Giant Moray Eel (Gymnothorax javanicus), a Long-Living Apex Predator That Poses a Food Safety Risk in the Pacific
Abstract
1. Introduction
2. Results
2.1. Giant Moray Eel Identification
2.2. Aging
2.3. Sample Analysis for Ciguatoxins
2.3.1. Screening
2.3.2. Localized Bioaccumulation Investigation
2.3.3. Fortification Experiments to Determine Method Performance
2.4. Additional Marine Toxins
2.5. Elemental Composition in the Giant Moray Eel Flesh
2.6. Proximate Composition in the Giant Moray Eel Flesh
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Giant Morey Eel Specimens
4.2.1. Collection and Preparation
4.2.2. Species Confirmation
4.2.3. Otolith Preparation and Age Determination
4.3. Toxin Analysis
4.3.1. Extractions
4.3.2. Chromatographic Conditions and Instrumental Analysis
4.4. Elemental Analysis
4.4.1. Extraction
4.4.2. Instrumental Analysis
4.5. Proximates
4.5.1. Crude Protein
4.5.2. Total Fat
4.5.3. Moisture at 105 °C
4.5.4. Ash
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chinain, M.; Gatti, C.M.i.; Darius, H.T.; Quod, J.P.; Tester, P.A. Ciguatera poisonings: A global review of occurrences and trends. Harmful Algae 2021, 102, 101873. [Google Scholar] [CrossRef]
- Friedman, M.A.; Fleming, L.E.; Fernandez, M.; Bienfang, P.; Schrank, K.; Dickey, R.; Bottein, M.-Y.; Backer, L.; Ayyar, R.; Weisman, R.; et al. Ciguatera fish poisoning: Treatment, prevention and management. Mar. Drugs 2008, 6, 456–479. [Google Scholar] [CrossRef]
- Institute Loius Malarde. Ciguatera Online. 2014. Available online: https://www.ciguatera.pf/index.php/en/ (accessed on 3 February 2025).
- Bell, J.; Kronen, M.; Vunisea, A.; Nash, W.; Keeble, G.; Demmke, A.; Pontifex, S.; Andréfouët, S. Planning the use of fish for food security in the Pacific. Mar. Policy 2009, 33, 64–76. [Google Scholar] [CrossRef]
- Ansell, A.; Gibson, R.; Barnes, M.; Press, U. Coastal fisheries in the Pacific Islands. Oceanogr. Mar. Biol. Annu. Rev. 1996, 34, 531. [Google Scholar]
- Bagnis, R.; Chanteau, S.; Chungue, E.; Hurtel, J.M.; Yasumoto, T.; Inoue, A. Origins of ciguatera fish poisoning: A new dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo, definitively involved as a causal agent. Toxicon 1980, 18, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Chinain, M.; Faust, M.A.; Pauillac, S. Morphology and molecular analyses of three toxic species of Gambierdiscus (Dinophyceae): G. pacificus, sp nov., G. australes, sp nov., and G. polynesiensis, sp nov. J. Phycol. 1999, 35, 1282–1296. [Google Scholar] [CrossRef]
- Fraga, S.; Rodríguez, F.; Caillaud, A.; Diogène, J.; Raho, N.; Zapata, M. Gambierdiscus excentricus sp. nov. (Dinophyceae), a benthic toxic dinoflagellate from the Canary Islands (NE Atlantic Ocean). Harmful Algae 2011, 11, 10–22. [Google Scholar] [CrossRef]
- Rhodes, L.; Harwood, T.; Smith, K.; Argyle, P.; Munday, R. Production of ciguatoxin and maitotoxin by strains of Gambierdiscus australes, G. pacificus and G. polynesiensis (Dinophyceae) isolated from Rarotonga, Cook Islands. Harmful Algae 2014, 39, 185–190. [Google Scholar] [CrossRef]
- Smith, K.F.; Rhodes, L.; Verma, A.; Curley, B.G.; Harwood, D.T.; Kohli, G.S.; Solomona, D.; Rongo, T.; Munday, R.; Murray, S.A. A new Gambierdiscus species (Dinophyceae) from Rarotonga, Cook Islands: Gambierdiscus cheloniae, sp nov. Harmful Algae 2016, 60, 45–56. [Google Scholar] [CrossRef]
- Lewis, N.D. Epidemiology and impact of ciguatera in the Pacific: A review. Mar. Fish. Rev. 1986, 48, 6–13. [Google Scholar]
- Rongo, T.; van Woesik, R. Socioeconomic consequences of ciguatera poisoning in Rarotonga, southern Cook Islands. Harmful Algae 2012, 20, 92–100. [Google Scholar] [CrossRef]
- Rhodes, L.L.; Smith, K.F.; Murray, J.S.; Passfield, E.M.F.; Thompson, L.; Thomson-Laing, J. Cook Islands benthic and epiphytic dinoflagellates. Harmful Algal News 2024, No. 75, 19–20. [Google Scholar]
- Murray, J.S.; Passfield, E.M.F.; Rhodes, L.L.; Puddick, J.; Finch, S.C.; Smith, K.F.; van Ginkel, R.; Mudge, E.M.; Nishimura, T.; Funaki, H.; et al. Targeted Metabolite Fingerprints of Thirteen Gambierdiscus, Five Coolia and Two Fukuyoa Species. Mar. Drugs 2024, 22, 119. [Google Scholar] [CrossRef]
- Murray, S.A.; Verma, A.; Hoppenrath, M.; Harwood, D.T.; Murray, J.S.; Smith, K.F.; Lewis, R.; Finch, S.C.; Islam, S.S.; Ashfaq, A.; et al. High ciguatoxin-producing Gambierdiscus clade (Gonyaulacales, Dinophyceae) as a source of toxins causing ciguatera poisoning. Sci. Total Environ. 2025, 994, 179990. [Google Scholar] [CrossRef]
- Munday, R.; Murray, J.S.; Rhodes, L.L.; Larsson, M.E.; Harwood, D.T. Ciguatoxins and maitotoxins in extracts of sixteen Gambierdiscus isolates and one Fukuyoa isolate from the south Pacific and their toxicity to mice by intraperitoneal and oral administration. Mar. Drugs 2017, 15, 208. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation of the United Nations. Report of the Expert Meeting on Ciguatera Poisoning; FAO: Rome, Italy, 2018; p. 156. [Google Scholar]
- Satake, M.; Ishibashi, Y.; Legrand, A.M.; Yasumoto, T. Isolation and structure of ciguatoxin-4A, a new ciguatoxin precursor, from cultures of dinoflagellate Gambierdiscus toxicus and parrotfish Scarus gibbus. Biosci. Biotechnol. Biochem. 1996, 60, 2103–2105. [Google Scholar] [CrossRef]
- Satake, M.; Fukui, M.; Legrand, A.M.; Cruchet, P.; Yasumoto, T. Isolation and structures of new ciguatoxin analogs, 2,3-dihydroxyCTX3C and 51-hydroxyCTX3C, accumulated in tropical reef fish. Tetrahedron Lett. 1998, 39, 1197–1198. [Google Scholar] [CrossRef]
- Yogi, K.; Sakugawa, S.; Oshiro, N.; Ikehara, T.; Sugiyama, K.; Yasumoto, T. Determination of toxins involved in ciguatera fish poisoning in the Pacific by LC/MS. J. AOAC Int. 2014, 97, 398–402. [Google Scholar] [CrossRef]
- Ikehara, T.; Kuniyoshi, K.; Oshiro, N.; Yasumoto, T. Biooxidation of ciguatoxins leads to species-specific toxin profiles. Toxins 2017, 9, 205. [Google Scholar] [CrossRef]
- USFDA. Fish and Fishery Products—Hazards and Control Guidance. In Chapter 6: Natural Toxins, 4th ed.; Center for Food Safety and Applied Nutrition: College Park, MD, USA, 2011. [Google Scholar]
- Darius, H.T.; Paillon, C.; Mou-Tham, G.; Ung, A.; Cruchet, P.; Revel, T.; Viallon, J.; Vigliola, L.; Ponton, D.; Chinain, M. Evaluating Age and Growth Relationship to Ciguatoxicity in Five Coral Reef Fish Species from French Polynesia. Mar. Drugs 2022, 20, 251. [Google Scholar] [CrossRef] [PubMed]
- Oshiro, N.; Nagasawa, H.; Watanabe, M.; Nishimura, M.; Kuniyoshi, K.; Kobayashi, N.; Sugita-Konishi, Y.; Asakura, H.; Tachihara, K.; Yasumoto, T. An Extensive Survey of Ciguatoxins on Grouper Variola louti from the Ryukyu Islands, Japan, Using Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS). J. Mar. Sci. Eng. 2022, 10, 423. [Google Scholar] [CrossRef]
- Oshiro, N.; Nagasawa, H.; Nishimura, M.; Kuniyoshi, K.; Kobayashi, N.; Sugita-Konishi, Y.; Ikehara, T.; Tachihara, K.; Yasumoto, T. Analytical Studies on Ciguateric Fish in Okinawa, Japan (II): The Grouper Variola albimarginata. J. Mar. Sci. Eng. 2023, 11, 242. [Google Scholar] [CrossRef]
- Gaboriau, M.; Ponton, D.; Darius, H.T.; Chinain, M. Ciguatera fish toxicity in French Polynesia: Size does not always matter. Toxicon 2014, 84, 41–50. [Google Scholar] [CrossRef]
- Jones, C.M. Development and application of the otolith increment technique. In Otolith Microstructure Examination and Analysis; Canadian Special Publication of Fisheries and Aquatic Sciences Virginia (USA): Norfolk, VA, USA, 1992; Volume 117, pp. 1–11. [Google Scholar]
- Campana, S.E. Measurement and interpretation of the microstructure of fish otoliths. Can. Spec. Publ. Fish. Aquat. Sci. 1992, 117, 59–71. [Google Scholar]
- Berdalet, E.; Tester, P.A.; Chinain, M.; Fraga, S.; Lemée, R.; Litaker, W.; Penna, A.; Usup, G.; Vila, M.; Zingone, A. Harmful algal blooms in benthic systems: Recent progress and future research. Oceanography 2017, 30, 36–45. [Google Scholar] [CrossRef]
- Biessy, L.; Wood, S.A.; Chinain, M.; Roué, M.; Smith, K.F. Exploring benthic cyanobacterial diversity and co-occurring potentially harmful dinoflagellates in six islands of the South Pacific. Hydrobiologia 2021, 848, 2815–2829. [Google Scholar] [CrossRef]
- Nézan, E.; Chomerat, N. Vulcanodinium rugosum gen. nov., sp. nov. (Dinophyceae): A new marine dinoflagellate from the French Mediterranean coast. Cryptogam. Algol. 2011, 32, 3–18. [Google Scholar] [CrossRef]
- Smith, K.F.; Rhodes, L.L.; Suda, S.; Selwood, A.I. A dinoflagellate producer of pinnatoxin G, isolated from sub-tropical Japanese waters. Harmful Algae 2011, 10, 702–705. [Google Scholar] [CrossRef]
- Hess, P.; Abadie, E.; Hervé, F.; Berteaux, T.; Séchet, V.; Aráoz, R.; Molgó, J.; Zakarian, A.; Sibat, M.; Rundberget, T. Pinnatoxin G is responsible for atypical toxicity in mussels (Mytilus galloprovincialis) and clams (Venerupis decussata) from Ingril, a French Mediterranean lagoon. Toxicon 2013, 75, 16–26. [Google Scholar] [CrossRef]
- Ramos, V.; Vasconcelos, V. Palytoxin and analogs: Biological and ecological effects. Mar. Drugs 2010, 8, 2021–2037. [Google Scholar] [CrossRef] [PubMed]
- McCarron, P.; Rourke, W.; Hardstaff, W.; Pooley, B.; Quilliam, M. Identification of Pinnatoxins and Discovery of Their Fatty Acid Ester Metabolites in Mussels (Mytilus edulis) from Eastern Canada. J. Agric. Food Chem. 2012, 60, 1437–1446. [Google Scholar] [CrossRef]
- Murakami, Y.; Oshima, Y.; Yasumoto, T. Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. Bull. Jap. Soc. Sci. Fish. 1982, 48, 69–72. [Google Scholar] [CrossRef]
- Pan, Y.; Cembella, A.D.; Quilliam, M.A. Cell cycle and toxin production in the benthic dinoflagellate Prorocentrum lima. Mar. Biol. 1999, 134, 541–549. [Google Scholar] [CrossRef]
- Nishimura, T.; Uchida, H.; Noguchi, R.; Oikawa, H.; Suzuki, T.; Funaki, H.; Ihara, C.; Hagino, K.; Arimitsu, S.; Tanii, Y.; et al. Abundance of the benthic dinoflagellate Prorocentrum and the diversity, distribution, and diarrhetic shellfish toxin production of Prorocentrum lima complex and P. caipirignum in Japan. Harmful Algae 2020, 96, 101687. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Kumar, V.; Tyagi, S.; Kumar, K.; Parmar, R.S. Heavy metal-induced pollution in the environment through waste disposal. Int. J. Res. Pub. Rev. 2023, 4, 1205–1210. [Google Scholar]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Smith, K.F.; Rhodes, L.L.; Curley, B.G.; Verma, A.; Kohli, G.S.; Harwood, D.T.; Murray, J.S.; Viallon, J.; Darius, H.T.; Chinain, M.; et al. Risk of ciguatoxins is shaped by Gambierdiscus community structure in a tropical lagoon ecosystem. Sci. Total Environ. 2025. submitted. [Google Scholar]
- Rhodes, L.; Smith, K.F.; Verma, A.; Curley, B.G.; Harwood, D.T.; Murray, J.S.; Kohli, G.S.; Solomona, D.; Rongo, T.; Munday, R.; et al. A new species of Gambierdiscus (Dinophyceae) from the south-west Pacific: Gambierdiscus honu sp nov. Harmful Algae 2017, 65, 61–70. [Google Scholar] [CrossRef]
- Murray, J.S.; Finch, S.C.; Mudge, E.M.; Wilkins, A.L.; Puddick, J.; Harwood, D.T.; Rhodes, L.L.; van Ginkel, R.; Rise, F.; Prinsep, M.R. Structural characterization of maitotoxins produced by toxic Gambierdiscus species. Mar. Drugs 2022, 20, 453. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Yasumoto, T.; Kamiya, H.; Yoshida, T. Occurrence of ciguatoxin and ciguaterin in ciguatoxic fishes in the Ryukyu and Amami islands. Nippon Suisan Gakkaishi 1969, 35, 327–332. [Google Scholar] [CrossRef]
- Lewis, R.J.; Sellin, M.; Poli, M.A.; Norton, R.S.; MacLeod, J.K.; Sheil, M.M. Purification and characterization of ciguatoxins from moray eel (Lycodontis javanicus, Muraenidae). Toxicon 1991, 29, 1115–1127. [Google Scholar] [CrossRef]
- Murata, M.; Legrand, A.M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. Structures and configurations of ciguatoxin from the moray eel Gymnothorax javanicus and its likely precursor from the dinoflagellate Gambierdiscus toxicus. J. Am. Chem. Soc. 1990, 112, 4380–4386. [Google Scholar] [CrossRef]
- Murray, J.S.; Boundy, M.J.; Selwood, A.I.; Harwood, D.T. Development of an LC–MS/MS method to simultaneously monitor maitotoxins and selected ciguatoxins in algal cultures and P-CTX-1B in fish. Harmful Algae 2018, 80, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Yogi, K.; Oshiro, N.; Inafuku, Y.; Hirama, M.; Yasumoto, T. Detailed LC-MS/MS analysis of ciguatoxins revealing distinct regional and species characteristics in fish and causative alga from the Pacific. Anal. Chem. 2011, 83, 8886–8891. [Google Scholar] [CrossRef]
- Oshiro, N.; Yogi, K.; Asato, S.; Sasaki, T.; Tamanaha, K.; Hirama, M.; Yasumoto, T.; Inafuku, Y. Ciguatera incidence and fish toxicity in Okinawa, Japan. Toxicon 2010, 56, 656–661. [Google Scholar] [CrossRef]
- Graynoth, E. Improved otolith preparation, ageing and back-calculation techniques for New Zealand freshwater eels. Fish. Res. 1999, 42, 137–146. [Google Scholar] [CrossRef]
- Pease, B.C.; Reynolds, D.P.; Walsh, C.T. Validation of otolith age determination in Australian longfinned river eels, Anguilla reinhardtii. Mar. Freshw. Res. 2003, 54, 995–1004. [Google Scholar] [CrossRef]
- Durif, C.M.F.; Diserud, O.H.; Sandlund, O.T.; Thorstad, E.B.; Poole, R.; Bergesen, K.; Escobar-Lux, R.H.; Shema, S.; Vollestad, L.A. Age of European silver eels during a period of declining abundance in Norway. Ecol. Evol. 2020, 10, 4801–4815. [Google Scholar] [CrossRef]
- Lieske, E.; Myers, R. Coral Reef Fishes: Indo-Pacific and Caribbean; HarperCollins: New York, NY, USA, 2001. [Google Scholar]
- Chen, H.-M.; Shao, K.-T.; Chen, C.-T. A review of the muraenid eels (Family Muraenidae) from Taiwan with descriptions of twelve new records. Zool. Stud. 1994, 33, 44–64. [Google Scholar]
- Zealand, F.S.A.N. Chemicals in Food—Arsenic. Available online: https://www.foodstandards.govt.nz/consumer/chemicals/arsenic (accessed on 20 January 2024).
- Sisma-Ventura, G.; Silverman, J.; Segal, Y.; Hauzer, H.; Abu Khadra, M.; Stern, N.; Guy-Haim, T.; Herut, B. Exceptionally high levels of total mercury in deep-sea sharks of the Southeastern Mediterranean sea over the last~40 years. Environ. Int. 2024, 187, 108661. [Google Scholar] [CrossRef]
- Longman, J.; Palmer, M.R.; Gernon, T.M.; Manners, H.R.; Jones, M.T. Subaerial volcanism is a potentially major contributor to oceanic iron and manganese cycles. Commun. Earth Environ. 2022, 3, 60. [Google Scholar] [CrossRef]
- Linhares, D.; Rodrigues, A.; Garcia, P. Trace Elements in Volcanic Environments and Human Health Effects. In Trace Metals in the Environment—New Approaches and Recent Advances; Murillo-Tovar, M.A., Saldarriaga Noreña, H.A., Saeid, A., Eds.; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef]
- Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1847–1857. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2003, 1, 1–2.3. 22. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef]
- Selwood, A.I.; van Ginkel, R.; Harwood, D.T.; McNabb, P.S.; Rhodes, L.R.; Holland, P.T. A sensitive assay for palytoxins, ovatoxins and ostreocins using LC-MS/MS analysis of cleavage fragments from micro-scale oxidation. Toxicon 2012, 60, 810–820. [Google Scholar] [CrossRef]
- McNabb, P.; Selwood, A.I.; Holland, P.T. Multiresidue method for determination of algal toxins in shellfish: Single-laboratory validation and interlaboratory study. J. AOAC Int. 2005, 88, 761–772. [Google Scholar] [CrossRef]
- Mountfort, D.O.; Suzuki, T.; Truman, P. Protein phosphatase inhibition assay adapted for determination of total DSP in contaminated mussels. Toxicon 2001, 39, 383–390. [Google Scholar] [CrossRef]
- Murray, J.S.; Finch, S.C.; Puddick, J.; Rhodes, L.L.; Harwood, D.T.; van Ginkel, R.; Prinsep, M.R. Acute toxicity of gambierone and quantitative analysis of gambierones produced by cohabitating benthic dinoflagellates. Toxins 2021, 13, 333. [Google Scholar] [CrossRef]
- Moore, R.E.; Scheuer, P.J. Palytoxin: A new marine toxin from a coelenterate. Science 1971, 172, 495–498. [Google Scholar] [CrossRef]
- Tartaglione, L.; Dello Iacovo, E.; Mazzeo, A.; Casabianca, S.; Ciminiello, P.; Penna, A.; Dell’Aversano, C. Variability in toxin profiles of the Mediterranean Ostreopsis cf. ovata and in structural features of the produced ovatoxins. Environ. Sci. Technol. 2017, 51, 13920–13928. [Google Scholar] [CrossRef]
- Ciminiello, P.; Dell’Aversano, C.; Iacovo, E.D.; Fattorusso, E.; Forino, M.; Tartaglione, L. LC-MS of palytoxin and its analogues: State of the art and future perspectives. Toxicon 2011, 57, 376–389. [Google Scholar] [CrossRef]
Giant Moray Eel | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTX Analog | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |||||||
F | L | F | L | F | L | F | L | F | L | F | L | F | L | |
CTX1B | 0.04 | 1.9 | 0.07 | 3.1 | D | 2.4 | D | 2.1 | D | 1.5 | D | 0.50 | 0.04 | 3.9 |
52-epi-54-deoxy CTX1B | D | 0.50 | D | 0.36 | D | 0.43 | D | 0.35 | D | 0.28 | – | 0.08 | D | 0.39 |
54-deoxyCTX1B | – | 0.29 | D | 0.30 | D | 0.29 | D | 0.18 | – | 0.19 | – | 0.07 | D | 0.28 |
CTX4A | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
CTX4B | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
M-seco-CTX4A/B | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
51-OH-CTX3C | – | D | – | 0.25 | – | 0.32 | – | 0.20 | – | 0.17 | – | – | – | 0.07 |
2,3-diOH-CTX3B | 0.19 | 31 | 0.34 | 54 | 0.12 | 20 | 0.05 | 16 | D | 14 | D | 6.0 | 0.15 | 28 |
2,3-diOH-CTX3C | 0.14 | 34 | 0.22 | 55 | 0.06 | 18 | D | 18 | D | 12 | D | 8.4 | 0.04 | 29 |
CTX3B | 0.13 | 1.4 | 0.53 | 3.2 | 0.15 | 2.59 | 0.12 | 2.7 | 0.11 | 2.3 | 0.04 | 0.38 | 0.27 | 2.6 |
CTX3C | 0.05 | 0.71 | 0.24 | 1.6 | 0.07 | 1.31 | 0.05 | 1.3 | 0.04 | 0.95 | D | 0.16 | 0.13 | 0.88 |
M-seco-CTX3B/C | D | 0.13 | D | 0.21 | D | 0.23 | – | 0.24 | D | 0.16 | – | 0.03 | D | 0.25 |
Total CTXs a | 0.58 | 70 | 1.5 | 118 | 0.44 | 46 | 0.27 | 41 | 0.22 | 32 | 0.10 | 16 | 0.65 | 66 |
GME age (years) | NC | 39 | 26 | NC | NC | NC | 23 |
Giant Moray Eel | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTX Analog | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |||||||
F | L | F | L | F | L | F | L | F | L | F | L | F | L | |
M-seco-CTX3B/C methyl acetate | D | D | D | D | D | D | D | D | D | D | D | D | – | D |
2-OH-CTX3C | – | D | – | – | – | D | – | D | – | – | – | D | – | D |
51-OH-2-oxo-CTX3C | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
A-seco-51-OH-CTX3C | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
2,3,51-triOH-CTX3C | – | D | – | D | – | D | – | D | – | D | – | D | – | D |
7-oxo-CTX1B | – | D | – | D | – | D | – | D | – | D | – | D | – | D |
7-OH-CTX1B | – | D | – | D | – | D | – | D | – | D | – | D | – | D |
4-OH-7-oxo-CTX1B | – | D | – | D | – | D | – | D | – | D | – | D | – | D |
Recovery (%) | ||||||
---|---|---|---|---|---|---|
Matrix | GME | CTX1B | CTX3B | CTX3C | CTX4A | |
Full fortification | Solvent | – | 88 | 87 | 90 | 87 |
Flesh | 1 | 68 | 24 | 26 | 24 | |
4 | 54 | 19 | 24 | 28 | ||
Liver | 2 | 69 | 47 | 39 | 9 | |
Post SPE fortification | Flesh | 1 | 95 | 74 | 78 | 86 |
5 | 90 | 88 | 89 | 86 | ||
7 | 87 | 93 | 95 | 97 | ||
Liver | 6 | 44 | 94 | 79 | 91 |
Element a | Giant Moray Eel | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Arsenic | 2.5 | 1.6 | 1.9 | 2.9 | 4.9 | 3.3 | 2.0 |
Barium | 0.14 | 0.045 | 0.04 | 0.036 | 0.037 | 0.019 | 0.014 |
Caesium | 0.037 | 0.026 | 0.025 | 0.027 | 0.029 | 0.024 | 0.026 |
Calcium | 2000 | 800 | 1400 | 1600 | 1700 | 1600 | 680 |
Chromium | 1 | 0.84 | 0.44 | 0.36 | 0.22 | 0.31 | 0.22 |
Copper | 0.79 | 0.42 | 0.56 | 0.61 | 0.37 | 0.4 | 0.37 |
Iron | 7.6 | 7.4 | 4.2 | 3.7 | 2.6 | 2.9 | 3.4 |
Lithium | 0.028 | 0.015 | 0.024 | 0.023 | 0.025 | 0.023 | 0.013 |
Magnesium | 260 | 230 | 210 | 240 | 250 | 240 | 220 |
Manganese | 0.12 | 0.093 | 0.073 | 0.035 | 0.095 | 0.035 | 0.057 |
Mercury | 0.036 | 0.082 | 0.082 | 0.046 | 0.073 | 0.066 | 0.12 |
Molybdenum | 0.030 | 0.024 | 0.012 | – | – | – | – |
Nickel | 0.036 | 0.033 | – | – | – | 0.026 | 0.023 |
Phosphorus | 2900 | 2100 | 2200 | 2500 | 2600 | 2500 | 2000 |
Potassium | 4400 | 3900 | 3600 | 4000 | 4000 | 3900 | 3900 |
Rubidium | 0.78 | 0.67 | 0.66 | 0.76 | 0.75 | 0.69 | 0.64 |
Selenium | 0.5 | 0.44 | 0.54 | 0.44 | 0.52 | 0.5 | 0.52 |
Sodium | 730 | 750 | 640 | 770 | 780 | 800 | 630 |
Strontium | 8.9 | 3.5 | 6.3 | 7 | 7.9 | 7.1 | 3 |
Sulphur | 2500 | 2200 | 1700 | 2300 | 2100 | 2200 | 1900 |
Zinc | 21 | 18 | 15 | 19 | 18 | 18 | 16 |
Proximate | Giant Moray Eel | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Fat | 2.4 | 5.8 | 6.6 | 1.8 | 3.1 | 2.6 | 4.6 |
Protein | 20.4 | 18.9 | 18.1 | 19.8 | 19.9 | 19.6 | 19.3 |
Moisture | 76.7 | 75.6 | 74.5 | 77.3 | 75.7 | 77.5 | 75.0 |
Ash | 1.5 | 1.2 | 1.7 | 1.3 | 1.1 | 1.5 | 1.3 |
Carbohydrate | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Giant Moray Eel | |||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Total length (cm) | 123 | 165 | 155 | 120 | 130 | 136 | 152 |
Width at widest point (cm) | 14 | 24 | 23 | 13 | 19 | 14 | 22 |
Width at anus (cm) | 12 | 18 | 19 | 11 | 14 | 13 | 19 |
Flesh weight (g) | 2068 | 5330 | 4630 | 1912 | 3112 | 2441 | 5234 |
Liver length (cm) | 24.5 | 35.5 | 34 | 24 | 27.5 | 26.5 | 33.5 |
Liver weight (g) | 37 | 144 | 143 | 33 | 99 | 56 | 120 |
Sex (tentative assignment) | m | f | f | m | m | m | f |
Age (years) | – | 39 | 26 | – | – | – | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passfield, E.M.F.; Smith, K.F.; Harwood, D.T.; Fitzgerald, J.D.; Argyle, P.A.; Thomson-Laing, J.; Murray, J.S. Giant Moray Eel (Gymnothorax javanicus), a Long-Living Apex Predator That Poses a Food Safety Risk in the Pacific. Mar. Drugs 2025, 23, 341. https://doi.org/10.3390/md23090341
Passfield EMF, Smith KF, Harwood DT, Fitzgerald JD, Argyle PA, Thomson-Laing J, Murray JS. Giant Moray Eel (Gymnothorax javanicus), a Long-Living Apex Predator That Poses a Food Safety Risk in the Pacific. Marine Drugs. 2025; 23(9):341. https://doi.org/10.3390/md23090341
Chicago/Turabian StylePassfield, Emillie M. F., Kirsty F. Smith, D. Tim Harwood, Joshua D. Fitzgerald, Phoebe A. Argyle, Jacob Thomson-Laing, and J. Sam Murray. 2025. "Giant Moray Eel (Gymnothorax javanicus), a Long-Living Apex Predator That Poses a Food Safety Risk in the Pacific" Marine Drugs 23, no. 9: 341. https://doi.org/10.3390/md23090341
APA StylePassfield, E. M. F., Smith, K. F., Harwood, D. T., Fitzgerald, J. D., Argyle, P. A., Thomson-Laing, J., & Murray, J. S. (2025). Giant Moray Eel (Gymnothorax javanicus), a Long-Living Apex Predator That Poses a Food Safety Risk in the Pacific. Marine Drugs, 23(9), 341. https://doi.org/10.3390/md23090341