxin GmVIA, a novel peptide from the venom of Conus gloriamaris. Biochemistry 1994, 33, 11420–11425. [Google Scholar]
- McIntosh, J. M.; Hasson, A.; Spira, M. E.; Gray, W. R.; Li, W.; Marsh, M.; Hillyard, D. R.; Olivera, B. M. A new family of conotoxins that blocks voltage-gated sodium channels. J. Biol. Chem. 1995, 270, 16796–16802. [Google Scholar]
- Cruz, L. J.; Kupryszewski, G.; LeCheminant, G. W.; Gray, W. R.; Olivera, B. M.; Rivier, J. muconotoxin GIIIA, a peptide ligand for muscle sodium channels: chemical synthesis, radiolabeling, and receptor characterization. Biochemistry 1989, 28, 3437–3442. [Google Scholar]
- England, L. J.; Imperial, J.; Jacobsen, R.; Craig, A. G.; Gulyas, J.; Akhtar, M.; Rivier, J.; Julius, D.; Olivera, B. M. Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snails. Science 1998, 281, 575–578. [Google Scholar]
- Olivera, B. M.; McIntosh, J. M.; Cruz, L. J.; Luque, F. A.; Gray, W. R. Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry 1984, 23, 5087–5090. [Google Scholar]
- McCleskey, E. W.; Fox, A. P.; Feldman, D. H.; Cruz, L. J.; Olivera, B. M.; Tsien, R. W.; Yoshikami, D. Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 4327–4331. [Google Scholar]
- Shon, K. J.; Stocker, M.; Terlau, H.; Stuhmer, W.; Jacobsen, R.; Walker, C.; Grilley, M.; Watkins, M.; Hillyard, D. R.; Gray, W. R.; Olivera, B. M. kappa-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel. J. Biol. Chem. 1998, 273, 33–38. [Google Scholar]
- Craig, A. G.; Zafaralla, G.; Cruz, L. J.; Santos, A. D.; Hillyard, D. R.; Dykert, J.; Rivier, J. E.; Gray, W. R.; Imperial, J.; DelaCruz, R. G.; Sporning, A.; Terlau, H.; West, P. J.; Yoshikami, D.; Olivera, B. M. An O-Glycosylated Neuroexcitatory Conus Peptide. Biochemistry 1998, 37, 16019–16025. [Google Scholar]
- Jimenez, E. C.; Donevan, S.; Walker, C.; Zhou, L. M.; Nielsen, J.; Cruz, L. J.; Armstrong, H.; White, H. S.; Olivera, B. M. Conantokin-L, a new NMDA receptor antagonist: determinants for anticonvulsant potency. Epilepsy Res. 2002, 51, 73–80. [Google Scholar]
- Haack, J. A.; Rivier, J.; Parks, T. N.; Mena, E. E.; Cruz, L. J.; Olivera, B. M. Conantokin-T. A gamma-carboxyglutamate containing peptide with N-methyl-d-aspartate antagonist activity. J. Biol. Chem. 1990, 265, 6025–6029. [Google Scholar]
- McIntosh, J. M.; Olivera, B. M.; Cruz, L. J.; Gray, W. R. Gamma-carboxyglutamate in a neuroactive toxin. J. Biol. Chem. 1984, 259, 14343–14346. [Google Scholar]
- White, H. S.; McCabe, R. T.; Armstrong, H.; Donevan, S. D.; Cruz, L. J.; Abogadie, F. C.; Torres, J.; Rivier, J. E.; Paarmann, I.; Hollmann, M.; Olivera, B. M. In vitro and in vivo characterization of conantokin-R, a selective NMDA receptor antagonist isolated from the venom of the fishhunting snail Conus radiatus. J. Pharmacol. Exp. Ther. 2000, 292, 425–432. [Google Scholar]
- Sharpe, I. A.; Palant, E.; Schroeder, C. I.; Kaye, D. M.; Adams, D. J.; Alewood, P. F.; Lewis, R. J. Inhibition of the norepinephrine transporter by the venom peptide chi-MrIA. Site of action, Na+ dependence, and structure-activity relationship. J. Biol. Chem. 2003, 278, 40317–40323. [Google Scholar]
- Cruz, L. J.; de Santos, V.; Zafaralla, G. C.; Ramilo, C. A.; Zeikus, R.; Gray, W. R.; Olivera, B. M. Invertebrate vasopressin/oxytocin homologs. Characterization of peptides from Conus geographus and Conus straitus venoms. J. Biol. Chem. 1987, 262, 15821–15824. [Google Scholar]
- Sharpe, I. A.; Thomas, L.; Loughnan, M.; Motin, L.; Palant, E.; Croker, D. E.; Alewood, D.; Chen, S.; Graham, R. M.; Alewood, P. F.; Adams, D. J.; Lewis, R. J. Allosteric alpha 1-adrenoreceptor antagonism by the conopeptide rho-TIA. J. Biol. Chem. 2003, 278, 34451–34457. [Google Scholar]
- Craig, A. G.; Norberg, T.; Griffin, D.; Hoeger, C.; Akhtar, M.; Schmidt, K.; Low, W.; Dykert, J.; Richelson, E.; Navarro, V.; Mazella, J.; Watkins, M.; Hillyard, D.; Imperial, J.; Cruz, L. J.; Olivera, B. M. Contulakin-G, an O-glycosylated invertebrate neurotensin. J. Biol. Chem. 1999, 274, 13752–13759. [Google Scholar]
- Basbaum, A. I.; Jessell, T. M. The Perception of Pain. In Principles of Neural Science, Fourth ed; McGraw-Hill: New York, 2000; pp. 472–491. [Google Scholar]
- Gokin, A.; Strichartz, G. Local anesthetics acting on the spinal cord. In Spinal Drug Delivery; Elsevier Science: Amsterdam, 1999; pp. 477–501. [Google Scholar]
- Westenbroek, R. E.; Hoskins, L.; Catterall, W. A. Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J. Neurosci. 1998, 18, 6319–6330. [Google Scholar]
- Gohil, K.; Bell, J. R.; Ramachandran, J.; Miljanich, G. P. Neuroanatomical distribution of receptors for a novel voltage-sensitive calcium-channel antagonist, SNX-230 (omega-conopeptide MVIIC). Brain Res. 1994, 653, 258–266. [Google Scholar]
- Olivera, B. M. Omega Conotoxin MVIIA: From Marine Snail Venom to Analgesic Drug. In Drugs from the Sea; Karger: Basel, 2000; pp. 74–85. [Google Scholar]
- Yeager, R. E.; Yoshikami, D.; Rivier, J.; Cruz, L. J.; Miljanich, G. P. Transmitter release from presynaptic terminals of electric organ: inhibition by the calcium channel antagonist omega Conus toxin. J. Neurosci. 1987, 7, 2390–2396. [Google Scholar]
- Kerr, L. M.; Yoshikami, D. A venom peptide with a novel presynaptic blocking action. Nature 1984, 308, 282–284. [Google Scholar]
- Olivera, B. M.; Cruz, L. J.; de Santos, V.; LeCheminant, G. W.; Griffin, D.; Zeikus, R.; McIntosh, J. M.; Galyean, R.; Varga, J.; Gray, W. R.; et al. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom. Biochemistry 1987, 26, 2086–2090. [Google Scholar]
- Miljanich, G. P.; Ramachandran, J. Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 1995, 35, 707–734. [Google Scholar]
- Miljanich, G. P. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 2004, 11, 3029–3040. [Google Scholar]
- Bowersox, S. S.; Gadbois, T.; Singh, T.; Pettus, M.; Wang, Y. X.; Luther, R. R. Selective N-type neuronal voltage-sensitive calcium channel blocker, SNX-111, produces spinal antinociception in rat models of acute, persistent and neuropathic pain. J. Pharmacol. Exp. Ther. 1996, 279, 1243–1249. [Google Scholar]
- Malmberg, A. B.; Yaksh, T. L. Voltage-sensitive calcium channels in spinal nociceptive processing: blockade of N- and P-type channels inhibits formalin-induced nociception. J. Neurosci. 1994, 14, 4882–4890. [Google Scholar]
- Malmberg, A. B.; Yaksh, T. L. Effect of continuous intrathecal infusion of omega-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hot-plate tests in rats. Pain 1995, 60, 83–90. [Google Scholar]
- Wang, Y. X.; Pettus, M.; Gao, D.; Phillips, C.; Scott Bowersox, S. Effects of intrathecal administration of ziconotide, a selective neuronal N-type calcium channel blocker, on mechanical allodynia and heat hyperalgesia in a rat model of postoperative pain. Pain 2000, 84, 151–158. [Google Scholar]
- Sluka, K. A. Blockade of N- and P/Q-type calcium channels reduces the secondary heat hyperalgesia induced by acute inflammation. J. Pharmacol. Exp. Ther. 1998, 287, 232–237. [Google Scholar]
- Chaplan, S. R.; Pogrel, J. W.; Yaksh, T. L. Role of voltage-dependent calcium channel subtypes in experimental tactile allodynia. J. Pharmacol. Exp. Ther. 1994, 269, 1117–1123. [Google Scholar]
- Xiao, W. H.; Bennett, G. J. Synthetic omega-conopeptides applied to the site of nerve injury suppress neuropathic pains in rats. J. Pharmacol. Exp. Ther. 1995, 274, 666–672. [Google Scholar]
- Wang, Y. X.; Gao, D.; Pettus, M.; Phillips, C.; Bowersox, S. S. Interactions of intrathecally administered ziconotide, a selective blocker of neuronal N-type voltage-sensitive calcium channels, with morphine on nociception in rats. Pain 2000, 84, 271–281. [Google Scholar]
- Webster, L.; Fakata, K. Ziconotide for chronic severe pain. Practical Pain Management 2005, 5, 47–56. [Google Scholar]
- Staats, P. S.; Yearwood, T.; Charapata, S. G.; Presley, R. W.; Wallace, M. S.; Byas-Smith, M.; Fisher, R.; Bryce, D. A.; Mangieri, E. A.; Luther, R. R.; Mayo, M.; McGuire, D.; Ellis, D. Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS: a randomized controlled trial. JAMA 2004, 291, 63–70. [Google Scholar]
- Lewis, R. J.; Nielsen, K. J.; Craik, D. J.; Loughnan, M. L.; Adams, D. A.; Sharpe, I. A.; Luchian, T.; Adams, D. J.; Bond, T.; Thomas, L.; Jones, A.; Matheson, J. L.; Drinkwater, R.; Andrews, P. R.; Alewood, P. F. Novel omega-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J. Biol. Chem. 2000, 275, 35335–35344. [Google Scholar]
- Smith, M. T.; Cabot, P. J.; Ross, F. B.; Robertson, A. D.; Lewis, R. J. The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain 2002, 96, 119–127. [Google Scholar]
- Scott, D. A.; Wright, C. E.; Angus, J. A. Actions of intrathecal omega-conotoxins CVID, GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat. Eur. J. Pharmacol. 2002, 451, 279–286. [Google Scholar]
- Adams, D. J.; Smith, A. B.; Schroeder, C. I.; Yasuda, T.; Lewis, R. J. Omega-conotoxin CVID inhibits a pharmacologically distinct voltage-sensitive calcium channel associated with transmitter release from preganglionic nerve terminals. J. Biol. Chem. 2003, 278, 4057–4062. [Google Scholar]
- Vincent, J. P.; Mazella, J.; Kitabgi, P. Neurotensin and neurotensin receptors. Trends Pharmacol. Sci. 1999, 20, 302–309. [Google Scholar]
- Young, W.; Kuhar, M. Neurotensin receptor localization by light microscopic autoradiography in rat brain. Brain Res. 1981, 206, 273–285. [Google Scholar]
- Seybold, V. S.; Elde, R. P. Neurotensin immunoreactivity in the superficial laminae of the dorsal horn of the rat: I. Light microscopic studies of cell bodies and proximal dendrites. J. Comp. Neurol. 1982, 205, 89–100. [Google Scholar]
- Uhl, G.; Goodman, R.; Snyder, S. Neurotensin-containing cell bodies, fibers and nerve terminals in the brain stem of the rat: immunohistochemical mapping. Brain Res. 1979, 167, 77–91. [Google Scholar]
- Zhang, X.; Xu, Z.-Q.; Bao, L.; Dagerlind, A.; Hokfelt, T. Complementary distribution of receptors for neurotensin and NPY in small neurons in rat lumbar DRGs and regulation of the receptors and peptides after peripheralaxotomy. J. Neurosci. 1995, 15, 2733–2747. [Google Scholar]
- Yaksh, T. L.; Schmauss, C.; Micevych, P. E.; Abay, E. O.; Go, V. L. Pharmacological studies on the application, disposition, and release of neurotensin in the spinal cord. Ann. N. Y. Acad. Sci. 1982, 400, 228–243. [Google Scholar]
- Spampinato, S.; Romualdi, P.; Candeletti, S.; Cavicchini, E.; Ferri, S. Distinguishable effects of intrathecal dynorphins, somatostatin, neurotensin and s-calcitonin on nociception and motor function in the rat. Pain 1988, 35, 95–104. [Google Scholar]
- Martin, G. E.; Naruse, T. Differences in the pharmacological actions of intrathecally administered neurotensin and morphine. Regul. Pept. 1982, 3, 97–103. [Google Scholar]
- Wagstaff, J.; Layer, R.; Craig, A. CGX-1160: A broad-spectrum, non-opioid analgesic conopeptide: from discovery to the clinic? Venoms to Drugs Conference, Heron Island, Queensland, Australia; 2002. [Google Scholar]
- Bulaj, G.; Yoshikami, D.; Zhang, M.; Terlau, H.; Layer, R.; Wagstaff, J.; Olivera, B. Cone Snail Venoms as a Rich Pharmacopoeia of Analgesic Peptides. Venoms to Drugs Conference, Heron Island, Queensland, Australia; 2005. [Google Scholar]
- Allen, J.; McCumber, D.; Wagstaff, J.; Layer, R.; McCabe, R.; Yaksh, T. Intrathecal CGX-1160 produces analgesia in the rat formalin test and canine thermal twitch model; Society for Neuroscience, 2001; p. 615.612. [Google Scholar]
- McIntosh, J. M.; Corpuz, G. O.; Layer, R. T.; Garrett, J. E.; Wagstaff, J. D.; Bulaj, G.; Vyazovkina, A.; Yoshikami, D.; Cruz, L. J.; Olivera, B. M. Isolation and characterization of a novel conus peptide with apparent antinociceptive activity. J. Biol. Chem. 2000, 275, 32391–32397. [Google Scholar]
- Sharpe, I. A.; Gehrmann, J.; Loughnan, M. L.; Thomas, L.; Adams, D. A.; Atkins, A.; Palant, E.; Craik, D. J.; Adams, D. J.; Alewood, P. F.; Lewis, R. J. Two new classes of conopeptides inhibit the alpha1-adrenoceptor and noradrenaline transporter. Nat. Neurosci. 2001, 4, 902–907. [Google Scholar]
- Bryan-Lluka, L. J.; Bonisch, H.; Lewis, R. J. chi-Conopeptide MrIA partially overlaps desipramine and cocaine binding sites on the human norepinephrine transporter. J. Biol. Chem. 2003, 278, 40324–40329. [Google Scholar]
- Nilsson, K. P.; Lovelace, E. S.; Caesar, C. E.; Tynngard, N.; Alewood, P. F.; Johansson, H. M.; Sharpe, I. A.; Lewis, R. J.; Daly, N. L.; Craik, D. J. Solution structure of chi-conopeptide MrIA, a modulator of the human norepinephrine transporter. Biopolymers 2005, 80, 815–823. [Google Scholar]
- Nielsen, C. K.; Lewis, R. J.; Alewood, D.; Drinkwater, R.; Palant, E.; Patterson, M.; Yaksh, T. L.; McCumber, D.; Smith, M. T. Anti-allodynic efficacy of the chi-conopeptide, Xen2174, in rats with neuropathic pain. Pain 2005, 118, 112–124. [Google Scholar]
- Obata, H.; Conklin, D.; Eisenach, J. C. Spinal noradrenaline transporter inhibition by reboxetine and Xen2174 reduces tactile hypersensitivity after surgery in rats. Pain 2005, 113, 271–276. [Google Scholar]
- Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 1999, 51, 7–61. [Google Scholar]
- Woolf, C. J. The pathophysiology of peripheral neuropathic pain--abnormal peripheral input and abnormal central processing. Acta Neurochir. Suppl. 1993, 58, 125–130. [Google Scholar]
- Priestley, T.; Laughton, P.; Myers, J.; Le Bourdelles, B.; Kerby, J.; Whiting, P. J. Pharmacological properties of recombinant human N-methyl-D-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells. Mol. Pharmacol. 1995, 48, 841–848. [Google Scholar]
- Monyer, H.; Burnashev, N.; Laurie, D. J.; Sakmann, B.; Seeburg, P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994, 12, 529–540. [Google Scholar]
- Laurie, D. J.; Seeburg, P. H. Ligand affinities at recombinant N-methyl-D-aspartate receptors depend on subunit composition. Eur. J. Pharmacol. 1994, 268, 335–345. [Google Scholar]
- Ishii, T.; Moriyoshi, K.; Sugihara, H.; Sakurada, K.; Kadotani, H.; Yokoi, M.; Akazawa, C.; Shigemoto, R.; Mizuno, N.; Masu, M.; et al. Molecular characterization of the family of the N-methyl- D-aspartate receptor subunits. J. Biol. Chem. 1993, 268, 2836–2843. [Google Scholar]
- Petralia, R. S.; Wang, Y. X.; Wenthold, R. J. The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. J. Neurosci. 1994, 14, 6102–6120. [Google Scholar]
- Tolle, T. R.; Berthele, A.; Zieglgansberger, W.; Seeburg, P. H.; Wisden, W. The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. J. Neurosci. 1993, 13, 5009–5028. [Google Scholar]
- Yung, K. K. Localization of glutamate receptors in dorsal horn of rat spinal cord. Neuroreport 1998, 9, 1639–1644. [Google Scholar]
- Chizh, B. A.; Headley, P. M.; Tzschentke, T. M. NMDA receptor antagonists as analgesics: focus on the NR2B subtype. Trends Pharmacol. Sci. 2001, 22, 636–642. [Google Scholar]
- Boyce, S.; Wyatt, A.; Webb, J. K.; O’Donnell, R.; Mason, G.; Rigby, M.; Sirinathsinghji, D.; Hill, R. G.; Rupniak, N. M. Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn. Neuropharmacology 1999, 38, 611–623. [Google Scholar]
- Ma, Q. P.; Hargreaves, R. J. Localization of N-methyl-D-aspartate NR2B subunits on primary sensory neurons that give rise to small-caliber sciatic nerve fibers in rats. Neuroscience 2000, 101, 699–707. [Google Scholar]
- Layer, R. T.; Wagstaff, J. D.; White, S. W. Conantokins: Peptide antagonists of NMDA receptors. Curr. Med. Chem. 2004, 11, 3173–3184. [Google Scholar]
- Klein, R. C.; Prorok, M.; Galdzicki, Z.; Castellino, F. J. The amino acid residue at sequence position 5 in the conantokin peptides partially governs subunit-selective antagonism of recombinant N-methyl-D-aspartate receptors. J. Biol. Chem. 2001, 276, 26860–26867. [Google Scholar]
- Donevan, S. D.; McCabe, R. T. Conantokin G is an NR2B-selective competitive antagonist of N-methyl- D- aspartate receptors. Mol. Pharmacol. 2000, 58, 614–623. [Google Scholar]
- Malmberg, A. B.; Gilbert, H.; McCabe, R. T.; Basbaum, A. I. Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain 2003, 101, 109–116. [Google Scholar]
- White, H. S.; McCabe, R. T.; Armstrong, H.; Donevan, S. D.; Cruz, L. J.; Abogadie, F. C.; Torres, J.; Rivier, J. E.; Paarmann, I.; Hollmann, M.; Olivera, B. M. In vitro and in vivo characterization of conantokin-R, a selective NMDA receptor antagonist isolated from the venom of the fish-hunting snail Conus radiatus. J. Pharmacol. Exp. Ther. 2000, 292, 425–432. [Google Scholar]
- Armstrong, H.; Zhou, L. M.; Layer, R. T.; Nielsen, J.; McCabe, R. T.; White, H. S. Anticonvulsant profile of conantokin-G (Con-G): A novel, broad-spectrum NMDA antagonist. Epilepsia 1998, 39, 39–40. [Google Scholar]
- Barton, M. E.; White, H. S. The effect of CGX-1007 and CI-1041, novel NMDA receptor antagonists, on kindling acquisition and expression. Epilepsy Res. 2004, 59, 1–12. [Google Scholar]
- Bannon, A. W.; Decker, M. W.; Holladay, M. W.; Curzon, P.; Donnelly-Roberts, D.; Puttfarcken, P. S.; Bitner, R. S.; Diaz, A.; Dickenson, A. H.; Porsolt, R. D.; Williams, M.; Arneric, S. P. Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 1998, 279, 77–81. [Google Scholar]
- Badio, B.; Daly, J. W. Epibatidine, a potent analgetic and nicotinic agonist. Mol. Pharmacol. 1994, 45, 563–569. [Google Scholar]
- Marubio, L. M.; del Mar Arroyo-Jimenez, M.; Cordero-Erausquin, M.; Lena, C.; Le Novere, N.; de Kerchove d’Exaerde, A.; Huchet, M.; Damaj, M. I.; Changeux, J. P. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 1999, 398, 805–810. [Google Scholar]
- McIntosh, J. M.; Santos, A. D.; Olivera, B. M. Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. Annu. Rev. Biochem. 1999, 68, 59–88. [Google Scholar]
- Dutton, J. L.; Craik, D. J. alpha-Conotoxins: nicotinic acetylcholine receptor antagonists as pharmacological tools and potential drug leads. Curr. Med. Chem. 2001, 8, 327–344. [Google Scholar]
- Sandall, D. W.; Satkunanathan, N.; Keays, D. A.; Polidano, M. A.; Liping, X.; Pham, V.; Down, J. G.; Khalil, Z.; Livett, B. G.; Gayler, K. R. A novel alpha-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 2003, 42, 6904–6911. [Google Scholar]
- Lang, P.; Burgstahler, R.; Sippel, W.; Irnich, D.; Schlotter-Weigel, B.; Grafe, P. Characterization of neuronal nicotinic acetylcholine receptors in the membrane of unmyelinated human C-fiber axons by in vitro studies. J. Neurophysiol. 2003, 90, 3295–3303. [Google Scholar]
- Satkunanathan, N.; Livett, B.; Gayler, K.; Sandall, D.; Down, J.; Khalil, Z. Alpha-conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurones. Brain Res. 2005. [Google Scholar]
- Wood, J.; Boorman, J.; Okuse, K.; Baker, M. Voltage-gated sodium channels and pain pathways. J. Neurobiol. 2004, 61, 55–71. [Google Scholar]
- Daly, N. L.; Ekberg, J. A.; Thomas, L.; Adams, D. J.; Lewis, R. J.; Craik, D. J. Structures of muO-conotoxins from Conus marmoreus. I nhibitors of tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels in mammalian sensory neurons. J. Biol. Chem. 2004, 279, 25774–25782. [Google Scholar]
- West, P. J.; Bulaj, G.; Garrett, J. E.; Olivera, B. M.; Yoshikami, D. Mu-conotoxin SmIIIA, a potent inhibitor of tetrodotoxin-resistant sodium channels in amphibian sympathetic and sensory neurons. Biochemistry 2002, 41, 15388–15393. [Google Scholar]
- Bulaj, G.; West, P. J.; Garrett, J. E.; Marsh, M.; Zhang, M. M.; Norton, R. S.; Smith, B. J.; Yoshikami, D.; Olivera, B. M. Novel conotoxins from Conus striatus and Conus kinoshitai selectively block TTX-resistant sodium channels. Biochemistry 2005, 44, 7259–7265. [Google Scholar]
- Buchan, A. M.; Gertler, S. Z.; Li, H.; Xue, D.; Huang, Z. G.; Chaundy, K. E.; Barnes, K.; Lesiuk, H. J. A selective N-type Ca(2+)-channel blocker prevents CA1 injury 24 h following severe forebrain ischemia and reduces infarction following focal ischemia. J. Cereb. Blood Flow Metab. 1994, 14, 903–910. [Google Scholar]
- Valentino, K.; Newcomb, R.; Gadbois, T.; Singh, T.; Bowersox, S.; Bitner, S.; Justice, A.; Yamashiro, D.; Hoffman, B. B.; Ciaranello, R.; et al. A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 7894–7897. [Google Scholar]
- Yenari, M. A.; Palmer, J. T.; Sun, G. H.; de Crespigny, A.; Mosely, M. E.; Steinberg, G. K. Time-course and treatment response with SNX-111, an N-type calcium channel blocker, in a rodent model of focal cerebral ischemia using diffusion-weighted MRI. Brain Res. 1996, 739, 36–45. [Google Scholar]
- Perez-Pinzon, M. A.; Yenari, M. A.; Sun, G. H.; Kunis, D. M.; Steinberg, G. K. SNX-111, a novel, presynaptic N-type calcium channel antagonist, is neuroprotective against focal cerebral ischemia in rabbits. J. Neurol. Sci. 1997, 153, 25–31. [Google Scholar]
- Takizawa, S.; Matsushima, K.; Fujita, H.; Nanri, K.; Ogawa, S.; Shinohara, Y. A selective N-type calcium channel antagonist reduces extracellular glutamate release and infarct volume in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 1995, 15, 611–618. [Google Scholar]
- McGuire, D.; Bowersox, S.; Fellmann, J. D.; Luther, R. R. Sympatholysis after neuron-specific, N-type, voltage-sensitive calcium channel blockade: first demonstration of N-channel function in humans. J. Cardiovasc. Pharmacol. 1997, 30, 400–403. [Google Scholar]
- Lees, K. R. Cerestat and other NMDA antagonists in ischemic stroke. Neurology 1997, 49, S66–69. [Google Scholar]
- Dawson, D. A.; Wadsworth, G.; Palmer, A. M. A comparative assessment of the efficacy and side-effect liability of neuroprotective compounds in experimental stroke. Brain Res. 2001, 892, 344–350. [Google Scholar]
- Williams, A. J.; Dave, J. R.; Phillips, J. B.; Lin, Y.; McCabe, R. T.; Tortella, F. C. Neuroprotective efficacy and therapeutic window of the high-affinity N- methyl-D-aspartate antagonist conantokin-G: in vitro (primary cerebellar neurons) and in vivo (rat model of transient focal brain ischemia) studies. J. Pharmacol. Exp. Ther. 2000, 294, 378–386. [Google Scholar]
- Williams, A. J.; Ling, G.; McCabe, R. T.; Tortella, F. C. Intrathecal CGX-1007 is neuroprotective in a rat model of focal cerebral ischemia. Neuroreport 2002, 13, 821–824. [Google Scholar]
- Williams, A. J.; Dave, J. R.; Lu, X. M.; Ling, G.; Tortella, F. C. Selective NR2B NMDA receptor antagonists are protective against staurosporine-induced apoptosis. Eur. J. Pharmacol. 2002, 452, 135–136. [Google Scholar]
- Williams, A. J.; Ling, G.; Berti, R.; Moffett, J. R.; Yao, C.; Lu, X. M.; Dave, J. R.; Tortella, F. C. Treatment with the snail peptide CGX-1007 reduces DNA damage and alters gene expression of c-fos and bcl-2 following focal ischemic brain injury in rats. Exp. Brain Res 2003, 153, 16–26. [Google Scholar]
- Bevan, D. R. Neuromuscular blocking drugs: onset and intubation. J. Clin. Anesth. 1997, 9, 36S–39S. [Google Scholar]
- Groebe, D. R.; Gray, W. R.; Abramson, S. N. Determinants involved in the affinity of alpha-conotoxins GI and SI for the muscle subtype of nicotinic acetylcholine receptors. Biochemistry 1997, 36, 6469–6474. [Google Scholar]
- Groebe, D. R.; Dumm, J. M.; Levitan, E. S.; Abramson, S. N. alpha-Conotoxins selectively inhibit one of the two acetylcholine binding sites of nicotinic receptors. Mol. Pharmacol. 1995, 48, 105–111. [Google Scholar]
- Hann, R. M.; Pagan, O. R.; Eterovic, V. A. The alpha-conotoxins GI and MI distinguish between the nicotinic acetylcholine receptor agonist sites while SI does not. Biochemistry 1994, 33, 14058–14063. [Google Scholar]
- Hann, R. M.; Pagan, O. R.; Gregory, L. M.; Jacome, T.; Eterovic, V. A. The 9-arginine residue of alpha-conotoxin GI is responsible for its selective high affinity for the alphagamma agonist site on the electric organ acetylcholine receptor. Biochemistry 1997, 36, 9051–9056. [Google Scholar]
- Marshall, I. G.; Harvey, A. L. Selective neuromuscular blocking properties of alpha-conotoxins in vivo. Toxicon 1990, 28, 231–234. [Google Scholar]
- Hashimoto, K.; Uchida, S.; Yoshida, H.; Nishiuchi, Y.; Sakakibara, S.; Yukari, K. Structure-activity relations of conotoxins at the neuromuscular junction. Eur. J. Pharmacol. 1985, 118, 351–354. [Google Scholar]
- Griffith, H.; Johnson, G. The use of curare in general anesthesia. Anesthesiology 1942, 3, 418–420. [Google Scholar]
- Bowman, W. Development of new neuromuscular blocking drugs. Asia Pacific Journal of Pharmacology 1997, 12, 57–64. [Google Scholar]
- Terlau, H.; Shon, K. J.; Grilley, M.; Stocker, M.; Stuhmer, W.; Olivera, B. M. Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature 1996, 381, 148–151. [Google Scholar]
- Terlau, H.; Boccaccio, A.; Olivera, B. M.; Conti, F. The block of Shaker K+ channels by kappa-conotoxin PVIIA is state dependent. J. Gen. Physiol. 1999, 114, 125–140. [Google Scholar]
- Zhang, S. J.; Yang, X. M.; Liu, G. S.; Cohen, M. V.; Pemberton, K.; Downey, J. M. CGX-1051, a peptide from Conus snail venom, attenuates infarction in rabbit hearts when administered at reperfusion. J. Cardiovasc. Pharmacol. 2003, 42, 764–771. [Google Scholar]
- Lubbers, N. L.; Campbell, T. J.; Polakowski, J. S.; Bulaj, G.; Layer, R. T.; Moore, J.; Gross, G. J.; Cox, B. F. Postischemic administration of CGX-1051, a peptide from cone snail venom, reduces infarct size in both rat and dog models of myocardial ischemia and reperfusion. J. Cardiovasc. Pharmacol. 2005, 46, 141–146. [Google Scholar]
Name | Sequence1 | Conus Species |
---|---|---|
MVIIA (Prialt®) | CKGKGAKCSRLMYDCCTGSCRSGKC* | C. magus |
CVID (AM336) | CKSKGAKCSKLMYDCCSGSCSGTVGRC* | C. catus |
Contulakin-G (CGX-1160) | ZSEEGGSNATgKKPYIL* | C. geographus |
MrIA (Xen-2174)a | NGVCCGYKLCHOC* | C. marmoreus |
Conantokin-G (CGX-1007) | GEXXLQXNQXLIRXKSN* | C. geographus |
Vc1.1 (ACV-1) | GCCSDPRCNYDHPEIC* | C. victoriae |
MrVIB (CGX-1002) | ACSKKWEYCIVPILGFVYCCPGLICGPFVCV | C. marmoreus |
© 2006 by MDPI Reproduction is permitted for noncommercial purposes.
Share and Cite
Layer, R.T.; McIntosh, J.M. Conotoxins: Therapeutic Potential and Application. Mar. Drugs 2006, 4, 119-142. https://doi.org/10.3390/md403119
Layer RT, McIntosh JM. Conotoxins: Therapeutic Potential and Application. Marine Drugs. 2006; 4(3):119-142. https://doi.org/10.3390/md403119
Chicago/Turabian StyleLayer, Richard T., and J. Michael McIntosh. 2006. "Conotoxins: Therapeutic Potential and Application" Marine Drugs 4, no. 3: 119-142. https://doi.org/10.3390/md403119
APA StyleLayer, R. T., & McIntosh, J. M. (2006). Conotoxins: Therapeutic Potential and Application. Marine Drugs, 4(3), 119-142. https://doi.org/10.3390/md403119