Contamination Characteristics of 21 PFAS in Shellfish and Crustaceans of Zhejiang Province and Exposure Risk Assessment for Adult Dietary Consumers
Abstract
1. Introduction
2. Results
2.1. Pollutant Characteristics
2.2. Source Apportionment of 21 PFAS in Shellfish and Crustacean Samples
2.2.1. Crustacean Factor 1 and Factor 3: Sources from Different Industrial Processes (Figure 3a,c)
2.2.2. Crustacean Factor 2: Domestic Waste Area Composite Pollution (Figure 3b)
2.2.3. Bivalves Factor 1: Short-Chain Fluorochemical Alternatives (Figure 4a)
2.2.4. Bivalve Factor 2: PTFE and PVDF Chemical Emissions (Figure 4b)
2.2.5. Factor 3 and Factor 4 in Bivalves: Atmospheric Deposition from Specific Industrial Production (Figure 4c,d)
2.2.6. Crustacean Factor 4 and Bivalve Factor 5: Historical PFOS Chemical Industry and Aqueous Film-Forming Foam (AFFF) Use (Figure 3d and Figure 4e)
2.3. Exposure Levels
2.4. Health Risk Assessment
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Sample Preparation and Analysis
4.3. Consumption Data Collection
4.4. Data Quality Control
4.5. Data Analysis
4.6. Source Analysis of PFAS
4.7. Chronic Exposure Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Environmental Protection Agency. Toxic Substances Control Act Reporting and Recordkeeping Requirements for Perfluoroalkyl and Polyfluoroalky; Update 24 April 2024; U.S. Environmental Protection Agency: Washington, DC, USA, 2024.
- Pan, C.-G.; Yu, K.-F.; Wang, Y.-H.; Zhang, W.; Zhang, J.; Guo, J. Perfluoroalkyl Substances in the Riverine and Coastal Water of the Beibu Gulf, South China: Spatiotemporal Distribution and Source Identification. Sci. Total Environ. 2019, 660, 297–305. [Google Scholar] [CrossRef]
- Podder, A.; Sadmani, A.H.M.A.; Reinhart, D.; Chang, N.-B.; Goel, R. Per and Poly-Fluoroalkyl Substances (PFAS) as a Contaminant of Emerging Concern in Surface Water: A Transboundary Review of Their Occurrences and Toxicity Effects. J. Hazard. Mater. 2021, 419, 126361. [Google Scholar] [CrossRef] [PubMed]
- Conley, J.M.; Lambright, C.S.; Evans, N.; McCord, J.; Strynar, M.J.; Hill, D.; Medlock-Kakaley, E.; Wilson, V.S.; Gray, L.E. Hexafluoropropylene Oxide-Dimer Acid (HFPO-DA or GenX) Alters Maternal and Fetal Glucose and Lipid Metabolism and Produces Neonatal Mortality, Low Birthweight, and Hepatomegaly in the Sprague-Dawley Rat. Environ. Int. 2021, 146, 106204. [Google Scholar] [CrossRef]
- Wang, S.; Huang, J.; Yang, Y.; Hui, Y.; Ge, Y.; Larssen, T.; Yu, G.; Deng, S.; Wang, B.; Harman, C. First Report of a Chinese PFOS Alternative Overlooked for 30 Years: Its Toxicity, Persistence, and Presence in the Environment. Environ. Sci. Technol. 2013, 47, 10163–10170. [Google Scholar] [CrossRef]
- Chou, H.-C.; Wen, L.-L.; Chang, C.-C.; Lin, C.-Y.; Jin, L.; Juan, S.-H. From the Cover: L-Carnitine via PPARγ- and Sirt1-Dependent Mechanisms Attenuates Epithelial-Mesenchymal Transition and Renal Fibrosis Caused by Perfluorooctanesulfonate. Toxicol. Sci. 2017, 160, 217–229. [Google Scholar] [CrossRef]
- Brieger, A.; Bienefeld, N.; Hasan, R.; Goerlich, R.; Haase, H. Impact of Perfluorooctanesulfonate and Perfluorooctanoic Acid on Human Peripheral Leukocytes. Toxicol. Vitr. 2011, 25, 960–968. [Google Scholar] [CrossRef]
- Soloff, A.C.; Wolf, B.J.; White, N.D.; Muir, D.; Courtney, S.; Hardiman, G.; Bossart, G.D.; Fair, P.A. Environmental Perfluorooctane Sulfonate Exposure Drives T Cell Activation in Bottlenose Dolphins. J. Appl. Toxicol. 2017, 37, 1108–1116. [Google Scholar] [CrossRef]
- Britton, K.N.; Judson, R.S.; Hill, B.N.; Jarema, K.A.; Olin, J.K.; Knapp, B.R.; Lowery, M.; Feshuk, M.; Brown, J.; Padilla, S. Using Zebrafish to Screen Developmental Toxicity of Per- and Polyfluoroalkyl Substances (PFAS). Toxics 2024, 12, 501. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Pan, Y.; Bin, L.; Liu, Y.; Huang, W.; Li, R.; Lai, K.P. Immunotoxicity Mechanisms of Perfluorinated Compounds PFOA and PFOS. Chemosphere 2022, 291, 132892. [Google Scholar] [CrossRef] [PubMed]
- Van Gerwen, M.; Colicino, E.; Guan, H.; Dolios, G.; Nadkarni, G.N.; Vermeulen, R.C.H.; Wolff, M.S.; Arora, M.; Genden, E.M.; Petrick, L.M. Per- and Polyfluoroalkyl Substances (PFAS) Exposure and Thyroid Cancer Risk. eBioMedicine 2023, 97, 104831. [Google Scholar] [CrossRef]
- Meneguzzi, A.; Fava, C.; Castelli, M.; Minuz, P. Exposure to Perfluoroalkyl Chemicals and Cardiovascular Disease: Experimental and Epidemiological Evidence. Front. Endocrinol. 2021, 12, 706352. [Google Scholar] [CrossRef]
- Mao, Z.; Xia, W.; Wang, J.; Chen, T.; Zeng, Q.; Xu, B.; Li, W.; Chen, X.; Xu, S. Perfluorooctane Sulfonate Induces Apoptosis in Lung Cancer A549 Cells through Reactive Oxygen Species-Mediated Mitochondrion-Dependent Pathway. J. Appl. Toxicol. 2013, 33, 1268–1276. [Google Scholar] [CrossRef]
- Zhu, L.; Jiao, Y.; Wang, L.; Xiao, P.; Li, X.; Yin, Z.; Zhang, T.; Zhu, W.; Liu, Y.; Zhang, J.; et al. Per- and Polyfluoroalkyl Substances (PFASs) in Bivalve Molluscs from Shandong Province, China: Occurrence, Distribution, and Implications for Human Consumption. Mar. Pollut. Bull. 2024, 203, 116433. [Google Scholar] [CrossRef] [PubMed]
- Drury, N.L.; Prueitt, R.L.; Beck, B.D. Commentary: Understanding IARC’s PFOA and PFOS Carcinogenicity Assessments. Regul. Toxicol. Pharm. 2024, 154, 105726. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Lu, Y.; Zhou, Y.; Zhang, M.; Wang, C.; Yu, M.; Song, S.; Cui, H.; Chen, C. Perfluoroalkyl Acids (PFAAs) in Water along the Entire Coastal Line of China: Spatial Distribution, Mass Loadings, and Worldwide Comparisons. Environ. Int. 2022, 169, 107506. [Google Scholar] [CrossRef]
- Meng, L.; Song, B.; Zhong, H.; Ma, X.; Wang, Y.; Ma, D.; Lu, Y.; Gao, W.; Wang, Y.; Jiang, G. Legacy and Emerging Per- and Polyfluoroalkyl Substances (PFAS) in the Bohai Sea and Its Inflow Rivers. Environ. Int. 2021, 156, 106735. [Google Scholar] [CrossRef]
- Lu, G.-H.; Jiao, X.-C.; Piao, H.-T.; Wang, X.-C.; Chen, S.; Tan, K.-Y.; Gai, N.; Yin, X.-C.; Yang, Y.-L.; Pan, J. The Extent of the Impact of a Fluorochemical Industrial Park in Eastern China on Adjacent Rural Areas. Arch. Environ. Contam. Toxicol. 2018, 74, 484–491. [Google Scholar] [CrossRef]
- Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, Fate and Transport of Perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32–44. [Google Scholar] [CrossRef]
- Peng, L.; Xu, W.; Zeng, Q.; Sun, F.; Guo, Y.; Zhong, S.; Wang, F.; Chen, D. Exposure to Perfluoroalkyl Substances in Waste Recycling Workers: Distributions in Paired Human Serum and Urine. Environ. Int. 2022, 158, 106963. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, L.; Xu, H. Dietary Exposure to per- and Polyfluoroalkyl Substances: Potential Health Impacts on Human Liver. Sci. Total Environ. 2024, 907, 167945. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Pepper, K.; Seymour, C.; Moisey, J.; Bronson, R.; Cao, X.-L.; Dabeka, R.W. Dietary Exposure of Canadians to Perfluorinated Carboxylates and Perfluorooctane Sulfonate via Consumption of Meat, Fish, Fast Foods, and Food Items Prepared in Their Packaging. J. Agric. Food. Chem. 2007, 55, 3203–3210. [Google Scholar] [CrossRef]
- Haug, L.S.; Thomsen, C.; Brantsæter, A.L.; Kvalem, H.E.; Haugen, M.; Becher, G.; Alexander, J.; Meltzer, H.M.; Knutsen, H.K. Diet and Particularly Seafood Are Major Sources of Perfluorinated Compounds in Humans. Environ. Int. 2010, 36, 772–778. [Google Scholar] [CrossRef]
- Cioni, L.; Nikiforov, V.; Coêlho, A.C.M.F.; Sandanger, T.M.; Herzke, D. Total Oxidizable Precursors Assay for PFAS in Human Serum. Environ. Int. 2022, 170, 107656. [Google Scholar] [CrossRef]
- Varsi, K.; Huber, S.; Averina, M.; Brox, J.; Bjørke-Monsen, A.-L. Quantitation of Linear and Branched Perfluoroalkane Sulfonic Acids (PFSAs) in Women and Infants during Pregnancy and Lactation. Environ. Int. 2022, 160, 107065. [Google Scholar] [CrossRef] [PubMed]
- PFAS in Food: EFSA Assesses Risks and Sets Tolerable Intake|EFSA. Available online: https://www.efsa.europa.eu/en/news/pfas-food-efsa-assesses-risks-and-sets-tolerable-intake (accessed on 11 March 2025).
- EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; et al. Risk to Human Health Related to the Presence of Perfluoroalkyl Substances in Food. EFSA J. 2020, 18, 6223. [Google Scholar] [CrossRef]
- Das Eidgenössische Departement des Innern (EDI) Verordnung des EDI über die Höchstgehalte für Kontaminanten. 2023. Available online: https://www.fedlex.admin.ch/eli/oc/2023/847/de (accessed on 11 September 2025).
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation No 1881/2006. Off. J. Eur. Union. 2023, 119, 103–157. Available online: http://data.europa.eu/eli/reg/2023/915/oj (accessed on 11 September 2025).
- Wang, J.; Shen, C.; Zhang, J.; Lou, G.; Shan, S.; Zhao, Y.; Man, Y.B.; Li, Y. Per- and Polyfluoroalkyl Substances (PFASs) in Chinese Surface Water: Temporal Trends and Geographical Distribution. Sci. Total Environ. 2024, 915, 170127. [Google Scholar] [CrossRef]
- Lu, Z.; Song, L.; Zhao, Z.; Ma, Y.; Wang, J.; Yang, H.; Ma, H.; Cai, M.; Codling, G.; Ebinghaus, R.; et al. Occurrence and Trends in Concentrations of Perfluoroalkyl Substances (PFASs) in Surface Waters of Eastern China. Chemosphere 2015, 119, 820–827. [Google Scholar] [CrossRef]
- Zhu, Q.; Qian, J.; Huang, S.; Li, Q.; Guo, L.; Zeng, J.; Zhang, W.; Cao, X.; Yang, J. Occurrence, Distribution, and Input Pathways of per- and Polyfluoroalkyl Substances in Soils near Different Sources in Shanghai. Environ. Pollut. 2022, 308, 119620. [Google Scholar] [CrossRef] [PubMed]
- Henry, R.C. Multivariate Receptor Modeling by N-Dimensional Edge Detection. Chemom. Intell. Lab. Syst. 2003, 65, 179–189. [Google Scholar] [CrossRef]
- Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor Modeling of Ambient Particulate Matter Data Using Positive Matrix Factorization: Review of Existing Methods. J. Air Waste Manag. Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J.D. A Quantitative Assessment of Source Contributions to Inhalable Particulate Matter Pollution in Metropolitan Boston. Atmos. Environ. (1967) 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Wróblewska, A.; Meissner, E.; Milchert, E. Synthesis of Technically Useful Perfluorocarboxylic Acids. J. Fluor. Chem. 2006, 127, 345–350. [Google Scholar] [CrossRef]
- Purrington, S.T.; Woodard, D.L. Preparation of .Alpha.-Fluorocarboxylic Acids and Derivatives. J. Org. Chem. 1990, 55, 3423–3424. [Google Scholar] [CrossRef]
- Gu, C.; Xu, C.; Zhou, Q.; Shen, C.; Ma, C.; Liu, S.; Yin, S.; Li, F. Congener- and Isomer-Specific Perfluorinated Compounds in Textile Wastewater from Southeast China. J. Clean. Prod. 2021, 320, 128897. [Google Scholar] [CrossRef]
- Styler, S.A.; Myers, A.L.; Donaldson, D.J. Heterogeneous Photooxidation of Fluorotelomer Alcohols: A New Source of Aerosol-Phase Perfluorinated Carboxylic Acids. Environ. Sci. Technol. 2013, 47, 6358–6367. [Google Scholar] [CrossRef]
- Wang, B.; Yao, Y.; Chen, H.; Chang, S.; Tian, Y.; Sun, H. Per- and Polyfluoroalkyl Substances and the Contribution of Unknown Precursors and Short-Chain (C2–C3) Perfluoroalkyl Carboxylic Acids at Solid Waste Disposal Facilities. Sci. Total Environ. 2020, 705, 135832. [Google Scholar] [CrossRef]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P.J. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; He, X.; Liu, J.; Yao, Z.; Zhao, H.; Yu, D.; Liu, B.; Liu, T.; Zhao, W. Contamination of Per- and Polyfluoroalkyl Substances in the Water Source from a Typical Agricultural Area in North China. Front. Environ. Sci. 2023, 10, 1071134. [Google Scholar] [CrossRef]
- Möller, A.; Ahrens, L.; Surm, R.; Westerveld, J.; van der Wielen, F.; Ebinghaus, R.; de Voogt, P. Distribution and Sources of Polyfluoroalkyl Substances (PFAS) in the River Rhine Watershed. Environ. Pollut. 2010, 158, 3243–3250. [Google Scholar] [CrossRef]
- Wang, P.; Lu, Y.; Wang, T.; Zhu, Z.; Li, Q.; Zhang, Y.; Fu, Y.; Xiao, Y.; Giesy, J.P. Transport of Short-Chain Perfluoroalkyl Acids from Concentrated Fluoropolymer Facilities to the Daling River Estuary, China. Environ. Sci. Pollut. Res. 2015, 22, 9626–9636. [Google Scholar] [CrossRef] [PubMed]
- China Association of Fluorine and Silicone Industry (CAFSI). CAFSI White Paper on the Development of Chinese Fluorochemical Industry; CAFSI: Beijing, China, 2019. [Google Scholar]
- Liu, W.; Chen, S.; Harada, K.H.; Koizumi, A. Analysis of Perfluoroalkyl Carboxylates in Vacuum Cleaner Dust Samples in Japan. Chemosphere 2011, 85, 1734–1741. [Google Scholar] [CrossRef]
- Dauchy, X. Evidence of Large-Scale Deposition of Airborne Emissions of per- and Polyfluoroalkyl Substances (PFASs) near a Fluoropolymer Production Plant in an Urban Area. Chemosphere 2023, 337, 139407. [Google Scholar] [CrossRef]
- Giesy, J.P.; Kannan, K. Peer Reviewed: Perfluorochemical Surfactants in the Environment. Environ. Sci. Technol. 2002, 36, 146A–152A. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Wang, T.; Liu, S.; Jones, K.C.; Sweetman, A.J.; Lu, Y. Industrial Source Identification and Emission Estimation of Perfluorooctane Sulfonate in China. Environ. Int. 2013, 52, 1–8. [Google Scholar] [CrossRef]
- Yan, P.-F.; Dong, S.; Pennell, K.D.; Cápiro, N.L. A Review of the Occurrence and Microbial Transformation of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Film-Forming Foam (AFFF)-Impacted Environments. Sci. Total Environ. 2024, 927, 171883. [Google Scholar] [CrossRef]
- Miranda, D.A.; Benskin, J.P.; Awad, R.; Lepoint, G.; Leonel, J.; Hatje, V. Bioaccumulation of Per- and Polyfluoroalkyl Substances (PFASs) in a Tropical Estuarine Food Web. Sci. Total Environ. 2021, 754, 142146. [Google Scholar] [CrossRef]
- Xie, X.; Lu, Y.; Wang, P.; Lei, H.; Liang, Z. Per- and Polyfluoroalkyl Substances in Marine Organisms along the Coast of China. Sci. Total Environ. 2023, 876, 162492. [Google Scholar] [CrossRef]
- Catherine, M.; Nadège, B.; Charles, P.; Yann, A. Perfluoroalkyl Substances (PFASs) in the Marine Environment: Spatial Distribution and Temporal Profile Shifts in Shellfish from French Coasts. Chemosphere 2019, 228, 640–648. [Google Scholar] [CrossRef]
- Munoz, G.; Budzinski, H.; Babut, M.; Drouineau, H.; Lauzent, M.; Menach, K.L.; Lobry, J.; Selleslagh, J.; Simonnet-Laprade, C.; Labadie, P. Evidence for the Trophic Transfer of Perfluoroalkylated Substances in a Temperate Macrotidal Estuary. Environ. Sci. Technol. 2017, 51, 8450–8459. [Google Scholar] [CrossRef] [PubMed]
- De Silva, A.O.; Armitage, J.M.; Bruton, T.A.; Dassuncao, C.; Heiger-Bernays, W.; Hu, X.C.; Kärrman, A.; Kelly, B.; Ng, C.; Robuck, A.; et al. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. Environ. Toxicol. Chem. 2020, 40, 631–657. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Li, J.; Wu, N.; Li, W.; Niu, Z. Distribution, Partitioning Behavior and Positive Matrix Factorization-Based Source Analysis of Legacy and Emerging Polyfluorinated Alkyl Substances in the Dissolved Phase, Surface Sediment and Suspended Particulate Matter around Coastal Areas of Bohai Bay, China. Environ. Pollut. 2019, 246, 34–44. [Google Scholar] [CrossRef]
- Lenka, S.P.; Kah, M.; Padhye, L.P. A Review of the Occurrence, Transformation, and Removal of Poly- and Perfluoroalkyl Substances (PFAS) in Wastewater Treatment Plants. Water Res. 2021, 199, 117187. [Google Scholar] [CrossRef] [PubMed]
- Young, W.; Wiggins, S.; Limm, W.; Fisher, C.M.; DeJager, L.; Genualdi, S. Analysis of Per- and Poly(Fluoroalkyl) Substances (PFASs) in Highly Consumed Seafood Products from U.S. Markets. J. Agric. Food. Chem. 2022, 70, 13545–13553. [Google Scholar] [CrossRef] [PubMed]
- Conder, J.M.; Hoke, R.A.; Wolf, W.D.; Russell, M.H.; Buck, R.C. Are PFCAs Bioaccumulative? A Critical Review and Comparison with Regulatory Criteria and Persistent Lipophilic Compounds. Environ. Sci. Technol. 2008, 42, 995–1003. [Google Scholar] [CrossRef]
- Loi, E.I.H.; Yeung, L.W.Y.; Taniyasu, S.; Lam, P.K.S.; Kannan, K.; Yamashita, N. Trophic Magnification of Poly- and Perfluorinated Compounds in a Subtropical Food Web. Environ. Sci. Technol. 2011, 45, 5506–5513. [Google Scholar] [CrossRef]
- Li, Y.; Yao, J.; Pan, Y.; Dai, J.; Tang, J. Trophic Behaviors of PFOA and Its Alternatives Perfluoroalkyl Ether Carboxylic Acids (PFECAs) in a Coastal Food Web. J. Hazard. Mater. 2023, 452, 131353. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, P.; Lu, Y.; Zhang, M.; Zhou, Y.; Wang, Y.; Zhang, S. Occurrence and Health Risk of Perfluoroalkyl Acids (PFAAs) in Seafood from Yellow Sea, China. Sci. Total Environ. 2019, 665, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, Y.; Li, J.; Zhao, Y.; Guo, F.; Liu, J.; Cai, Z. Perfluorinated Compounds in Seafood from Coastal Areas in China. Environ. Int. 2012, 42, 67–71. [Google Scholar] [CrossRef]
- Niisoe, T.; Senevirathna, S.T.M.L.D.; Harada, K.H.; Fujii, Y.; Hitomi, T.; Kobayashi, H.; Yan, J.; Zhao, C.; Oshima, M.; Koizumi, A. Perfluorinated Carboxylic Acids Discharged from the Yodo River Basin, Japan. Chemosphere 2015, 138, 81–88. [Google Scholar] [CrossRef]
- Gottschall, N.; Topp, E.; Edwards, M.; Russell, P.; Payne, M.; Kleywegt, S.; Curnoe, W.; Lapen, D.R. Polybrominated Diphenyl Ethers, Perfluorinated Alkylated Substances, and Metals in Tile Drainage and Groundwater Following Applications of Municipal Biosolids to Agricultural Fields. Sci. Total Environ. 2010, 408, 873–883. [Google Scholar] [CrossRef]
- Ma, D.; Zhong, H.; Lv, J.; Wang, Y.; Jiang, G. Levels, Distributions, and Sources of Legacy and Novel per- and Perfluoroalkyl Substances (PFAS) in the Topsoil of Tianjin, China. J. Environ. Sci. 2022, 112, 71–81. [Google Scholar] [CrossRef]
- Hall, S.M.; Zhang, S.; Tait, G.H.; Hoffman, K.; Collier, D.N.; Hoppin, J.A.; Stapleton, H.M. PFAS Levels in Paired Drinking Water and Serum Samples Collected from an Exposed Community in Central North Carolina. Sci. Total Environ. 2023, 895, 165091. [Google Scholar] [CrossRef] [PubMed]
- Schultes, L.; Sandblom, O.; Broeg, K.; Bignert, A.; Benskin, J.P. Temporal Trends (1981–2013) of Per- and Polyfluoroalkyl Substances and Total Fluorine in Baltic Cod (Gadus Morhua). Environ. Toxicol. Chem. 2019, 39, 300–309. [Google Scholar] [CrossRef]
- Liu, L.; Yan, P.; Liu, X.; Zhao, J.; Tian, M.; Huang, Q.; Yan, J.; Tong, Z.; Zhang, Y.; Zhang, J.; et al. Profiles and Transplacental Transfer of Per- and Polyfluoroalkyl Substances in Maternal and Umbilical Cord Blood: A Birth Cohort Study in Zhoushan, Zhejiang Province, China. J. Hazard. Mater. 2024, 466, 133501. [Google Scholar] [CrossRef]
- Kashino, I.; Sasaki, S.; Okada, E.; Matsuura, H.; Goudarzi, H.; Miyashita, C.; Okada, E.; Ito, Y.M.; Araki, A.; Kishi, R. Prenatal Exposure to 11 Perfluoroalkyl Substances and Fetal Growth: A Large-Scale, Prospective Birth Cohort Study. Environ. Int. 2020, 136, 105355. [Google Scholar] [CrossRef]
- Henry, R.C.; Christensen, E.R. Selecting an Appropriate Multivariate Source Apportionment Model Result. Environ. Sci. Technol. 2010, 44, 2474–2481. [Google Scholar] [CrossRef]
- Paatero, P.; Eberly, S.; Brown, S.G.; Norris, G.A. Methods for Estimating Uncertainty in Factor Analytic Solutions. Atmos. Meas. Tech. 2014, 7, 781–797. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency Environmental Protection Agency. Regional Screening Levels (RSLs)—User’s Guide; U.S. Environmental Protection Agency: Washington, DC, USA, 2024.
- US Environmental Protection Agency Toxicity Assessment for PFBS. US Environmental Protection Agency. 2021. Available online: https://ordspub.epa.gov/ords/eims/eimscomm.getfile?p_download_id=542402 (accessed on 11 September 2025).
- The Department of Health, Food Standards Australia New Zealand (FSANZ) and the National. Medical Research Council (NHMRC) Health-Based Guidance Values for PFAS for Use in Site Investigations in Australia. Available online: https://www.health.gov.au/resources/publications/health-based-guidance-values-for-pfas-for-use-in-site-investigations-in-australia?language=en (accessed on 16 June 2025).
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Stat. Ref. Online 2017, 1–15. [Google Scholar] [CrossRef]
- Rivera, J.D.D.; Davies, G.M.; Jahn, W. Flammability and the Heat of Combustion of Natural Fuels: A Review. Combust. Sci. Technol. 2012, 184, 224–242. [Google Scholar] [CrossRef]
- Claudet, J.; Pelletier, D.; Jouvenel, J.-Y.; Bachet, F.; Galzin, R. Assessing the Effects of Marine Protected Area (MPA) on a Reef Fish Assemblage in a Northwestern Mediterranean Marine Reserve: Identifying Community-Based Indicators. Biol. Conserv. 2006, 130, 349–369. [Google Scholar] [CrossRef]
EDI (Σ4PFAS) ng/kg bw per Day | |||||||
---|---|---|---|---|---|---|---|
Age Groups | N | P5 | P50 | Mean | Std | P95 | Max |
18–30 | 1243 | 0.0019 | 0.026 | 0.06 | 0.097 | 1.04 | 0.22 |
31–50 | 3109 | 0.0010 | 0.022 | 0.051 | 0.083 | 0.82 | 0.20 |
51–59 | 1712 | 0.00093 | 0.017 | 0.047 | 0.10 | 2.16 | 0.19 |
>=60 | 1290 | 0.00071 | 0.014 | 0.042 | 0.088 | 1.88 | 0.17 |
Gender | |||||||
Man | 3683 | 0.0011 | 0.019 | 0.046 | 0.082 | 0.17 | 2.16 |
Woman | 3671 | 0.0010 | 0.020 | 0.054 | 0.099 | 0.21 | 1.88 |
Total | 7354 | 0.0011 | 0.019 | 0.05 | 0.091 | 0.20 | 2.16 |
Group | EDI (21 PFAS) (ng/kg bw per Day) | |||||
---|---|---|---|---|---|---|
P5 | P50 | Mean | Std | P95 | Max | |
PFBA | 0.000065 | 0.0011 | 0.0028 | 0.0049 | 0.011 | 0.10 |
PFPeA | 0.000061 | 0.0011 | 0.0027 | 0.0049 | 0.011 | 0.11 |
PFHxA | 0.000029 | 0.00051 | 0.0013 | 0.0023 | 0.0050 | 0.050 |
PFHpA | 0.000033 | 0.00058 | 0.0015 | 0.0027 | 0.0058 | 0.062 |
PFOA | 0.000055 | 0.0016 | 0.0057 | 0.014 | 0.024 | 0.28 |
PFNA | 0.00028 | 0.0047 | 0.012 | 0.021 | 0.046 | 0.43 |
PFDA | 0.00055 | 0.011 | 0.028 | 0.051 | 0.11 | 1.21 |
PFUdA | 0.0016 | 0.036 | 0.098 | 0.19 | 0.39 | 4.91 |
PFDoA | 0.000062 | 0.0040 | 0.016 | 0.035 | 0.069 | 1.07 |
PFTrDA | 0.00086 | 0.027 | 0.090 | 0.19 | 0.38 | 5.54 |
PFTeDA | 0.000037 | 0.00064 | 0.0016 | 0.0029 | 0.0063 | 0.065 |
PFHxDA | 0.000030 | 0.00052 | 0.00134 | 0.0024 | 0.0053 | 0.056 |
PFOdA | 0.000029 | 0.00049 | 0.0012 | 0.0022 | 0.0047 | 0.045 |
PFBS | 0.000027 | 0.00048 | 0.0012 | 0.0022 | 0.0047 | 0.047 |
PFPeS | 0.000030 | 0.00052 | 0.0013 | 0.0023 | 0.0050 | 0.049 |
PFHxS | 0.000030 | 0.00054 | 0.0014 | 0.0025 | 0.0054 | 0.057 |
PFHpS | 0.000036 | 0.00063 | 0.0016 | 0.0028 | 0.0062 | 0.06 |
PFOS | 0.00055 | 0.011 | 0.031 | 0.060 | 0.13 | 1.62 |
PFNS | 0.000029 | 0.00051 | 0.0013 | 0.0023 | 0.0050 | 0.051 |
PFDS | 0.000031 | 0.00055 | 0.0014 | 0.0025 | 0.0055 | 0.057 |
ADONA | 0.000035 | 0.00061 | 0.0015 | 0.0028 | 0.0060 | 0.061 |
Σ21PFAS | 0.0053 | 0.11 | 0.30 | 0.58 | 1.22 | 15.7 |
Limit | Target PFAS | Year | |
---|---|---|---|
EFSA recommended TWI | 4.4 ng/kg_bw/week | Sum of exposure to PFOS, PFHxS, PFNA, and PFOA | 2020 [26] |
EPA estimated RfD | 0.02 ng/kg bw/day | PFOA, PFOS | 2021 [74] |
The Department of Health, Food Standards Australia New Zealand (FSANZ) | 22.85 ng/kg bw/day | PFOA | 2017 [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, H.; Zhang, R.; Zhao, D.; Zhu, B.; Qi, X.; Chen, L.; Chen, J.; Wang, J.; Zheng, Y.; et al. Contamination Characteristics of 21 PFAS in Shellfish and Crustaceans of Zhejiang Province and Exposure Risk Assessment for Adult Dietary Consumers. Mar. Drugs 2025, 23, 359. https://doi.org/10.3390/md23090359
Zhang H, Zhang H, Zhang R, Zhao D, Zhu B, Qi X, Chen L, Chen J, Wang J, Zheng Y, et al. Contamination Characteristics of 21 PFAS in Shellfish and Crustaceans of Zhejiang Province and Exposure Risk Assessment for Adult Dietary Consumers. Marine Drugs. 2025; 23(9):359. https://doi.org/10.3390/md23090359
Chicago/Turabian StyleZhang, Hexiang, Haoyi Zhang, Ronghua Zhang, Dong Zhao, Bing Zhu, Xiaojuan Qi, Lili Chen, Jiang Chen, Jikai Wang, Yibin Zheng, and et al. 2025. "Contamination Characteristics of 21 PFAS in Shellfish and Crustaceans of Zhejiang Province and Exposure Risk Assessment for Adult Dietary Consumers" Marine Drugs 23, no. 9: 359. https://doi.org/10.3390/md23090359
APA StyleZhang, H., Zhang, H., Zhang, R., Zhao, D., Zhu, B., Qi, X., Chen, L., Chen, J., Wang, J., Zheng, Y., & Feng, Z. (2025). Contamination Characteristics of 21 PFAS in Shellfish and Crustaceans of Zhejiang Province and Exposure Risk Assessment for Adult Dietary Consumers. Marine Drugs, 23(9), 359. https://doi.org/10.3390/md23090359