Isolation and Characterization of Secondary Metabolites from Hydractinia-Associated Fungus, Penicillium brevicompactum MSW10-1, and Their Inhibitory Effects on Hepatic Lipogenesis
Abstract
1. Introduction
2. Results
2.1. Structural Elucidation of Isolated Compounds
2.2. Computational Bioactivity Prediction of Isolated Compounds from P. brevicompactum MSW10-1
2.3. Effects of All Isolated Compounds on HepG2 Cell Viability
2.4. The Inhibition of Lipogenic Gene Expression by the Isolated Compounds
2.5. The Effects of the Compounds on Lipogenic Gene mRNA Levels
2.6. Suppression of Lipid Accumulation in Hepatocytes
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. General Experimental Procedures
4.3. Fungal Material
4.4. Extraction and Isolation
4.4.1. Brevicolactone A (1)
4.4.2. Brevicolactone B (2)
4.5. Computational Analysis for ECD Simulation and Optical Rotation Values
4.6. The Computational Prediction of the Biological Effects
4.7. Cell Culture
4.8. Cell Viability Measurement
4.9. Immunoblot Analysis
4.10. Reverse Transcription and Quantitative Real-Time PCR (RT-qPCR)
4.11. Oil Red O Staining
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, G.; Peng, X.; Li, X.; An, K.; He, H.; Fu, X.; Li, S.; An, Z. Unmasking the enigma of lipid metabolism in metabolic dysfunction-associated steatotic liver disease: From mechanism to the clinic. Front. Med. 2023, 10, 1294267. [Google Scholar] [CrossRef] [PubMed]
- Prasoppokakorn, T. Applicability of statins in metabolic dysfunction-associated steatotic liver disease (MASLD). Livers 2025, 5, 4. [Google Scholar] [CrossRef]
- Reid, M.V.; Fredickson, G.; Mashek, D.G. Mechanisms coupling lipid droplets to MASLD pathophysiology. Hepatology 2024. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.; Weiskirchen, R. The role of SCAP/SREBP as central regulators of lipid metabolism in hepatic steatosis. Int. J. Mol. Sci. 2024, 25, 1109. [Google Scholar] [CrossRef]
- Li, Y.; Yang, P.; Ye, J.; Xu, Q.; Wu, J.; Wang, Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis. 2024, 23, 117. [Google Scholar] [CrossRef]
- Rajewski, P.; Cieściński, J.; Rajewski, P.; Suwała, S.; Rajewska, A.; Potasz, M. Dietary interventions and physical activity as crucial factors in the prevention and treatment of metabolic dysfunction-associated steatotic liver disease. Biomedicines 2025, 13, 217. [Google Scholar] [CrossRef]
- Latif, S.; Ahsan, T. Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) in persons with obesity and type 2 diabetes mellitus: A cross-sectional study. Euroasian J. Hepatogastroenterol. 2024, 14, 129. [Google Scholar] [CrossRef]
- Smith, K.; Dennis, K.M.J.H.; Hodson, L. The ins and outs of liver fat metabolism: The effect of phenotype and diet on risk of intrahepatic triglyceride accumulation. Exp. Physiol. 2024, 1–13. [Google Scholar] [CrossRef]
- Uehara, K.; Santoleri, D.; Whitlock, A.E.G.; Titchenell, P.M. Insulin regulation of hepatic lipid homeostasis. Compr. Physiol. 2023, 13, 4785. [Google Scholar] [CrossRef]
- Wang, S.; Yin, J.; Liu, Z.; Liu, X.; Tian, G.; Xin, X.; Qin, Y.; Feng, X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci. 2024, 359, 123211. [Google Scholar] [CrossRef]
- Lekakis, V.; Papatheodoridis, G.V. Natural history of metabolic dysfunction-associated steatotic liver disease. Eur. J. Intern. Med. 2024, 122, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Xiaoping, Z.; Fajun, Y. Regulation of SREBP-mediated gene expression. Acta Biophys Sin. 2012, 28, 287. [Google Scholar]
- Li, N.; Li, X.; Ding, Y.; Liu, X.; Diggle, K.; Kisseleva, T.; Brenner, D.A. SREBP regulation of lipid metabolism in liver disease, and therapeutic strategies. Biomedicines 2023, 11, 3280. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Jeong, S.W.; Jang, J.Y. Recent updates on pharmacologic therapy in non-alcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 30, 129. [Google Scholar] [CrossRef]
- Santhiravel, S.; Dave, D.; Shahidi, F. Bioactives from marine resources as natural health products: A review. Pharmacol. Rev. 2024, 77, 100006. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Li, Y.; Liao, S.; Liu, Y. Exploring diverse bioactive secondary metabolites from marine microorganisms using co-culture strategy. Molecules 2023, 28, 6371. [Google Scholar] [CrossRef]
- Gan, B.; Wang, K.; Zhang, B.; Jia, C.; Lin, X.; Zhao, J.; Ding, S. Dynamic microbiome diversity shaping the adaptation of sponge holobionts in coastal waters. Microbiol. Spectr. 2024, 12, e01448-24. [Google Scholar] [CrossRef]
- Wuerz, M.; Lawson, C.A.; Ueland, M.; Oakley, C.A.; Grossman, A.R.; Weis, V.M.; Suggett, D.J.; Davy, S.K. Symbiosis induces unique volatile profiles in the model cnidarian Aiptasia. J. Exp. Biol. 2022, 225, 244600. [Google Scholar] [CrossRef]
- Boufridi, A.; Brinkmann, C.M.; Risdian, C.; Wink, J.; Kurtböke, D.İ. Sponge symbiotic actinomycetes as sources of novel bioactive compounds atlantic and pacific ocean examples. In Actinomycetes in Marine and Extreme Environments; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–26. [Google Scholar]
- Maire, J.; Philip, G.K.; Livingston, J.; Judd, L.M.; Blackall, L.L.; van Oppen, M.J.H. Functional potential and evolutionary response to long-term heat selection of bacterial associates of coral photosymbionts. mSystems 2023, 8, 00860-23. [Google Scholar] [CrossRef]
- Barzkar, N.; Sukhikh, S.; Babich, O. Study of marine microorganism metabolites: New resources for bioactive natural products. Front. Microbiol. 2024, 14, 1285902. [Google Scholar] [CrossRef]
- Garrett, O.; Whalen, K.E. A bacterial quorum sensing signal is a potent inhibitor of de novo pyrimidine biosynthesis in the globally abundant Emiliania huxleyi. Front. Microbiol. 2023, 14, 1266972. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, S.; Bhattacharya, D.; Nag, M.; Lahiri, D. Bioactive compounds from marine algae and fungi in down-regulating quorum sensing. Blue Biotechnol. 2024, 1, 16. [Google Scholar] [CrossRef]
- Tan, L.T. Impact of marine chemical ecology research on the discovery and development of new pharmaceuticals. Mar. Drugs 2023, 21, 174. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.N.; Zahoor, I. Bioactive compounds from marine organisms and their potential applications. In Handbook of Research in Marine Pharmaceutics; Apple Academic Press: Point Pleasant, NJ, USA, 2025; pp. 609–640. [Google Scholar]
- Lasalo, M.; Jauffrais, T.; Georgel, P.; Matsui, M. Marine microorganism molecules as potential anti-inflammatory therapeutics. Mar. Drugs 2024, 22, 405. [Google Scholar] [CrossRef]
- Lv, F.; Zeng, Y. Novel bioactive natural products from marine-derived Penicillium fungi: A review (2021–2023). Mar. Drugs 2024, 22, 191. [Google Scholar] [CrossRef]
- Tang, Y.-Q.; Liang, X.; Zou, Q.-H.; Cui, H.; Luo, L.-X.; Qi, S.-H. HPPO-derived meroterpenoids from the marine-derived fungus Penicillium sp. SCSIO 41691. J. Nat. Prod. 2024, 87, 1209–1216. [Google Scholar] [CrossRef]
- Shaaban, R.; Elnaggar, M.S.; Khalil, N.; Singab, A.N.B. A comprehensive review on the medicinally valuable endosymbiotic fungi Penicillium chrysogenum. Arch. Microbiol. 2023, 205, 240. [Google Scholar] [CrossRef]
- Anh, D.H.; Tu, N.T.; Hanh, T.T.H.; Cuong, N.X.; Vien, L.T.; Ngan, N.T.T.; Ha, D.V.; Quang, T.H. Terpenes and polyketides from the marine-derived fungus Penicillium sp. OPR23-FS02 with cytotoxic and antimicrobial effects. Vietnam J. Chem. 2024, 62, 638–646. [Google Scholar] [CrossRef]
- Le, V.-T.; Bertrand, S.; Brandolini-Bunlon, M.; Gentil, E.; Du Pont, T.R.; Rabesaotra, V.; Wielgosz-Collin, G.; Mossion, A.; Grovel, O. Global metabolome changes induced by environmentally relevant conditions in a marine-sourced Penicillium restrictum. C. R. Chim. 2023, 26, 49–66. [Google Scholar] [CrossRef]
- Le, V.-T.; Bertrand, S.; Robiou du Pont, T.; Fleury, F.; Caroff, N.; Bourgeade-Delmas, S.; Gentil, E.; Logé, C.; Genta-Jouve, G.; Grovel, O. Untargeted metabolomics approach for the discovery of environment-related pyran-2-ones chemodiversity in a marine-sourced Penicillium restrictum. Mar. Drugs 2021, 19, 378. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; Sayed, A.M.; Mohammed, R.; Hassan, H.M.; Zaki, M.A.; Rateb, M.E.; Mohammed, T.A.; Amin, E.; Abdelmohsen, U.R. Epigenetic modifiers induce bioactive phenolic metabolites in the marine-derived fungus Penicillium brevicompactum. Mar. Drugs 2018, 16, 253. [Google Scholar] [CrossRef] [PubMed]
- Vinale, F.; Salvatore, M.M.; Nicoletti, R.; Staropoli, A.; Manganiello, G.; Venneri, T.; Borrelli, F.; DellaGreca, M.; Salvatore, F.; Andolfi, A. Identification of the main metabolites of a marine-derived strain of Penicillium brevicompactum using LC and GC MS techniques. Metabolites 2020, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Du, L.; Zhang, X.; Newmister, S.A.; McCauley, M.; Alegre-Requena, J.V.; Zhang, W.; Mu, S.; Minami, A.; Fraley, A.E. Fungal-derived brevianamide assembly by a stereoselective semipinacolase. Nat. Catal. 2020, 3, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Gallant, É.; Seyedsayamdost, M.R. Discovery of cryptic natural products using high-throughput elicitor screening on agar media. Biochemistry 2024, 64, 20–25. [Google Scholar] [CrossRef]
- Lee, S.R.; Dayras, M.; Fricke, J.; Guo, H.; Balluff, S.; Schalk, F.; Yu, J.S.; Jeong, S.Y.; Morgenstern, B.; Slippers, B. Molecular networking and computational NMR analyses uncover six polyketide-terpene hybrids from termite-associated Xylaria isolates. Commun. Chem. 2024, 7, 129. [Google Scholar] [CrossRef]
- Lee, S.R.; Seyedsayamdost, M.R. Induction of diverse cryptic fungal metabolites by steroids and channel blockers. Angew. Chem. Int. Ed. 2022, 61, 202204519. [Google Scholar] [CrossRef]
- Han, E.J.; Jeong, M.; Lee, S.R.; Sorensen, E.J.; Seyedsayamdost, M.R. Hirocidins, Cytotoxic Metabolites from Streptomyces hiroshimensis, Induce Mitochondrion-Mediated Apoptosis. Angew. Chem. Int. Ed. 2024, 63, 202405367. [Google Scholar] [CrossRef]
- Li, Y.; Lee, S.R.; Han, E.J.; Seyedsayamdost, M.R. Momomycin, an antiproliferative cryptic metabolite from the oxytetracycline producer Streptomyces rimosus. Angew. Chem. Int. Ed. 2022, 61, 202208573. [Google Scholar] [CrossRef]
- Habib, E.; León, F.; Bauer, J.D.; Hill, R.A.; Carvalho, P.; Cutler, H.G.; Cutler, S.J. Mycophenolic derivatives from Eupenicillium parvum. J. Nat. Prod. 2008, 71, 1915–1918. [Google Scholar] [CrossRef]
- Jones, D.F.; Moore, R.H.; Crawley, G.C. Microbial modification of mycophenolic acid. J. Chem. Soc. C. 1970, 1725–1737. [Google Scholar] [CrossRef]
- Danheiser, R.L.; Gee, S.K.; Perez, J.J. Total synthesis of mycophenolic acid. J. Am. Chem. Soc. 1986, 108, 806–810. [Google Scholar] [CrossRef]
- Canonica, L.; Rindone, B.; Santaniello, E.; Scolastico, C. A total synthesis of mycophenolic acid, some analogues and some biogenetic intermediates. Tetrahedron 1972, 28, 4395–4404. [Google Scholar] [CrossRef]
- Grove, J.F. New metabolic products of Aspergillus flavus. Part II. Asperflavin, anhydroasperflavin, and 5, 7-dihydroxy-4-methylphthalide. J. Chem. Soc., Perkin Trans. 1972, 1, 2406–2411. [Google Scholar] [CrossRef] [PubMed]
- Kametani, T.; Kanaya, N.; Ihara, M. Asymmetric total synthesis of brevianamide E. J. Am. Chem. Soc. 1980, 102, 3974–3975. [Google Scholar] [CrossRef]
- Ali, H.; Ries, M.I.; Lankhorst, P.P.; van der Hoeven, R.A.M.; Schouten, O.L.; Noga, M.; Hankemeier, T.; van Peij, N.N.M.E.; Bovenberg, R.A.L.; Vreeken, R.J. A non-canonical NRPS is involved in the synthesis of fungisporin and related hydrophobic cyclic tetrapeptides in Penicillium chrysogenum. PLoS ONE 2014, 9, e98212. [Google Scholar] [CrossRef]
- Saeed, A.; Dullaart, R.P.F.; Schreuder, T.C.M.A.; Blokzijl, H.; Faber, K.N. Disturbed vitamin A metabolism in non-alcoholic fatty liver disease (NAFLD). Nutrients 2017, 10, 29. [Google Scholar] [CrossRef]
- Zhong, G.; Kirkwood, J.; Won, K.-J.; Tjota, N.; Jeong, H.; Isoherranen, N. Characterization of vitamin A metabolome in human livers with and without nonalcoholic fatty liver disease. J. Pharmacol. Exp. Ther. 2019, 370, 92–103. [Google Scholar] [CrossRef]
- Othman, A.; Liu, M.; Bode, H.; Boudyguina, E.; von Eckardstein, A.; Parks, J.S.; Hornemann, T. Hepatocyte ABCA1 deficiency is associated with reduced HDL sphingolipids. Front. Physiol. 2023, 14, 1208719. [Google Scholar] [CrossRef]
- Choi, H.Y.; Choi, S.; Iatan, I.; Ruel, I.; Genest, J. Biomedical advances in ABCA1 transporter: From bench to bedside. Biomedicines 2023, 11, 561. [Google Scholar] [CrossRef]
- Repa, J.J.; Liang, G.; Ou, J.; Bashmakov, Y.; Lobaccaro, J.M.; Shimomura, I.; Shan, B.; Brown, M.S.; Goldstein, J.L.; Mangelsdorf, D.J. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 2000, 14, 2819–2830. [Google Scholar] [CrossRef]
- Jakobsson, T.; Treuter, E.; Gustafsson, J.-Å.; Steffensen, K.R. Liver X receptor biology and pharmacology: New pathways, challenges and opportunities. Trends Pharmacol. Sci. 2012, 33, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Investig. 2002, 109, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Magid, A.F. Patent highlight: Fatty acid synthase (FASN) inhibitors as potential treatment for cancer, obesity, and liver related disorders. ACS Med. Chem. Lett. 2015, 6, 838–839. [Google Scholar] [CrossRef] [PubMed]
- Griffett, K.; Burris, T.P. Development of LXR inverse agonists to treat MAFLD, NASH, and other metabolic diseases. Front. Med. 2023, 10, 1102469. [Google Scholar] [CrossRef]
- Doerfler, D.L.; Nulton, C.P.; Bartman, C.D.; Gottlieb, F.J.; Campbell, I.M. Spore germination, colony development, and secondary metabolism in Penicillium brevicompactum: A radiogas chromatographic and morphological study. Can. J. Microbiol. 1978, 24, 1490–1501. [Google Scholar] [CrossRef]
- Andersen, B. Consistent production of phenolic compounds by Penicillium brevicompactum for chemotaxonomic characterization. Antonie Van Leeuwenhoek 1991, 60, 115–123. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Cho, Y.E.; Kim, S.; Kim, Y.; Kwak, J.; Suh, J.S.; Lee, J.; Son, K.; Kim, M.; Jang, E.S.; et al. Discovery of N-aryl-N′-[4-(aryloxy)cyclohexyl]squaramide-based inhibitors of LXR/SREBP-1c signaling pathway ameliorating steatotic liver disease: Navigating the role of SIRT6 activation. J. Med. Chem. 2024, 67, 17608–17628. [Google Scholar] [CrossRef]
Position | 1 | 2 | ||
---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 173.5 s | 169.5 s | ||
3 | 70.5 t | 5.26 s | 103.0 d | 6.37 s |
3a | 146.7 s | 144.3 s | ||
4 | 117.7 s | 118.8 s | ||
5 | 164.7 s | 163.7 s | ||
6 | 123.7 s | 123.9 s | ||
7 | 154.6 s | 152.9 s | ||
7a | 107.6 s | 107.2 s | ||
1′ | 21.9 t | 2.64 m | 22.2 t | 3.42 d (7.0) |
2′ | 33.1 t | 1.59 m; 1.92 m | 122.7 d | 5.26 t (7.0) |
3′ | 47.7 d | 2.60 m | 133.7 s | |
4′ | 16.4 q | 1.13 d (7.0) | 14.7 q | 1.83 s |
5′ | 215.3 s | 34.2 t | 2.28 m | |
6′ | 27.9 q | 2.17 s | 32.3 t | 2.37 m |
7′ | 175.9 s | |||
4-CH3 | 11.1 q | 2.16 s | 9.54 q | 2.27 s |
5-OCH3 | 61.3 q | 3.78 s | 60.0 q | 3.78 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, H.-J.; Lim, H.; Yu, J.S.; Jang, E.S.; Nam, Y.; Lee, Y.J.; Kim, E.L.; Hwang, S.; Lee, S.R. Isolation and Characterization of Secondary Metabolites from Hydractinia-Associated Fungus, Penicillium brevicompactum MSW10-1, and Their Inhibitory Effects on Hepatic Lipogenesis. Mar. Drugs 2025, 23, 275. https://doi.org/10.3390/md23070275
Hwang H-J, Lim H, Yu JS, Jang ES, Nam Y, Lee YJ, Kim EL, Hwang S, Lee SR. Isolation and Characterization of Secondary Metabolites from Hydractinia-Associated Fungus, Penicillium brevicompactum MSW10-1, and Their Inhibitory Effects on Hepatic Lipogenesis. Marine Drugs. 2025; 23(7):275. https://doi.org/10.3390/md23070275
Chicago/Turabian StyleHwang, Hyeon-Jeong, Hyeokjin Lim, Jae Sik Yu, Eun Seo Jang, Youngsang Nam, Yeo Jin Lee, Eun La Kim, Seonghwan Hwang, and Seoung Rak Lee. 2025. "Isolation and Characterization of Secondary Metabolites from Hydractinia-Associated Fungus, Penicillium brevicompactum MSW10-1, and Their Inhibitory Effects on Hepatic Lipogenesis" Marine Drugs 23, no. 7: 275. https://doi.org/10.3390/md23070275
APA StyleHwang, H.-J., Lim, H., Yu, J. S., Jang, E. S., Nam, Y., Lee, Y. J., Kim, E. L., Hwang, S., & Lee, S. R. (2025). Isolation and Characterization of Secondary Metabolites from Hydractinia-Associated Fungus, Penicillium brevicompactum MSW10-1, and Their Inhibitory Effects on Hepatic Lipogenesis. Marine Drugs, 23(7), 275. https://doi.org/10.3390/md23070275