Didemnosides A and B: Antiproliferative Nucleosides from the Red Sea Marine Tunicate Didemnum Species
Abstract
1. Introduction
2. Results and Discussion
2.1. Purification of Compounds 1–7
2.2. Structure of Compound 1
2.3. Structure of Compound 2
2.4. Structure of Compound 3
2.5. Structure of Compound 4
2.6. Structure of Compound 5
2.7. Structure of Compound 6
2.8. Structure of Compound 7
2.9. Antiproliferative Activities of the Compounds
2.10. Antimicrobial Activities of the Compounds
2.11. Computational Studies on Molecular Targets Associated with Tested Cancerous Cells
2.11.1. Molecular Docking with ESR1
2.11.2. Molecular Docking with TOP2A
2.11.3. Molecular Docking with CDK5
3. Materials and Methods
3.1. General Experimental Procedures
3.2. The Red Sea Didemnum Species
3.3. Purification of Compounds 1–7
3.4. Spectral Data of the Compounds
3.4.1. Compound 1
3.4.2. Compound 2
3.4.3. Compound 3
3.4.4. Compound 7
3.5. Biological Evaluation of the Compounds
3.5.1. Evaluation of the Antiproliferation Effects of the Compounds
3.5.2. Evaluation of the Antimicrobial Effects of the Compounds
3.6. Molecular Docking on Potential Targets for Antiproliferative Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DiBattista, J.D.; Roberts, M.B.; Bouwmeester, J.; Bowen, B.W.; Coker, D.J.; Lozano-Cortés, D.F.; Choat, J.H.; Gaither, M.R.; Hobbs, J.-P.A.; Khalil, M.T.; et al. A Review of Contemporary Patterns of Endemism for Shallow Water Reef Fauna in the Red Sea. J. Biogeogr. 2016, 43, 423–439. [Google Scholar] [CrossRef]
- Kemp, J.M. Zoogeography of the Coral Reef Fishes of the North-Eastern Gulf of Aden, with Eight New Records of Coral Reef Fishes from Arabia. Fauna Arab. 2000, 18, 293–322. [Google Scholar]
- Por, F.D. Lessepsian Migration: The Influx of Red Sea Biota into the Mediterranean by Way of the Suez Canal; Springer: Berlin, Germany, 2012; Volume 23, pp. 1–229. [Google Scholar]
- Neumann, A.C.; McGill, D.A. Circulation of the Red Sea in Early Summer. Deep Sea Res. 1961, 8, 223–235. [Google Scholar] [CrossRef]
- Roberts, C.M.; McClean, C.J.; Veron, J.E.N.; Hawkins, J.P.; Allen, G.R.; McAllister, D.E.; Mittermeier, C.G.; Schueler, F.W.; Spalding, M.; Wells, F.; et al. Marine Biodiversity Hotspots and Conservation Priorities for Tropical Reefs. Science 2002, 295, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.W.; Donia, M.S. Life in Cellulose Houses: Symbiotic Bacterial Biosynthesis of Ascidian Drugs and Drug Leads. Curr. Opin. Biotechnol. 2010, 21, 827–833. [Google Scholar] [CrossRef]
- Riesenfeld, C.S.; Murray, A.E.; Baker, B.J. Characterization of the Microbial Community and Polyketide Biosynthetic Potential in the Palmerolide-Producing Tunicate Synoicum adareanum. J. Nat. Prod. 2008, 71, 1812–1818. [Google Scholar] [CrossRef]
- Schmidt, E.W.; Sudek, S.; Haygood, M.G. Genetic Evidence Supports Secondary Metabolic Diversity in Prochloron spp., the Cyanobacterial Symbiont of a Tropical Ascidian. J. Nat. Prod. 2004, 67, 1341–1345. [Google Scholar] [CrossRef]
- Tsukimoto, M.; Nagaoka, M.; Shishido, Y.; Fujimoto, J.; Nishisaka, F.; Matsumoto, S.; Harunari, E.; Imada, C.; Matsuzaki, T. Bacterial Production of the Tunicate-Derived Antitumor Cyclic Depsipeptide Didemnin B. J. Nat. Prod. 2011, 74, 2329–2331. [Google Scholar] [CrossRef]
- Oku, N.; Matsunaga, S.; Fusetani, N. Shishijimicins A–C, Novel Enediyne Antitumor Antibiotics from the Ascidian Didemnum proliferum. J. Am. Chem. Soc. 2003, 125, 2044–2045. [Google Scholar] [CrossRef]
- Liberio, M.S.; Sadowski, M.C.; Nelson, C.C.; Davis, R.A. Identification of Eusynstyelamide B as a Potent Cell Cycle Inhibitor Following the Generation and Screening of an Ascidian-Derived Extract Library Using a Real Time Cell Analyzer. Mar. Drugs 2014, 12, 5222–5239. [Google Scholar] [CrossRef]
- Bao, B.; Dang, H.T.; Zhang, P.; Hong, J.; Lee, C.-O.; Cho, H.Y.; Jung, J.H. Bicyclic α, ω-Dicarboxylic Acid Derivatives from a Colonial Tunicate of the Family Polyclinidae. Bioorg. Med. Chem. Lett. 2009, 19, 6205–6208. [Google Scholar] [CrossRef] [PubMed]
- Segraves, N.L.; Robinson, S.J.; Garcia, D.; Said, S.A.; Fu, X.; Schmitz, F.J.; Pietraszkiewicz, H.; Valeriote, F.A.; Crews, P. Comparison of Fascaplysin and Related Alkaloids: A Study of Structures, Cytotoxicities, and Sources. J. Nat. Prod. 2004, 67, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Bowden, B.F.; Coll, J.C.; Hockless, D.C.; Skelton, B.W.; White, A.H. Studies of Australian Ascidian. IV. Mollamide, a Cytotoxic Cyclic Heptapeptide from the Compound Ascidian Didemnum molle. Aust. J. Chem. 1994, 47, 61–69. [Google Scholar] [CrossRef]
- Sata, N.U.; Fusetani, N. Amaminols A and B, New Bicyclic Amino Alcohols from an Unidentified Tunicate of the Family Polyclinidae. Tetrahedron Lett. 2000, 41, 489–492. [Google Scholar] [CrossRef]
- Fukuzawa, S.; Matsunaga, S.; Fusetani, N. Ritterazine A, a Highly Cytotoxic Dimeric Steroidal Alkaloid, from the Tunicate Ritterella tokioka. J. Org. Chem. 1994, 59, 6164–6166. [Google Scholar] [CrossRef]
- Riccio, R.; Kinnel, R.B.; Bifulco, G.; Scheuer, P.J. Kakelokelose, a Sulfated Mannose Polysaccharide with Anti-HIV Activity from the Pacific Tunicate Didemnum Molle. Tetrahedron Lett. 1996, 37, 1979–1982. [Google Scholar] [CrossRef]
- Carter, G.T.; Rinehart, K.L., Jr. Aplidiasphingosine, an Antimicrobial and Antitumor Terpenoid from an Aplidium Species (Marine Tunicate). J. Am. Chem. Soc. 1978, 100, 7441–7442. [Google Scholar] [CrossRef]
- Youssef, D.T.A.; Almagthali, H.; Shaala, L.A.; Schmidt, E.W. Secondary Metabolites of the Genus Didemnum: A Comprehensive Review of Chemical Diversity and Pharmacological Properties. Mar. Drugs 2020, 18, 307. [Google Scholar] [CrossRef]
- Available online: https://www.marinepharmacology.org/approved (accessed on 20 January 2025).
- Shenkar, N.; Swalla, B.J. Global Diversity of Ascidiacea. PLoS ONE 2011, 6, e20657. [Google Scholar] [CrossRef]
- Da Silva Oliveira, F.A.; Michonneau, F.; Da Cruz Lotufo, T.M. Molecular Phylogeny of Didemnidae (Ascidiacea: Tunicata). Zool. J. Linn. Soc. 2017, 180, 603–612. [Google Scholar] [CrossRef]
- Tianero, M.D.B.; Kwan, J.C.; Wyche, T.P.; Presson, A.P.; Koch, M.; Barrows, L.R.; Bugni, T.S.; Schmidt, E.W. Species Specificity of Symbiosis and Secondary Metabolism in Ascidian. ISME J. 2015, 9, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.T.; Ibrahim, S.R.; Shaala, L.A.; Mohamed, G.A.; Banjar, Z.M. New Cerebroside and Nucleoside Derivatives from a Red Sea Strain of the Marine Cyanobacterium Moorea producens. Molecules 2016, 21, 324. [Google Scholar] [CrossRef] [PubMed]
- Abou-Hussein, D.R.; Badr, J.M.; Youssef, D.T. Nucleoside Constituents of the Egyptian Tunicate Eudistoma laysani. Nat. Prod. Sci. 2007, 13, 229–233. [Google Scholar]
- Komori, T.; Sanechika, Y.; Ito, Y.; Matsuo, J.; Nohara, T.; Kawasaki, T.; Schulten, H.R. Biologisch Aktive Glykoside Aus Asteroidea, I. Strukturen Eines Neuen Cerebrosidgemischs Und Von Nucleosiden Aus Dem Seestern Acanthaster planci. Liebigs Ann. Chem. 1980, 1980, 653–668. [Google Scholar] [CrossRef]
- Swersey, J.C.; Ireland, C.M.; Cornell, L.M.; Peterson, R.W. Eusynstyelamide, a Highly Modified Dimer Peptide from the Ascidian Eusynstyela misakiensis. J. Nat. Prod. 1994, 57, 842–845. [Google Scholar] [CrossRef]
- Shapo, J.L.; Moeller, P.D.; Galloway, S.B. Antimicrobial Activity in the Common Seawhip, Leptogorgia virgulata (Cnidaria: Gorgonaceae). Comp. Biochem. Physiol. Part B 2007, 148, 65–73. [Google Scholar] [CrossRef]
- Blair, L.M.; Sperry, J. Natural Products Containing a Nitrogen–Nitrogen Bond. J. Nat. Prod. 2013, 76, 794–812. [Google Scholar] [CrossRef]
- Available online: https://www.thermofisher.com/order/catalog/product/A14459.14 (accessed on 10 June 2025).
- Petkowski, J.J.; Bains, W.; Seager, S. Natural Products Containing ‘Rare’ Organophosphorus Functional Groups. Molecules 2019, 24, 866. [Google Scholar] [CrossRef]
- Available online: https://www.biosynth.com/Files/Specification/ND/05/ND05750.pdf (accessed on 10 June 2025).
- Kubica, D.; Molchanov, S.; Gryff-Keller, A. Solvation of Uracil and Its Derivatives by DMSO: A DFT-Supported 1H NMR and 13C NMR Study. Phys. Chem. A 2017, 121, 1841–1848. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Lee, D.-G.; Gwag, J.E.; Kim, M.; Kim, M.; Kim, H.-G.; Ko, J.-H.; Yoe, H.; Kang, S.; Baek, N.-I. A 1,1′-Biuracil from Epidermidibacterium keratini EPI-7 Shows Anti-aging Effects on Human Dermal Fibroblasts. Appl. Biol. Chem. 2019, 62, 14. [Google Scholar] [CrossRef]
- Hahn, D.; Kim, G.J.; Choi, H.; Kang, H. A Novel Bromoindole Alkaloid from a Korean Colonial Tunicate Didemnum Sp. Nat. Prod. Sci. 2015, 21, 278–281. [Google Scholar] [CrossRef]
- Wang, B.; Dong, J.; Zhou, X.; Lee, K.J.; Huang, R.; Zhang, S.; Liu, Y. Nucleosides from the Marine Sponge Haliclona Sp. Z. Naturforsch. C 2009, 64, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhou, X.; Peng, Y.; Yang, X.; Xu, T.; Liu, Y. Nucleosides from the Marine Sponge Callyspongia Sp. Chem. Nat. Comp. 2011, 46, 1010–1011. [Google Scholar] [CrossRef]
- Ferris, T.D.; Lee, P.T.; Farrar, T.C. Synthesis of Propiolamide and 1H, 13C and 15N NMR Spectra of Formamide, Acetamide and Propiolamide. Mag. Res. Chem. 1997, 35, 571–576. [Google Scholar] [CrossRef]
- Fuentes, N.; Silveyra, P. Estrogen Receptor Signaling Mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar]
- Vischer, F.; Cavaco, J.E.B.; Santos, E.M.; Tyler, C.R.; Goos, H.J.T.; Bogerd, J.; Brufani, M.; Ceccacci, F.; Filocamo, L.; Garofalo, B.; et al. Transport Across Natural and Modified Biological Membranes and Its Implications in Physiology and Therapy. Mol. Pharm. 2017, 227, 543–556. [Google Scholar]
- Sibuh, B.Z.; Khanna, S.; Taneja, P.; Sarkar, P.; Taneja, N.K. Molecular Docking, Synthesis, and Anticancer Activity of Thiosemicarbazone Derivatives Against MCF-7 Human Breast Cancer Cell Line. Life Sci. 2021, 273, 119305. [Google Scholar] [CrossRef]
- Coss, A.; Tosetto, M.; Fox, E.J.; Sapetto-Rebow, B.; Gorman, S.; Kennedy, B.N.; Lloyd, A.T.; Hyland, J.M.; O’Donoghue, D.P.; Sheahan, K.; et al. Increased Topoisomerase IIα Expression in Colorectal Cancer Is Associated with Advanced Disease and Chemotherapeutic Response. J. Clin. Oncol. 2021, 39, 378–379. [Google Scholar]
- Tarricone, C.; Dhavan, R.; Peng, J.; Areces, L.B.; Tsai, L.H.; Musacchio, A. Structure and Regulation of the CDK5-P25(NCK5A) Complex. Mol. Cell 2001, 8, 657–669. [Google Scholar] [CrossRef]
- Wissing, M.D.; Dadon, T.; Kim, E.; Piontek, K.B.; Shim, J.S.; Kaelber, N.S.; Liu, J.O.; Kachhap, S.K.; Nelkin, B.D. Small-Molecule Screening of PC3 Prostate Cancer Cells Identifies Tilorone Dihydrochloride as a Selective Inhibitor of Cell Growth Based on Cyclin-Dependent Kinase 5 Expression. Oncol. Rep. 2014, 32, 419–424. [Google Scholar] [CrossRef]
- Youssef, D.T.A.; Shaala, L.A.; Genta-Jouve, G. Asperopiperazines A and B: Antimicrobial and Cytotoxic Dipeptides from a Tunicate-Derived Fungus Aspergillus Sp. DY001. Mar. Drugs 2022, 20, 451. [Google Scholar] [CrossRef] [PubMed]
- Shaala, L.A.; Youssef, D.T.A. Cytotoxic Psammaplysin Analogues from the Verongid Red Sea Sponge Aplysinella Species. Biomolecules 2019, 9, 841. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.T.A.; Mooberry, S.L. Hurghadolide A and Swinholide I, Potent Actin-Microfilament Disrupters from the Red Sea Sponge Theonella swinhoei. J. Nat. Prod. 2006, 69, 154–157. [Google Scholar] [CrossRef]
- Kiehlbauch, J.A.; Hannett, G.E.; Salfinger, M.; Archinal, W.; Monserrat, C.; Carlyn, C. Use of the National Committee for Clinical Laboratory Standards Guidelines for Disk Diffusion Susceptibility Testing in New York State Laboratories. J. Clin. Microbiol. 2000, 38, 3341–3348. [Google Scholar] [CrossRef]
- Shaala, L.A.; Youssef, D.T.A. Pseudoceratonic Acid and Moloka’iamine Derivatives from the Red Sea Verongiid Sponge Pseudoceratina arabica. Mar. Drugs 2020, 18, 525. [Google Scholar] [CrossRef]
- Youssef, D.T.A.; Asfour, H.Z.; Genta-Jouve, G.; Shaala, L.A. Magnificines A and B, Antimicrobial Marine Alkaloids Featuring a Tetrahydrooxazolo[3,2-A]Azepine-2,5(3H, 6H)-Dione Backbone from the Red Sea Sponge Negombata magnifica. Mar. Drugs 2021, 19, 214. [Google Scholar] [CrossRef]
- Acar, J.F. The Disc Susceptibility Test. In Antibiotics in Laboratory Medicine; Lorian, V., Ed.; Williams & Wilkins: Philadelphia, PA, USA, 1980; pp. 24–54. [Google Scholar]
Position | δC, Type | δH [Mult., J (Hz)] | HMBC | ROESY |
---|---|---|---|---|
2 | 145.9, CH | 8.05 (s) | C-4 | H2-5′ |
4 | 148.2, C | |||
5 | 124.4, C | |||
6 | 156.6, C | |||
8 | 138.7, CH | 8.31 (s) | C-4, C-5, C-1′ | H-1′ |
1′ | 87.4, CH | 5.85 (d, 5.7) | C-4, C-8, C-3′, C-4′ | H-8, H-4′ |
2′ | 74.1, CH | 4.46 (t, 5.2) | C-1′, C-3′, C-4’ | H-3’ |
OH-2’ | 5.52 (brs) a | |||
3’ | 70.3, CH | 4.11 (dd, 4.6, 3.8) | C-1’, C-4’, C-5’ | H-2’, H2-5’ |
OH-3’ | 5.25 (brs) a | |||
4’ | 85.6, CH | 3.92 (q, 3.8) | C-2’, C-3’, C-5’ | H-1’ |
5’ | 61.3, CH2 | 3.64 (dd, 12.0, 4.0) 3.54 (dd, 12.0, 4.0) | C-2’, C-3’, C-4’ | H-2, H-3’ |
OH-5’ | 5.08 (brs) a |
Position | δC, Type | δH [Mult., J (Hz)] | HMBC | ROESY |
---|---|---|---|---|
2 | 146.2, CH | 8.04 (s) | C-4, C-5, C-6 | H2-5′ |
4 | 147.9, C | |||
5 | 124.4, C | |||
6 | 157.1, C | |||
8 | 138.3, CH | 8.27 (s) | C-4, C-5, C-1′ | H-1′ |
1′ | 83.6, CH | 6.30 (dd, 7.2, 6.3) | C-4, C-8, C-3′, C-4′, C-5′ | H-8, H-4′ |
2′ | 39.9, CH2 | 2.63 (ddd, 13.3, 7.5, 5.8) 2.28 (ddd, 13.3, 6.2, 3.2) | C-1′, C-3′, C-4′ | H-3′ |
3′ | 70.6, CH | 4.38 (quin., 3.0) | C-1′, C-2′, C-4′, C-5′ | H2-2′, H2-5′ |
OH-3′ | 5.34 (brs) a | |||
4′ | 87.9, CH | 3.86 (q, 4.4) | C-1′, C-2′, C-3′, C-5′ | H-1′ |
5′ | 61.6, CH2 | 3.59 (dd, 11.8, 4.6) 3.51 (dd, 11.8, 4.4) | C-1′, C-3′, C-4′ | H-2, H-3′ |
OH-5‘ | 5.08 (brs) a |
Position | δC, Type | δH [Mult., J (Hz)] |
---|---|---|
2,2′ | 151.5, C | |
4,4′ | 164.3, C | |
5,5′ | 100.2, CH | 5.45 (d, 7.6) |
6,6′ | 142.2, CH | 7.39 (d, 7.6) |
Position | δC, Type | δH [Mult., J (Hz)] |
---|---|---|
1 | 22.5, CH3 | 1.75 (s) |
2 | 171.6, C | |
NH2 | 7.40 (brs) 6.68 (brs) |
Compound | Average IC50 (μM) ± SEM | ||
---|---|---|---|
MCF-7 | SW1222 | PC-3 | |
1 | 0.597 ± 0.05 | 6.696 ± 0.69 | 9.365 ± 1.02 |
2 | ≥50 | 6.392 ± 0.62 | 7.215 ± 0.81 |
3 | NT | NT | NT |
4 | ≥50 | 7.072 ± 0.73 | 9.686 ± 0.98 |
5 | ≥50 | 5.254 ± 0.56 | 7.167 ± 0.75 |
6 | ≥50 | 6.191 ± 0.69 | 8.163 ± 0.91 |
7 | 6.574 ± 0.57 | 5.649 ± 0.58 | 7.478 ± 0.76 |
Doxorubicin a | 0.4477 ± 0.04 | 0.4364 ± 0.038 | 2.627 ± 0.25 |
Compound | XP Gscore | ||
---|---|---|---|
ESR1 (6CBZ) | TOP2A (5GWK) | CDK5 (1UNH) | |
1 | −7.700 | ≥−5.000 | ≥−5.000 |
2 | ≥−5.000 | −6.281 | −7.649 |
4 | ≥−5.000 | ≥−5.000 | −8.907 |
6 | ≥−5.000 | ≥−5.000 | ≥−5.000 |
7 | ≥−5.000 | ≥−5.000 | ≥−5.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaala, L.A.; Youssef, D.T.A.; Almagthali, H.; Almohammadi, A.M.; Arab, W.T.; Alzughaibi, T.; Bataweel, N.M.; Ibrahim, R.S. Didemnosides A and B: Antiproliferative Nucleosides from the Red Sea Marine Tunicate Didemnum Species. Mar. Drugs 2025, 23, 262. https://doi.org/10.3390/md23070262
Shaala LA, Youssef DTA, Almagthali H, Almohammadi AM, Arab WT, Alzughaibi T, Bataweel NM, Ibrahim RS. Didemnosides A and B: Antiproliferative Nucleosides from the Red Sea Marine Tunicate Didemnum Species. Marine Drugs. 2025; 23(7):262. https://doi.org/10.3390/md23070262
Chicago/Turabian StyleShaala, Lamiaa A., Diaa T. A. Youssef, Hadeel Almagthali, Ameen M. Almohammadi, Wafaa T. Arab, Torki Alzughaibi, Noor M. Bataweel, and Reham S. Ibrahim. 2025. "Didemnosides A and B: Antiproliferative Nucleosides from the Red Sea Marine Tunicate Didemnum Species" Marine Drugs 23, no. 7: 262. https://doi.org/10.3390/md23070262
APA StyleShaala, L. A., Youssef, D. T. A., Almagthali, H., Almohammadi, A. M., Arab, W. T., Alzughaibi, T., Bataweel, N. M., & Ibrahim, R. S. (2025). Didemnosides A and B: Antiproliferative Nucleosides from the Red Sea Marine Tunicate Didemnum Species. Marine Drugs, 23(7), 262. https://doi.org/10.3390/md23070262