Marine-Derived Polymers–Polysaccharides as Promising Natural Therapeutics for Atherosclerotic Cardiovascular Disease
Abstract
1. Introduction
2. Marine Polysaccharides: Natural Sugar-Based Bioactives
2.1. Definition and Classification of Marine-Derived Polysaccharides
2.2. Sources of Marine Polysaccharides
3. Anti-Atherosclerotic Mechanisms of Action
3.1. Anti-Inflammatory Effects
3.2. Antioxidant Properties
3.3. Lipid-Lowering Potential
3.4. Antithrombotic and Anticoagulant Activity
3.5. Endothelial Function Restoration
3.6. Supporting Evidence from Preclinical Studies
4. Translational Barriers and Scientific Challenges
4.1. Limited Clinical Data
Polysaccharide Type | Study | Design | Participants and Condition | Duration and Dose | Key Findings | Trial ID |
---|---|---|---|---|---|---|
Carrageenan (Red Algae) | [93] | Randomized Crossover Trial | 20 healthy adults | 8 weeks, ~40 g dietary fiber/day | ↓ Total cholesterol (33%), ↓ triglycerides (32%), ↑ HDL (32%); no change in LDL | Not specified |
Fucoidan (Brown Algae) | [95] | Double-blind RCT | 72 obese, nondiabetic adults | 90 days, 500 mg twice/day | ↑ HDL (small, significant); no changes in HOMA or most markers; safe profile | ACTRN12614000495628 |
Polyphenol-rich Fucus vesiculosus Extract (Brown Algae, contains Fucoidan) | [66] | Double-blind RCT | 58 overweight/obese with high LDL-C (>2.0 mmol/L) | 12 weeks, 2000 mg/day (1200 mg fucoidan, 600 mg polyphenols) | Primary: LDL-C reduction (hypothesized); Secondary: lipids, glucose, insulin, inflammation, cognition | ACTRN12617001039370 |
SXRG84 (Ulvan) (Green Algae, Ulva sp.) | [96] | Double-blind RCT | 64 overweight/obese adults (median BMI 29) | 6 weeks, 2 g or 4 g/day | 2 g: ↓ non-HDL (-10%), ↓ atherogenic index (-50%), trend in ↓ 2 h insulin; 4 g: ↓ CRP (-27%), ↑ beneficial gut flora | ACTRN12615001057572 |
SXRG84 (Ulvan) (Green Algae, Ulva sp.) | [96] | Double-blind Crossover RCT | 64 overweight adults | 6 weeks each (2 g/day SXRG84 and placebo) | No lipid differences; ↓ inflammatory cytokines: IFN-γ, IL-1β, TNF-α, IL-10; no gut flora shift | ACTRN12617001010381 |
Chitosan Oligosaccharides (Crustaceans) | [94] | Parallel-Group Clinical Study | 120 CHD patients (60 per group) | 6 months, 2 g/day | ↑ LVEF, QOL; ↓ TG, TC, LDL-c; ↑ HDL-c; ↑ antioxidant markers (SOD, GSH); ↓ ALT, AST | Not specified |
Palmaria palmata (Red Algae) | [97] | Double-blind Parallel RCT | 104 Japanese with LDL-C ≥120 mg/dL | 8 weeks, 2 g/day | No change in LDL-C, BMI, glucose; in women: ↓ TG and ↓ TG/HDL-C ratio (significant) | Not specified |
4.2. Bioavailability, Stability, and Pharmacokinetics
4.3. Variability in Structure–Function Relationships
4.4. Safety Concerns
5. Future Perspectives and Strategic Opportunities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nedkoff, L.; Briffa, T.; Zemedikun, D.; Herrington, S.; Wright, F.L. Global Trends in Atherosclerotic Cardiovascular Disease. Clin. Ther. 2023, 45, 1087–1091. [Google Scholar] [CrossRef]
- Borovac, J.A. The Molecular Mechanisms and Therapeutic Targets of Atherosclerosis: From Basic Research to Interventional Cardiology. Int. J. Mol. Sci. 2024, 25, 4936. [Google Scholar] [CrossRef]
- Salekeen, R.; Haider, A.N.; Akhter, F.; Billah, M.M.; Islam, M.E.; Didarul Islam, K.M. Lipid Oxidation in Pathophysiology of Atherosclerosis: Current Understanding and Therapeutic Strategies. Int. J. Cardiol. Cardiovasc. Risk Prev. 2022, 14, 200143. [Google Scholar] [CrossRef]
- Patel, P.N.; Giugliano, R.P. Low-Density Lipoprotein Cholesterol Lowering Therapy for the Secondary Prevention of Atherosclerotic Cardiovascular Disease. Glob. Cardiol. Sci. Pract. 2020, 2020, e202039. [Google Scholar] [CrossRef]
- Ruscica, M.; Ferri, N.; Banach, M.; Sirtori, C.R.; Corsini, A. Side Effects of Statins: From Pathophysiology and Epidemiology to Diagnostic and Therapeutic Implications. Cardiovasc. Res. 2023, 118, 3288–3304. [Google Scholar] [CrossRef]
- Makhoba, X.H.; Viegas, C., Jr.; Mosa, R.A.; Viegas, F.P.D.; Pooe, O.J. Potential Impact of the Multi-Target Drug Approach in the Treatment of Some Complex Diseases. Drug Des. Devel. Ther. 2020, 14, 3235–3249. [Google Scholar] [CrossRef] [PubMed]
- Doostmohammadi, A.; Jooya, H.; Ghorbanian, K.; Gohari, S.; Dadashpour, M. Potentials and Future Perspectives of Multi-Target Drugs in Cancer Treatment: The next Generation Anti-Cancer Agents. Cell Commun. Signal. 2024, 22, 228. [Google Scholar] [CrossRef] [PubMed]
- Carrasqueira, J.; Bernardino, S.; Bernardino, R.; Afonso, C. Marine-Derived Polysaccharides and Their Potential Health Benefits in Nutraceutical Applications. Mar. Drugs 2025, 23, 60. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.P.; Le, V.; Sligar, A.D.; Mei, L.; Chavarria, D.; Yang, E.Y.; Baker, A.B. Algal Polysaccharides as Therapeutic Agents for Atherosclerosis. Front. Cardiovasc. Med. 2018, 5, 153. [Google Scholar] [CrossRef]
- Abdelfattah, O.M.; Sayed, A.; Al-Refaei, A.; Abdeldayem, J.; Moustafa, K.; Elias, N.; Saleh, Y. Recent Trials on the Cardioprotective Effects of New Generation Anti-Diabetic and Lipid-Lowering Agents. In Frontiers in Clinical Drug Research-Diabetes and Obesity; Bentham Science Publishers: Singapore, 2023; Volume 7, pp. 117–167. ISBN 9789815123586. [Google Scholar]
- de Jesus Raposo, M.F.; de Morais, A.M.B.; de Morais, R.M.S.C. Marine Polysaccharides from Algae with Potential Biomedical Applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef]
- Dongre, R.S. Marine Polysaccharides in Pharmaceutical Uses. In Polysaccharides of Microbial Origin; Springer International Publishing: Cham, Switzerland, 2022; pp. 745–779. [Google Scholar]
- Ghosh, T.; Singh, R.; Nesamma, A.A.; Jutur, P.P. Marine Polysaccharides: Properties and Applications. Polysaccharides 2021, 37–60. [Google Scholar] [CrossRef]
- Martins, B.; Vieira, M.; Delerue-Matos, C.; Grosso, C.; Soares, C. Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar. Drugs 2022, 20, 362. [Google Scholar] [CrossRef] [PubMed]
- Jiao, G.; Yu, G.; Zhang, J.; Ewart, H.S. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae. Mar. Drugs 2011, 9, 196–223. [Google Scholar] [CrossRef] [PubMed]
- Ruocco, N.; Costantini, S.; Guariniello, S.; Costantini, M. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential. Molecules 2016, 21, 551. [Google Scholar] [CrossRef]
- Tran, K.T.M.; Vo, T.; Duan, W.; Tran, P.; Tran, T. Perspectives of Engineered Marine Derived Polymers for Biomedical Nanoparticles. Curr. Pharm. Des. 2016, 22, 2844–2856. [Google Scholar] [CrossRef] [PubMed]
- de Jesus Raposo, M.F.; de Morais, A.M.M.B.; de Morais, R.M.S.C. Bioactivity and Applications of Polysaccharides from Marine Microalgae. In Polysaccharides; Springer International Publishing: Cham, Switzerland, 2015; pp. 1683–1727. ISBN 9783319162973. [Google Scholar]
- Suleria, H.A.R.; Gobe, G.; Masci, P.; Osborne, S.A. Marine Bioactive Compounds and Health Promoting Perspectives; Innovation Pathways for Drug Discovery. Trends Food Sci. Technol. 2016, 50, 44–55. [Google Scholar] [CrossRef]
- Zhong, Q.; Wei, B.; Wang, S.; Ke, S.; Chen, J.; Zhang, H.; Wang, H. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Mar. Drugs 2019, 17, 674. [Google Scholar] [CrossRef]
- Otero, P.; Carpena, M.; Garcia-Oliveira, P.; Echave, J.; Soria-Lopez, A.; Garcia-Perez, P.; Fraga-Corral, M.; Cao, H.; Nie, S.; Xiao, J.; et al. Seaweed Polysaccharides: Emerging Extraction Technologies, Chemical Modifications and Bioactive Properties. Crit. Rev. Food Sci. Nutr. 2023, 63, 1901–1929. [Google Scholar] [CrossRef]
- Mensah, E.O.; Kanwugu, O.N.; Panda, P.K.; Adadi, P. Marine Fucoidans: Structural, Extraction, Biological Activities and Their Applications in the Food Industry. Food Hydrocoll. 2023, 142, 108784. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, L.; You, Y.; Sun, X.; Wen, C.; Fu, Y.; Song, S. Preparation of Low-Molecular-Weight Fucoidan with Anticoagulant Activity by Photocatalytic Degradation Method. Foods 2022, 11, 822. [Google Scholar] [CrossRef]
- Chandika, P.; Tennakoon, P.; Kim, T.-H.; Kim, S.-C.; Je, J.-Y.; Kim, J.-I.; Lee, B.; Ryu, B.; Kang, H.W.; Kim, H.-W.; et al. Marine Biological Macromolecules and Chemically Modified Macromolecules; Potential Anticoagulants. Mar. Drugs 2022, 20, 654. [Google Scholar] [CrossRef]
- Premarathna, A.D.; Ahmed, T.A.E.; Rjabovs, V.; Hammami, R.; Critchley, A.T.; Tuvikene, R.; Hincke, M.T. Immunomodulation by Xylan and Carrageenan-Type Polysaccharides from Red Seaweeds: Anti-Inflammatory, Wound Healing, Cytoprotective, and Anticoagulant Activities. Int. J. Biol. Macromol. 2024, 260, 129433. [Google Scholar] [CrossRef]
- Laurienzo, P. Marine Polysaccharides in Pharmaceutical Applications: An Overview. Mar. Drugs 2010, 8, 2435–2465. [Google Scholar] [CrossRef]
- Tako, M.; Tamanaha, M.; Tamashiro, Y.; Uechi, S. Structure of Ulvan Isolated from the Edible Green Seaweed, Ulva Pertusa. Adv. Biosci. Biotechnol. 2015, 6, 645–655. [Google Scholar] [CrossRef]
- Rupert, R.; Rodrigues, K.F.; Thien, V.Y.; Yong, W.T.L. Carrageenan from Kappaphycus Alvarezii (Rhodophyta, Solieriaceae): Metabolism, Structure, Production, and Application. Front. Plant Sci. 2022, 13, 859635. [Google Scholar] [CrossRef]
- Zaporozhets, T.; Besednova, N. Prospects for the Therapeutic Application of Sulfated Polysaccharides of Brown Algae in Diseases of the Cardiovascular System: Review. Pharm. Biol. 2016, 54, 3126–3135. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhou, M.; Li, Y.; Li, Y.; Ji, H.; Hu, Q. Cardiovascular Protective Effects of Plant Polysaccharides: A Review. Front. Pharmacol. 2021, 12, 783641. [Google Scholar] [CrossRef]
- Wang, S.; Ni, L.; Fu, X.; Duan, D.; Xu, J.; Gao, X. A Sulfated Polysaccharide from Saccharina Japonica Suppresses LPS-Induced Inflammation Both in a Macrophage Cell Model via Blocking MAPK/NF-ΚB Signal Pathways in Vitro and a Zebrafish Model of Embryos and Larvae in Vivo. Mar. Drugs 2020, 18, 593. [Google Scholar] [CrossRef] [PubMed]
- Kraiem, M.; Ben Hamouda, S.; Eleroui, M.; Ajala, M.; Feki, A.; Dghim, A.; Boujhoud, Z.; Bouhamed, M.; Badraoui, R.; Pujo, J.M.; et al. Anti-Inflammatory and Immunomodulatory Properties of a Crude Polysaccharide Derived from Green Seaweed Halimeda Tuna: Computational and Experimental Evidences. Mar. Drugs 2024, 22, 85. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, E.; Lukova, P.; Baldzhieva, A.; Katsarov, P.; Nikolova, M.; Iliev, I.; Peychev, L.; Trica, B.; Oancea, F.; Delattre, C.; et al. Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers 2020, 12, 2338. [Google Scholar] [CrossRef]
- Jiang, C.-L.; Li, X.-Y.; Shen, W.-D.; Pan, L.-H.; Li, Q.-M.; Luo, J.-P.; Zha, X.-Q. Bioactive Polysaccharides and Their Potential Health Benefits in Reducing the Risks of Atherosclerosis: A Review. J. Food Biochem. 2022, 46, e14337. [Google Scholar] [CrossRef] [PubMed]
- Kirsten, N.; Ohmes, J.; Mikkelsen, M.D.; Nguyen, T.T.; Blümel, M.; Wang, F.; Tasdemir, D.; Seekamp, A.; Meyer, A.S.; Fuchs, S. Impact of Enzymatically Extracted High Molecular Weight Fucoidan on Lipopolysaccharide-Induced Endothelial Activation and Leukocyte Adhesion. Mar. Drugs 2023, 21, 339. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, Q.; Chen, L.; Ren, S.; Xu, P.; Tang, Y.; Luo, D. Higher Specificity of the Activity of Low Molecular Weight Fucoidan for Thrombin-Induced Platelet Aggregation. Thromb. Res. 2010, 125, 419–426. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, H.; Qiao, L.; Du, C.; Wei, Z.; Wang, T.; Wang, J.; Liu, R.; Wang, P. Intestinal Anti-Inflammatory Effects of Selenized Ulva Pertusa Polysaccharides in a Dextran Sulfate Sodium-Induced Inflammatory Bowel Disease Model. J. Med. Food 2021, 24, 236–247. [Google Scholar] [CrossRef]
- Kim, T.E.; Son, S.-U.; Shin, K.-S. Low-Molecular-Weight Ulvan Prepared from the Korean Seaweed Ulva Pertusa Enhances Immune Responses via Signaling Pathways, Short Chain Fatty Acids, and G-Protein Coupled Receptors. Int. J. Biol. Macromol. 2025, 318, 145143. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Nikiforov, N.G.; Starodubova, A.V.; Popkova, T.V.; Orekhov, A.N. Macrophages and Foam Cells: Brief Overview of Their Role, Linkage, and Targeting Potential in Atherosclerosis. Biomedicines 2021, 9, 1221. [Google Scholar] [CrossRef]
- Jegadeshwari, B.; Rajaram, R. A Critical Review on Pharmacological Properties of Sulfated Polysaccharides from Marine Macroalgae. Carbohydr. Polym. 2024, 344, 122488. [Google Scholar] [CrossRef]
- Besednova, N.N.; Zaporozhets, T.S.; Kuznetsova, T.A.; Makarenkova, I.D.; Kryzhanovsky, S.P.; Fedyanina, L.N.; Ermakova, S.P. Extracts and Marine Algae Polysaccharides in Therapy and Prevention of Inflammatory Diseases of the Intestine. Mar. Drugs 2020, 18, 289. [Google Scholar] [CrossRef]
- Cao, Q.; Zhao, J.; Xing, M.; Xiao, H.; Zhang, Q.; Liang, H.; Ji, A.; Song, S. Current Research Landscape of Marine-Derived Anti-Atherosclerotic Substances. Mar. Drugs 2020, 18, 440. [Google Scholar] [CrossRef]
- Zhong, L.; Simard, M.J.; Huot, J. Endothelial MicroRNAs Regulating the NF-κB Pathway and Cell Adhesion Molecules during Inflammation. FASEB J. 2018, 32, 4070–4084. [Google Scholar] [CrossRef]
- Karagodin, V.P.; Summerhill, V.I.; Yet, S.-F.; Orekhov, A.N. The Anti-Atherosclerotic Effects of Natural Polysaccharides: From Phenomena to the Main Mechanisms of Action. Curr. Pharm. Des. 2022, 28, 1823–1832. [Google Scholar] [CrossRef]
- Feng, Y.; Wassie, T.; Gan, R.; Wu, X. Structural Characteristics and Immunomodulatory Effects of Sulfated Polysaccharides Derived from Marine Algae. Crit. Rev. Food Sci. Nutr. 2023, 63, 7180–7196. [Google Scholar] [CrossRef]
- Xue, H.; Wang, W.; Bian, J.; Gao, Y.; Hao, Z.; Tan, J. Recent Advances in Medicinal and Edible Homologous Polysaccharides: Extraction, Purification, Structure, Modification, and Biological Activities. Int. J. Biol. Macromol. 2022, 222, 1110–1126. [Google Scholar] [CrossRef]
- Xue, H.; Li, P.; Bian, J.; Gao, Y.; Sang, Y.; Tan, J. Extraction, Purification, Structure, Modification, and Biological Activity of Traditional Chinese Medicine Polysaccharides: A Review. Front. Nutr. 2022, 9, 1005181. [Google Scholar] [CrossRef] [PubMed]
- Murugan, S.S.; Anil, S.; Venkatesan, J.; Seong, G.H. Antioxidant Properties of Marine-Derived Polysaccharides and Metal Nanoparticles. In Marine Antioxidants; Elsevier: Amsterdam, The Netherlands, 2023; pp. 489–494. ISBN 9780323950862. [Google Scholar]
- Vladkova, T.; Georgieva, N.; Staneva, A.; Gospodinova, D. Recent Progress in Antioxidant Active Substances from Marine Biota. Antioxidants 2022, 11, 439. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, H.; Zhu, B.; Yao, Z.; Ning, L. Polysaccharides and Oligosaccharides Originated from Green Algae: Structure, Extraction, Purification, Activity and Applications. Bioresour. Bioprocess. 2024, 11, 85. [Google Scholar] [CrossRef]
- Li, W.; Jiang, N.; Li, B.; Wan, M.; Chang, X.; Liu, H.; Zhang, L.; Yin, S.; Qi, H.; Liu, S. Antioxidant Activity of Purified Ulvan in Hyperlipidemic Mice. Int. J. Biol. Macromol. 2018, 113, 971–975. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Y.; Chen, B.; Xu, M.; Liu, S.; Su, Y.; Qiao, K.; Liu, Z. Advances in Research on Marine-Derived Lipid-Lowering Active Substances and Their Molecular Mechanisms. Nutrients 2023, 15, 5118. [Google Scholar] [CrossRef]
- Mayakrishnan, V.; Kannappan, P.; Abdullah, N.; Ahmed, A.B.A. Cardioprotective Activity of Polysaccharides Derived from Marine Algae: An Overview. Trends Food Sci. Technol. 2013, 30, 98–104. [Google Scholar] [CrossRef]
- Nagahawatta, D.P.; Liyanage, N.M.; Jayawardena, T.U.; Jeon, Y.-J. Marine Polyphenols in Cardiovascular Health: Unraveling Structure-Activity Relationships, Mechanisms, and Therapeutic Implications. Int. J. Mol. Sci. 2024, 25, 8419. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.A.R.; Coimbra, M.A. The Antioxidant Activity of Polysaccharides: A Structure-Function Relationship Overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef]
- Chen, N.; Jiang, T.; Xu, J.; Xi, W.; Shang, E.; Xiao, P.; Duan, J.-A. The Relationship between Polysaccharide Structure and Its Antioxidant Activity Needs to Be Systematically Elucidated. Int. J. Biol. Macromol. 2024, 270, 132391. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Pati, S.; Kari, Z.A.; Edinur, H.A.; Chakraborty, R. Novel Bioactive Compounds from Marine Sources as a Tool for Functional Food Development. Front. Mar. Sci. 2022, 9, 832957. [Google Scholar] [CrossRef]
- Yamagata, K. Prevention of Cardiovascular Disease through Modulation of Endothelial Cell Function by Dietary Seaweed Intake. Phytomed. Plus 2021, 1, 100026. [Google Scholar] [CrossRef]
- Liang, B.; Cai, X.-Y.; Gu, N. Marine Natural Products and Coronary Artery Disease. Front. Cardiovasc. Med. 2021, 8, 739932. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-H.; Chen, R.-Y.; Chiang, M.-T. Effects and Mechanisms of Chitosan and ChitosanOligosaccharide on Hepatic Lipogenesis and Lipid Peroxidation, Adipose Lipolysis, and Intestinal Lipid Absorption in Rats with High-Fat Diet-Induced Obesity. Int. J. Mol. Sci. 2021, 22, 1139. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ling, Z.; Wang, X.; Zong, S.; Yang, J.; Zhang, Q.; Zhang, J.; Li, X. The Beneficial Mechanism of Chitosan and Chitooligosaccharides in the Intestine on Different Health Status. J. Funct. Foods 2022, 97, 105232. [Google Scholar] [CrossRef]
- Xiang, X.; Jiang, Q.; Yang, H.; Zhou, X.; Chen, Y.; Chen, H.; Liu, S.; Chen, L. A Review on Shellfish Polysaccharides: Extraction, Characterization and Amelioration of Metabolic Syndrome. Front. Nutr. 2022, 9, 974860. [Google Scholar] [CrossRef]
- Kalita, P.; Ahmed, A.B.; Sen, S.; Chakraborty, R. A Comprehensive Review on Polysaccharides with Hypolipidemic Activity: Occurrence, Chemistry and Molecular Mechanism. Int. J. Biol. Macromol. 2022, 206, 681–698. [Google Scholar] [CrossRef]
- Chi, Y.; Wu, Z.; Du, C.; Zhang, M.; Wang, X.; Xie, A.; Wang, P.; Li, R. Regulatory Effects Mediated by Ulvan Oligosaccharide and Its Zinc Complex on Lipid Metabolism in High-Fat Diet-Fed Mice. Carbohydr. Polym. 2023, 300, 120249. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Liu, N.; Zhao, K.; Sheng, Y.; Pang, H.; Shao, K.; Zhang, M.; Li, S.; He, N. Algal Polysaccharides and Derivatives as Potential Therapeutics for Obesity and Related Metabolic Diseases. Food Funct. 2022, 13, 11387–11409. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Dordevic, A.L.; Ryan, L.; Bonham, M.P. An Emerging Trend in Functional Foods for the Prevention of Cardiovascular Disease and Diabetes: Marine Algal Polyphenols. Crit. Rev. Food Sci. Nutr. 2018, 58, 1342–1358. [Google Scholar] [CrossRef]
- Chatterjee, A.; Das, S.; Barman, S.; Barman, S. Cardiovascular Disease Management with Marine-Derived Compounds. In Advances in Medical Technologies and Clinical Practice; IGI Global: Hershey, PA, USA, 2024; pp. 339–368. ISBN 9798369358788. [Google Scholar]
- Adrien, A.; Bonnet, A.; Dufour, D.; Baudouin, S.; Maugard, T.; Bridiau, N. Anticoagulant Activity of Sulfated Ulvan Isolated from the Green Macroalga Ulva Rigida. Mar. Drugs 2019, 17, 291. [Google Scholar] [CrossRef]
- Wu, Y. Seaweed Fucoidan Targeting Platelet Glycoprotein Ibα: Hope from the Ocean. J. Thromb. Haemost. 2023, 21, 1100–1101. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Z.; Liu, Z.; Mu, G.; Cui, Y.; Xiang, Q. C-Type Lectin-like Receptor 2: Roles and Drug Target. Thromb. J. 2024, 22, 27. [Google Scholar] [CrossRef]
- Shen, C.; Mackeigan, D.T.; Shoara, A.A.; Xu, R.; Bhoria, P.; Karakas, D.; Ma, W.; Cerenzia, E.; Chen, Z.; Hoard, B.; et al. Dual Roles of Fucoidan-GPIbα Interaction in Thrombosis and Hemostasis: Implications for Drug Development Targeting GPIbα. J. Thromb. Haemost. 2023, 21, 1274–1288. [Google Scholar] [CrossRef]
- Zenych, A.; Jacqmarcq, C.; Aid, R.; Fournier, L.; Forero Ramirez, L.M.; Chaubet, F.; Bonnard, T.; Vivien, D.; Letourneur, D.; Chauvierre, C. Fucoidan-Functionalized Polysaccharide Submicroparticles Loaded with Alteplase for Efficient Targeted Thrombolytic Therapy. Biomaterials 2021, 277, 121102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, D.; Tan, P.; Xian, B.; Jiang, H.; Wu, Q.; Huang, X.; Zhang, P.; Xiao, X.; Pei, J. Mechanism of Platelet Activation and Potential Therapeutic Effects of Natural Drugs. Phytomedicine 2023, 108, 154463. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.-H.; Liao, T.-H.; Chen, Y.-H.; Hsu, Y.-L.; Kuo, C.-Y.; Chan, C.-C.; Wang, L.-K.; Chern, C.-Y.; Tsai, F.-M. Coumarin Derivatives Inhibit ADP-Induced Platelet Activation and Aggregation. Molecules 2022, 27, 4054. [Google Scholar] [CrossRef]
- Sun, X.; Yan, C.; Fu, Y.; Ai, C.; Bi, J.; Lin, W.; Song, S. Orally Administrated Fucoidan and Its Low-Molecular-Weight Derivatives Are Absorbed Differentially to Alleviate Coagulation and Thrombosis. Int. J. Biol. Macromol. 2024, 255, 128092. [Google Scholar] [CrossRef]
- Vilahur, G.; Fuster, V. Interplay between Platelets and Coagulation: From Protective Haemostasis to Pathological Arterial Thrombosis. Eur. Heart J. 2025, 46, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.I.; Costa Lima, S.A.; Reis, S. Application of PH-Responsive Fucoidan/Chitosan Nanoparticles to Improve Oral Quercetin Delivery. Molecules 2019, 24, 346. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, M.E.; Bigossi, G.; Lai, G.; Marcozzi, S.; Brunetti, D.; Malavolta, M. Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Mar. Drugs 2024, 22, 210. [Google Scholar] [CrossRef]
- Ryu, B.; Kim, Y.-S.; Jeon, Y.-J. Seaweeds and Their Natural Products for Preventing Cardiovascular Associated Dysfunction. Mar. Drugs 2021, 19, 507. [Google Scholar] [CrossRef]
- Cheong, K.-L.; Yu, B.; Chen, J.; Zhong, S. A Comprehensive Review of the Cardioprotective Effect of Marine Algae Polysaccharide on the Gut Microbiota. Foods 2022, 11, 3550. [Google Scholar] [CrossRef]
- Chen, A.; Lan, Y.; Liu, J.; Zhang, F.; Zhang, L.; Li, B.; Zhao, X. The Structure Property and Endothelial Protective Activity of Fucoidan from Laminaria Japonica. Int. J. Biol. Macromol. 2017, 105, 1421–1429. [Google Scholar] [CrossRef]
- Li, M.; van Esch, B.C.A.M.; Wagenaar, G.T.M.; Garssen, J.; Folkerts, G.; Henricks, P.A.J. Pro- and Anti-Inflammatory Effects of Short Chain Fatty Acids on Immune and Endothelial Cells. Eur. J. Pharmacol. 2018, 831, 52–59. [Google Scholar] [CrossRef]
- Ni, L.; Wang, L.; Fu, X.; Duan, D.; Jeon, Y.-J.; Xu, J.; Gao, X. In Vitro and in Vivo Anti-Inflammatory Activities of a Fucose-Rich Fucoidan Isolated from Saccharina Japonica. Int. J. Biol. Macromol. 2020, 156, 717–729. [Google Scholar] [CrossRef]
- Park, J.; Yeom, M.; Hahm, D.-H. Fucoidan Improves Serum Lipid Levels and Atherosclerosis through Hepatic SREBP-2-Mediated Regulation. J. Pharmacol. Sci. 2016, 131, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; Nomura, K.; Nagashima, M.; Kamimura, N. Fucoidan Alleviates High-Fat Diet-Induced Dyslipidemia and Atherosclerosis in ApoE(Shl) Mice Deficient in Apolipoprotein E Expression. J. Nutr. Biochem. 2016, 32, 46–54. [Google Scholar] [CrossRef]
- Nathan, J.; Ramachandran, A. Efficacy of Marine Biomolecules on Angiogenesis by Targeting Hypoxia Inducible Factor/Vascular Endothelial Growth Factor Signaling in Zebrafish Model. J. Biochem. Mol. Toxicol. 2022, 36, e22954. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Qu, Z.-J.; Wang, X.; Song, W.-G.; Guo, S.-D. Laminaria Japonica Aresch-Derived Fucoidan Ameliorates Hyperlipidemia by Upregulating LXRs and Suppressing SREBPs. Cardiovasc. Ther. 2024, 2024, 8649365. [Google Scholar] [CrossRef]
- Pengzhan, Y.; Ning, L.; Xiguang, L.; Gefei, Z.; Quanbin, Z.; Pengcheng, L. Antihyperlipidemic Effects of Different Molecular Weight Sulfated Polysaccharides from Ulva Pertusa (Chlorophyta). Pharmacol. Res. 2003, 48, 543–549. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Y.; Cai, W.; Wang, Q.; Chang, Y.; Sun, Y.; Dong, P.; Wang, J. Novel ι-Carrageenan Tetrasaccharide Alleviates Liver Lipid Accumulation via the Bile Acid-FXR-SHP/PXR Pathway to Regulate Cholesterol Conversion and Fatty Acid Metabolism in Insulin-Resistant Mice. J. Agric. Food Chem. 2021, 69, 9813–9821. [Google Scholar] [CrossRef]
- Lamminpää, I.; Amedei, A.; Parolini, C. Effects of Marine-Derived Components on Cardiovascular Disease Risk Factors and Gut Microbiota Diversity. Mar. Drugs 2024, 22, 523. [Google Scholar] [CrossRef]
- Pi, Y.; Fang, M.; Li, Y.; Cai, L.; Han, R.; Sun, W.; Jiang, X.; Chen, L.; Du, J.; Zhu, Z.; et al. Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review. Nutrients 2024, 16, 2838. [Google Scholar] [CrossRef]
- Fakhri, S.; Yarmohammadi, A.; Yarmohammadi, M.; Farzaei, M.H.; Echeverria, J. Marine Natural Products: Promising Candidates in the Modulation of Gut-Brain Axis towards Neuroprotection. Mar. Drugs 2021, 19, 165. [Google Scholar] [CrossRef]
- Panlasigui, L.N.; Baello, O.Q.; Dimatangal, J.M.; Dumelod, B.D. Blood Cholesterol and Lipid-Lowering Effects of Carrageenan on Human Volunteers. Asia Pac. J. Clin. Nutr. 2003, 12, 209–214. [Google Scholar]
- Jiang, T.; Xing, X.; Zhang, L.; Liu, Z.; Zhao, J.; Liu, X. Chitosan Oligosaccharides Show Protective Effects in Coronary Heart Disease by Improving Antioxidant Capacity via the Increase in Intestinal Probiotics. Oxid. Med. Cell. Longev. 2019, 2019, 7658052. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.M.; Bezabhe, W.; Fitton, J.H.; Stringer, D.N.; Bereznicki, L.R.E.; Peterson, G.M. Effect of a Fucoidan Extract on Insulin Resistance and Cardiometabolic Markers in Obese, Nondiabetic Subjects: A Randomized, Controlled Trial. J. Altern. Complement. Med. 2019, 25, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Roach, L.A.; Meyer, B.J.; Fitton, J.H.; Winberg, P. Improved Plasma Lipids, Anti-Inflammatory Activity, and Microbiome Shifts in Overweight Participants: Two Clinical Studies on Oral Supplementation with Algal Sulfated Polysaccharide. Mar. Drugs 2022, 20, 500. [Google Scholar] [CrossRef]
- Takase, T.; Nakamura, A.; Miyoshi, H.; Koga, M.; Toyomaki, A.; Kusumi, I.; Kino, R.; Konishi, Y.; Kiso, Y.; Atsumi, T. Effects of Palmaria Palmata on Lipid Metabolism and Glycemic Control in Participants with Hypercholesterolemia in a Randomized Double-Blind Placebo-Controlled Trial. Phytother. Res. 2020, 34, 2303–2312. [Google Scholar] [CrossRef]
- Zheng, Z.; Pan, X.; Luo, L.; Zhang, Q.; Huang, X.; Liu, Y.; Wang, K.; Zhang, Y. Advances in Oral Absorption of Polysaccharides: Mechanism, Affecting Factors, and Improvement Strategies. Carbohydr. Polym. 2022, 282, 119110. [Google Scholar] [CrossRef]
- Sutapa, B.M.; Dhruti, A.; Priyanka, G.; Gopa, R.B. Absorption, Distribution, Metabolism and Elimination (ADME) and Toxicity Profile of Marine Sulfated Polysaccharides Used in Bionanotechnology. Afr. J. Pharm. Pharmacol. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, M.; Liu, Y.; Liu, W.; Peng, C.; Zheng, L. Sulfated Polysaccharides with Anticoagulant Potential: A Review Focusing on Structure-Activity Relationship and Action Mechanism. Chem. Biodivers. 2024, 21, e202400152. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, L.; Shang, N.; Wu, K.; Liao, W. Recent Advances in the Structure, Extraction, and Biological Activity of Sargassum Fusiforme Polysaccharides. Mar. Drugs 2025, 23, 98. [Google Scholar] [CrossRef]
- Chen, S.-K.; Wang, X.; Guo, Y.-Q.; Song, X.-X.; Yin, J.-Y.; Nie, S.-P. Exploring the Partial Degradation of Polysaccharides: Structure, Mechanism, Bioactivities, and Perspectives. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4831–4870. [Google Scholar] [CrossRef]
- Sacramento, M.M.A.; Borges, J.; Correia, F.J.S.; Calado, R.; Rodrigues, J.M.M.; Patrício, S.G.; Mano, J.F. Green Approaches for Extraction, Chemical Modification and Processing of Marine Polysaccharides for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 1041102. [Google Scholar] [CrossRef]
- Quitério, E.; Grosso, C.; Ferraz, R.; Delerue-Matos, C.; Soares, C. A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds. Mar. Drugs 2022, 20, 677. [Google Scholar] [CrossRef] [PubMed]
- Shchukin, V.M.; Kuz’mina, N.E.; Erina, A.A.; Yashkir, V.A.; Merkulov, V.A. Comparative Analysis of the Heavy Metal, Aluminum, and Arsenic Contents in Brown Algae of Various Origins. Pharm. Chem. J. 2018, 52, 627–634. [Google Scholar] [CrossRef]
- Siregar, T.H.; Bartlett, J.; Thompson, R.M. Distribution of Water-Soluble Arsenic Species in the Sub-Thallus of Australian Brown Macroalgae. Expo. Health 2025, 17, 1023–1036. [Google Scholar] [CrossRef]
- dos Santos, R.W.; Schmidt, É.C.; de L Felix, M.R.; Polo, L.K.; Kreusch, M.; Pereira, D.T.; Costa, G.B.; Simioni, C.; Chow, F.; Ramlov, F.; et al. Bioabsorption of Cadmium, Copper and Lead by the Red Macroalga Gelidium Floridanum: Physiological Responses and Ultrastructure Features. Ecotoxicol. Environ. Saf. 2014, 105, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.-J.; Shi, X.-D.; Li, H.; Xie, P.-P.; Zhang, H.-M.; Deng, J.-W.; Liang, Y.-G. Effects of Lead on Tolerance, Bioaccumulation, and Antioxidative Defense System of Green Algae, Cladophora. Ecotoxicol. Environ. Saf. 2015, 112, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Han, T.-W.; Tseng, C.-C.; Cai, M.; Chen, K.; Cheng, S.-Y.; Wang, J. Effects of Cadmium on Bioaccumulation, Bioabsorption, and Photosynthesis in Sarcodia Suiae. Int. J. Environ. Res. Public Health 2020, 17, 1294. [Google Scholar] [CrossRef]
- Haggag, Y.A.; Abd Elrahman, A.A.; Ulber, R.; Zayed, A. Fucoidan in Pharmaceutical Formulations: A Comprehensive Review for Smart Drug Delivery Systems. Mar. Drugs 2023, 21, 112. [Google Scholar] [CrossRef]
- Aljabali, A.A.; Obeid, M.A.; Bashatwah, R.M.; Serrano-Aroca, Á.; Mishra, V.; Mishra, Y.; El-Tanani, M.; Hromić-Jahjefendić, A.; Kapoor, D.N.; Goyal, R.; et al. Nanomaterials and Their Impact on the Immune System. Int. J. Mol. Sci. 2023, 24, 2008. [Google Scholar] [CrossRef]
- Kermanizadeh, A.; Balharry, D.; Wallin, H.; Loft, S.; Møller, P. Nanomaterial Translocation--the Biokinetics, Tissue Accumulation, Toxicity and Fate of Materials in Secondary Organs—A Review. Crit. Rev. Toxicol. 2015, 45, 837–872. [Google Scholar] [CrossRef]
- Barbosa, A.I.; Coutinho, A.J.; Costa Lima, S.A.; Reis, S. Marine Polysaccharides in Pharmaceutical Applications: Fucoidan and Chitosan as Key Players in the Drug Delivery Match Field. Mar. Drugs 2019, 17, 654. [Google Scholar] [CrossRef]
- Lim, S.B.; Banerjee, A.; Önyüksel, H. Improvement of Drug Safety by the Use of Lipid-Based Nanocarriers. J. Control. Release 2012, 163, 34–45. [Google Scholar] [CrossRef]
- Lewis, D.R.; Kamisoglu, K.; York, A.W.; Moghe, P.V. Polymer-Based Therapeutics: Nanoassemblies and Nanoparticles for Management of Atherosclerosis. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 400–420. [Google Scholar] [CrossRef]
- Wan, J.; Yang, J.; Lei, W.; Xiao, Z.; Zhou, P.; Zheng, S.; Zhu, P. Anti-Oxidative, Anti-Apoptotic, and M2 Polarized DSPC Liposome Nanoparticles for Selective Treatment of Atherosclerosis. Int. J. Nanomedicine 2023, 18, 579–594. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Li, Q.; Niu, H.; Zhang, W. Therapeutic Potentials of Peptide-Derived Nanoformulations in Atherosclerosis: Present Status and Future Directions. Int. J. Smart Nano Mater. 2024, 15, 610–651. [Google Scholar] [CrossRef]
- Nankivell, V.; Vidanapathirana, A.K.; Hoogendoorn, A.; Tan, J.T.M.; Verjans, J.; Psaltis, P.J.; Hutchinson, M.R.; Gibson, B.C.; Lu, Y.; Goldys, E.; et al. Targeting Macrophages with Multifunctional Nanoparticles to Detect and Prevent Atherosclerotic Cardiovascular Disease. Cardiovasc. Res. 2024, 120, 819–838. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Peng, Z.; Ding, K. An In-Depth Review: Unraveling the Extraction, Structure, Bio-Functionalities, Target Molecules, and Applications of Pectic Polysaccharides. Carbohydr. Polym. 2024, 343, 122457. [Google Scholar] [CrossRef]
- Iddrisu, L.; Danso, F.; Cheong, K.-L.; Fang, Z.; Zhong, S. Polysaccharides as Protective Agents against Heavy Metal Toxicity. Foods 2024, 13, 853. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yan, L.; Guo, S.; Wen, L.; Yu, M.; Feng, L.; Jia, X. Structural Elucidation, Modification, and Structure-Activity Relationship of Polysaccharides in Chinese Herbs: A Review. Front. Nutr. 2022, 9, 908175. [Google Scholar] [CrossRef]
Polysaccharide Type | Structural Feature | Observed Biological Activity | Citation |
---|---|---|---|
Fucoidan (brown algae) | High sulfation (≥25%) | ↑ Anticoagulant and anti-inflammatory activity via NF-κB inhibition and enhanced antithrombin III binding | [100,101] |
Fucoidan | Low MW (3–10 kDa) | ↑ Endothelial repair, ↑ endothelial nitric oxide synthase (eNOS) expression | [80,101] |
Ulvan (green algae) | Rhamnose-rich, moderate sulfation | ↓ TNF-α and IL-6, ↓ VCAM-1 expression in vascular tissues | [42,100] |
Laminarin (brown algae) | β-1,3-glycosidic linkages | ↑ Macrophage regulation, ↑ ROS scavenging | [9] |
Chitosan oligosaccharide | Low MW (≤5 kDa), high degree of deacetylation | ↑ Bile acid excretion, ↓ serum LDL-C and total cholesterol | [9] |
Carrageenan (red algae) | High MW and high sulfation | ↑ Platelet aggregation inhibition but also ↑ bleeding risk | [42] |
Fucoidan | Low sulfation (<10%) | ↓ Anticoagulant activity; reduced inhibition of thrombin and factor Xa | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jim, E.L.; Jim, E.L.; Surya, R.; Permatasari, H.K.; Nurkolis, F. Marine-Derived Polymers–Polysaccharides as Promising Natural Therapeutics for Atherosclerotic Cardiovascular Disease. Mar. Drugs 2025, 23, 325. https://doi.org/10.3390/md23080325
Jim EL, Jim EL, Surya R, Permatasari HK, Nurkolis F. Marine-Derived Polymers–Polysaccharides as Promising Natural Therapeutics for Atherosclerotic Cardiovascular Disease. Marine Drugs. 2025; 23(8):325. https://doi.org/10.3390/md23080325
Chicago/Turabian StyleJim, Edmond Leonard, Edwin Leopold Jim, Reggie Surya, Happy Kurnia Permatasari, and Fahrul Nurkolis. 2025. "Marine-Derived Polymers–Polysaccharides as Promising Natural Therapeutics for Atherosclerotic Cardiovascular Disease" Marine Drugs 23, no. 8: 325. https://doi.org/10.3390/md23080325
APA StyleJim, E. L., Jim, E. L., Surya, R., Permatasari, H. K., & Nurkolis, F. (2025). Marine-Derived Polymers–Polysaccharides as Promising Natural Therapeutics for Atherosclerotic Cardiovascular Disease. Marine Drugs, 23(8), 325. https://doi.org/10.3390/md23080325