Deep Eutectic Systems: A Game Changer for Marine Bioactives Recovery
Abstract
:1. Introduction
1.1. Deep Eutectic Systems
1.2. Natural Deep Eutectic Systems
2. Materials and Methods
3. Current Applications of Deep Eutectic Systems
Toxicity of DESs/NADESs
4. Extraction of Bioactive Ingredients from Marine Biomass
5. Commercial Products Utilizing DESs
- EMLA® Cream: This topical anesthetic combines lidocaine and prilocaine in a eutectic mixture, enhancing skin penetration and providing effective local anesthesia. Approved by the FDA in 1992, EMLA® Cream is widely used for minor surgical procedures and needle insertions [88].
- SYNERA® Patch: Utilizing a eutectic mixture of lidocaine and tetracaine, this topical patch offers localized pain relief. Its self-heating technology facilitates drug delivery, making it suitable for various dermatological procedures [89].
6. Conclusions and Future Directions
- -
- The lack of standardized protocols for the use of DESs in different industries:
- -
- The long-term stability and reusability of DESs:
- -
- The commercialization of marine products obtained with DESs requires regulatory approval:
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DES | Deep eutectic system/solvent |
ILs | Ionic liquids |
HBA | Hydrogen bond acceptor |
HBD | Hydrogen bond donor |
NADES | Natural deep eutectic system/solvent |
HDES | Hydrophobic deep eutectic system/solvent |
HNADES | Hydrophobic natural deep eutectic system/solvent |
API | Active pharmaceutical ingredient |
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Pace, L.A.; Saritas, O.; Deidun, A. Exploring Future Research and Innovation Directions for a Sustainable Blue Economy. Mar. Policy 2023, 148, 105433. [Google Scholar] [CrossRef]
- Spenger, C.; Saldivia Gonzatti, I.; Kröger, L.; Fleet, C.R.; Voss, R.; Rickels, W. Strong versus Weak Sustainable Development in the Blue Economy: A Study of 15 EU Coastal Countries. NPJ Ocean Sustain. 2024, 3, 48. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, M. Ionic Liquids Toxicity—Benefits and Threats. Int. J. Mol. Sci. 2020, 21, 6267. [Google Scholar] [CrossRef]
- Craveiro, R.; Aroso, I.; Flammia, V.; Carvalho, T.; Viciosa, M.T.; Dionísio, M.; Barreiros, S.; Reis, R.L.; Duarte, A.R.C.; Paiva, A. Properties and Thermal Behavior of Natural Deep Eutectic Solvents. J. Mol. Liq. 2016, 215, 534–540. [Google Scholar] [CrossRef]
- Zainal-Abidin, M.H.; Hayyan, M.; Wong, W.F. Hydrophobic Deep Eutectic Solvents: Current Progress and Future Directions. J. Ind. Eng. Chem. 2021, 97, 142–162. [Google Scholar] [CrossRef]
- Gutiérrez, M.C.; Carriazo, D.; Ania, C.O.; Parra, J.B.; Ferrer, M.L.; del Monte, F. Deep Eutectic Solvents as Both Precursors and Structure Directing Agents in the Synthesis of Nitrogen Doped Hierarchical Carbons Highly Suitable for CO2 Capture. Energy Environ. Sci. 2011, 4, 3535–3544. [Google Scholar] [CrossRef]
- Zhao, P.; Yue, Q.; He, H.; Gao, B.; Wang, Y.; Li, Q. Study on Phase Diagram of Fatty Acids Mixtures to Determine Eutectic Temperatures and the Corresponding Mixing Proportions. Appl. Energy 2014, 115, 483–490. [Google Scholar] [CrossRef]
- Tang, W.; An, Y.; Row, K.H. Emerging Applications of (Micro) Extraction Phase from Hydrophilic to Hydrophobic Deep Eutectic Solvents: Opportunities and Trends. TrAC-Trends Anal. Chem. 2021, 136, 116187. [Google Scholar] [CrossRef]
- Sun, P.; Yang, W.; Sun, T.; Tang, Y.; Li, M.; Cheng, S.; Chen, G. Effects of Ultrasonic-Assisted Natural Deep Eutectic Solvent on the Extraction Rate, Stability and Antifungal Ability of Polyphenols from Cabernet Sauvignon Seeds. Food Res. Int. 2024, 191, 114674. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, S.; Gao, Q.; Qiao, L.; Li, H.; Yang, S.; Yan, G.; Lei, J.; Liang, B.; Kuang, A.; et al. Eco-Friendly and Efficient Extraction of Lonicera Macranthoides Phenylpropanoid Based on Natural Deep Eutectic Solvents: Process Optimization, Extraction Mechanism and Biological Activity. Microchem. J. 2024, 198, 110133. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Daurtseva, A.V.; Pozharitskaya, O.N.; Flisyuk, E.V.; Shikov, A.N. Natural Deep Eutectic Solvents as Alternatives for Extracting Phlorotannins from Brown Algae. Pharm. Chem. J. 2019, 53, 243–247. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharova, L.V.; Daurtseva, A.V.; Flisyuk, E.V.; Shikov, A.N. Efficacy of Natural Deep Eutectic Solvents for Extraction of Hydrophilic and Lipophilic Compounds from Fucus vesiculosus. Molecules 2021, 26, 4198. [Google Scholar] [CrossRef]
- Freitas, D.S.; Rocha, D.; Castro, T.G.; Noro, J.; Castro, V.I.B.; Teixeira, M.A.; Reis, R.L.; Cavaco-Paulo, A.; Silva, C. Green Extraction of Cork Bioactive Compounds Using Natural Deep Eutectic Mixtures. ACS Sustain. Chem. Eng. 2022, 10, 7974–7989. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikova, V.A.; Flisyuk, E.V.; Vishnyakov, E.V.; Makarevich, E.V.; Shikov, A.N. Physicochemical and Antimicrobial Properties of Lactic Acid-Based Natural Deep Eutectic Solvents as a Function of Water Content. Appl. Sci. 2024, 14, 10409. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef]
- Van Osch, D.J.G.P.; Zubeir, L.F.; Van Den Bruinhorst, A.; Rocha, M.A.A.; Kroon, M.C. Hydrophobic Deep Eutectic Solvents as Water-Immiscible Extractants. Green Chem. 2015, 17, 4518–4521. [Google Scholar] [CrossRef]
- Cannavacciuolo, C.; Pagliari, S.; Frigerio, J.; Giustra, C.M.; Labra, M.; Campone, L. Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods 2023, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.M.; Pereira, C.V.; Mano, F.; Silva, E.; Castro, V.I.B.; Sá-Nogueira, I.; Reis, R.L.; Paiva, A.; Matias, A.A.; Duarte, A.R.C. Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Appl. Bio Mater. 2019, 2, 4346–4355. [Google Scholar] [CrossRef] [PubMed]
- Padilla, N.; Delso, I.; Bergua, F.; Lafuente, C.; Artal, M. Characterization of Camphor: Thymol or Dl-Menthol Eutectic Mixtures; Structure, Thermophysical Properties, and Lidocaine Solubility. J. Mol. Liq. 2024, 405, 125069. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chormale, J.H.; Bansal, A.K. Deep Eutectic Systems: An Overview of Fundamental Aspects, Current Understanding and Drug Delivery Applications. Int. J. Pharm. 2021, 610, 121203. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Duan, L.; Lin, Y.; Cui, X.; Yang, Y.; Wang, C. Deep Eutectic Systems as Novel Vehicles for Assisting Drug Transdermal Delivery. Pharmaceutics 2022, 14, 2265. [Google Scholar] [CrossRef]
- Jauregi, P.; Esnal-Yeregi, L.; Labidi, J. Natural Deep Eutectic Solvents (NADES) for the Extraction of Bioactives: Emerging Opportunities in Biorefinery Applications. PeerJ Anal. Chem. 2024, 6, e32. [Google Scholar] [CrossRef]
- Herrero, M. Towards Green Extraction of Bioactive Natural Compounds. Anal. Bioanal. Chem. 2024, 416, 2039–2047. [Google Scholar] [CrossRef]
- Saini, A.; Kumar, A.; Panesar, P.S.; Thakur, A. Potential of Deep Eutectic Solvents in the Extraction of Value-added Compounds from Agro-industrial By-products. Appl. Food Res. 2022, 2, 100211. [Google Scholar] [CrossRef]
- Rente, D.; Cvjetko Bubalo, M.; Panić, M.; Paiva, A.; Caprin, B.; Radojčić Redovniković, I.; Duarte, A.R.C. Review of Deep Eutectic Systems from Laboratory to Industry, Taking the Application in the Cosmetics Industry as an Example. J. Clean. Prod. 2022, 380, 135147. [Google Scholar] [CrossRef]
- Gomes, G.; Mattioli, R.; Pastre, J.C. Amino Acid-Based Deep Eutectic Solvents in Biomass Processing—Recent Advances. J. Braz. Chem. Soc. 2022, 33, 815–823. [Google Scholar] [CrossRef]
- Della Posta, S.; Gallo, V.; Gentili, A.; Fanali, C. Strategies for the Recovery of Bioactive Molecules from Deep Eutectic Solvents Extracts. TrAC Trends Anal. Chem. 2022, 157, 116798. [Google Scholar] [CrossRef]
- Wils, L.; Hilali, S.; Boudesocque-Delaye, L. Biomass Valorization Using Natural Deep Eutectic Solvents: What’s New in France? Molecules 2021, 26, 6556. [Google Scholar] [CrossRef] [PubMed]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources and Agricultural By-Products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Ferreira, C.; Sarraguça, M. A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest. Pharmaceuticals 2024, 17, 124. [Google Scholar] [CrossRef]
- Hanafi, M.A.; Anwar, F.; Saari, N. Valorization of Biomass for Food Protein via Deep Eutectic Solvent Extraction: Understanding the Extraction Mechanism and Impact on Protein Structure and Properties. Food Front. 2024, 5, 1265–1301. [Google Scholar] [CrossRef]
- Kaoui, S.; Chebli, B.; Zaidouni, S.; Basaid, K.; Mir, Y. Deep Eutectic Solvents as Sustainable Extraction Media for Plants and Food Samples: A Review. Sustain. Chem. Pharm. 2023, 31, 100937. [Google Scholar] [CrossRef]
- Gonzalez-Diaz, A.; García-Núñez, J.A. Hydrophilic Deep Eutectic Solvents: A New Generation of Green and Safe Extraction Systems for Bioactive Compounds Obtaining from Natural Oil & Fats—A Review. Sustain. Chem. Pharm. 2023, 36, 101278. [Google Scholar] [CrossRef]
- Aduloju, E.I.; Yahaya, N.; Mohammad Zain, N.; Anuar Kamaruddin, M.; Ariffuddin Abd Hamid, M. An Overview on the Use of DEEP Eutectic Solvents for Green Extraction of Some Selected Bioactive Compounds from Natural Matrices. Adv. J. Chem. Sect. A 2023, 6, 253–300. [Google Scholar] [CrossRef]
- Kaleta, A.; Frolova, N.; Orlova, A.; Soboleva, A.; Osmolovskaya, N.; Flisyuk, E.; Pozharitskaya, O.; Frolov, A.; Shikov, A. The Effects of Selected Extraction Methods and Natural Deep Eutectic Solvents on the Recovery of Active Principles from Aralia elata var. mandshurica (Rupr. & Maxim.) J. Wen: A Non-Targeted Metabolomics Approach. Pharmaceuticals 2024, 17, 355. [Google Scholar] [CrossRef]
- Pestana, S.C.; Machado, J.N.; Pinto, R.D.; Ribeiro, B.D.; Marrucho, I.M. Natural Eutectic Solvents for Sustainable Recycling of Poly(Ethyleneterephthalate): Closing the Circle. Green Chem. 2021, 23, 9460–9464. [Google Scholar] [CrossRef]
- Jesus, A.R.; Duarte, A.R.C.; Paiva, A. Use of Natural Deep Eutectic Systems as New Cryoprotectant Agents in the Vitrification of Mammalian Cells. Sci. Rep. 2022, 12, 8095. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhu, M.; Hu, T.; Liu, C. Natural Deep Eutectic Solvent—A Novel Green Solvent for Protein Stabilization. Int. J. Biol. Macromol. 2023, 247, 125477. [Google Scholar] [CrossRef] [PubMed]
- Jesus, A.R.; Paiva, A.; Duarte, A.R.C. Current Developments and Future Perspectives on Biotechnology Applications of Natural Deep Eutectic Systems. Curr. Opin. Green Sustain. Chem. 2023, 39, 100731. [Google Scholar] [CrossRef]
- Hornberger, K.; Li, R.; Duarte, A.R.C.; Hubel, A. Natural Deep Eutectic Systems for Nature-Inspired Cryopreservation of Cells. AIChE J. 2021, 67, e17085. [Google Scholar] [CrossRef]
- Silva, E.; Oliveira, F.; Silva, J.M.; Reis, R.L.; Duarte, A.R.C. Untangling the Bioactive Properties of Therapeutic Deep Eutectic Solvents Based on Natural Terpenes. Curr. Res. Chem. Biol. 2021, 1, 100003. [Google Scholar] [CrossRef]
- Pereira, J.; Miguel Castro, M.; Santos, F.; Rita Jesus, A.; Paiva, A.; Oliveira, F.; Duarte, A.R.C. Selective Terpene Based Therapeutic Deep Eutectic Systems against Colorectal Cancer. Eur. J. Pharm. Biopharm. 2022, 175, 13–26. [Google Scholar] [CrossRef]
- García, C.B.; Concha, J.; Culleré, L.; Lomba, L.; Sangüesa, E.; Ribate, M.P. Has the Toxicity of Therapeutic Deep Eutectic Systems Been Assessed? Appl. Sci. 2023, 13, 5980. [Google Scholar] [CrossRef]
- Lomba, L.; Ribate, M.P.; Sangüesa, E.; Concha, J.; Garralaga, M.; Errazquin, D.; García, C.B.; Giner, B. Deep Eutectic Solvents: Are They Safe? Appl. Sci. 2021, 11, 10061. [Google Scholar] [CrossRef]
- García-Salinas, S.; Elizondo-Castillo, H.; Arruebo, M.; Mendoza, G.; Irusta, S. Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils. Molecules 2018, 23, 1399. [Google Scholar] [CrossRef]
- Garralaga, M.P.; Lomba, L.; Leal-Duaso, A.; Gracia-Barberán, S.; Pires, E.; Giner, B. Ecotoxicological Study of Bio-Based Deep Eutectic Solvents Formed by Glycerol Derivatives in Two Aquatic Biomodels. Green Chem. 2022, 24, 5228–5241. [Google Scholar] [CrossRef]
- Nguyen, A.Q.; Mohammadi, M.; Alian, M.; Muralitharan, G.; Chauhan, V.S.; Balan, V. Exploring the Versatility of Porphyridium sp.: A Comprehensive Review of Cultivation, Bio-Product Extraction, Purification, and Characterization Techniques. Biotechnol. Adv. 2024, 77, 108471. [Google Scholar] [CrossRef] [PubMed]
- Roy, V.C.; Haq, M.; Ho, T.C.; Park, J.-S.; Chamika, W.A.S.; Ali, M.S.; Haque, A.R.; Zhang, W.; Chun, B.-S. Important Carotenoids Derived from Marine Biomass: Extraction, Stabilization, and Potentiality in Food, Cosmetics, and Pharmaceutical Application. Food Biosci. 2024, 60, 104421. [Google Scholar] [CrossRef]
- Sacramento, M.M.A.; Borges, J.; Correia, F.J.S.; Calado, R.; Rodrigues, J.M.M.; Patrício, S.G.; Mano, J.F. Green Approaches for Extraction, Chemical Modification and Processing of Marine Polysaccharides for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 1041102. [Google Scholar] [CrossRef] [PubMed]
- Quitério, E.; Grosso, C.; Ferraz, R.; Delerue-Matos, C.; Soares, C. A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds. Mar. Drugs 2022, 20, 677. [Google Scholar] [CrossRef]
- McReynolds, C.; Amandine, A.; Natalia, C.; Fernandes, S.C.M. Green in the Deep Blue: Deep Eutectic Solvents as Versatile Systems for the Processing of Marine Biomass. Green Chem. Lett. Rev. 2022, 15, 383–404. [Google Scholar] [CrossRef]
- Mehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green Extraction of Value-Added Compounds From Microalgae: A Short Review on Natural Deep Eutectic Solvents (NaDES) and Related Pre-Treatments. J. Environ. Chem. Eng. 2021, 9, 105989. [Google Scholar] [CrossRef]
- Vo, T.P.; Nguyen, D.Q.; Thi Ho, T.A.; Nguyen, T.M.; Huy Ha, N.M.; Vo, P.H.N. Novel Extraction of Bioactive Compounds from Algae Using Green Solvent: Principles, Applications, and Future Perspectives. J. Agric. Food Res. 2024, 18, 101535. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, L.; Chen, L.; Zhou, W.; Wang, C.; Ma, L. Exploring Carbohydrate Extraction from Biomass Using Deep Eutectic Solvents: Factors and Mechanisms. iScience 2023, 26, 107671. [Google Scholar] [CrossRef]
- Ling, J.K.; Hadinoto, K. Deep Eutectic Solvent as Green Solvent in Extraction of Biological Macromolecules: A Review. Int. J. Mol. Sci. 2022, 23, 3381. [Google Scholar] [CrossRef]
- Pitacco, W.; Samorì, C.; Pezzolesi, L.; Gori, V.; Grillo, A.; Tiecco, M.; Vagnoni, M.; Galletti, P. Extraction of Astaxanthin from Haematococcus pluvialis with Hydrophobic Deep Eutectic Solvents Based on Oleic Acid. Food Chem. 2022, 379, 132156. [Google Scholar] [CrossRef]
- Xu, D.; Chow, J.; Weber, C.C.; Packer, M.A.; Baroutian, S.; Shahbaz, K. Evaluation of Deep Eutectic Solvents for the Extraction of Fucoxanthin from the Alga Tisochrysis lutea—COSMO-RS Screening and Experimental Validation. J. Environ. Chem. Eng. 2022, 10, 108370. [Google Scholar] [CrossRef]
- Resende, J.; Sosa, F.H.B.; Coutinho, J.A.P.; Rocha, J.; Silvestre, A.J.D.; Santos, S.A.O. Sustainable Phytosterol Extraction from Codium tomentosum Using Eutectic Solvents. ACS Sustain. Chem. Eng. 2024, 12, 9037–9044. [Google Scholar] [CrossRef]
- Shikov, A.N.; Obluchinskaya, E.D.; Flisyuk, E.V.; Terninko, I.I.; Generalova, Y.E.; Pozharitskaya, O.N. The Impact of Natural Deep Eutectic Solvents and Extraction Method on the Co-Extraction of Trace Metals from Fucus vesiculosus. Mar. Drugs 2022, 20, 324. [Google Scholar] [CrossRef]
- Santos, J.M.; Jesus, B.C.; Ribeiro, H.; Martins, A.; Marto, J.; Fitas, M.; Pinto, P.; Alves, C.; Silva, J.; Pedrosa, R.; et al. Extraction of Macroalgae Phenolic Compounds for Cosmetic Application Using Eutectic Solvents. Algal Res. 2024, 79, 103438. [Google Scholar] [CrossRef]
- Cokdinleyen, M.; Domínguez-Rodríguez, G.; Kara, H.; Ibáñez, E.; Cifuentes, A. New Green Biorefinery Strategies to Valorize Bioactive Fractions from Palmaria palmata. Mar. Drugs 2024, 22, 467. [Google Scholar] [CrossRef]
- Zeb, L.; Gerhardt, A.S.; Johannesen, B.A.; Underhaug, J.; Jordheim, M. Ultrasonic-Assisted Water-Rich Natural Deep Eutectic Solvents for Sustainable Polyphenol Extraction from Seaweed: A Case Study on Cultivated Saccharina latissima. ACS Sustain. Chem. Eng. 2024, 12, 14921–14929. [Google Scholar] [CrossRef]
- Moldes, D.; Requejo, P.F.; Vega, M.; Bolado, S.; Wijffels, R.H.; Kazbar, A. Protein Extraction from Seaweed Saccharina latissima with Deep Eutectic Solvents. Microchem. J. 2024, 205, 111275. [Google Scholar] [CrossRef]
- Kholany, M.; Reynaga-Navarro, W.; Abranches, D.O.; Wijffels, R.; Coutinho, J.A.P.; Ventura, S.P.M.; Kazbar, A. Extraction and Separation of Pigments from Saccharina latissima Using Eutectic Solvents. Sep. Purif. Technol. 2025, 357, 130053. [Google Scholar] [CrossRef]
- Jesus, B.C.; de Miera, B.S.; Santiago, R.; Martins, A.; Pedrosa, R.; González-Miquel, M.; Marrucho, I.M. Valorisation of Sargassum muticum through the Extraction of Phenolic Compounds Using Eutectic Solvents and Intensification Techniques. RSC Sustain. 2023, 1, 1245–1258. [Google Scholar] [CrossRef]
- Wils, L.; Yagmur, M.; Bellin, N.; Phelippe, M.; Chevalley, A.; Bodet, C.; Boudesocque-Delaye, L. Innovative Alkanediol-Based Eutectic Solvents for Extracting/Pre-Formulating Dermatologically Valuable Free Fatty Acids from Spirulina and Porphyridium Cakes. Mar. Drugs 2024, 22, 281. [Google Scholar] [CrossRef]
- Ozel, N.; Inam, A.; Elibol, M. Exploring Deep Eutectic Solvents for Enhanced Extraction of Bio-Active Compounds from Microalgae Biomass. J. Mol. Liq. 2024, 407, 125237. [Google Scholar] [CrossRef]
- Dardavila, M.M.; Pappou, S.; Savvidou, M.G.; Louli, V.; Katapodis, P.; Stamatis, H.; Magoulas, K.; Voutsas, E. Extraction of Bioactive Compounds from C. vulgaris Biomass Using Deep Eutectic Solvents. Molecules 2023, 28, 415. [Google Scholar] [CrossRef] [PubMed]
- Al Fuhaid, L.; Wellman, G.B.; Kharbatia, N.; Farinha, A.S.F.; Vrouwenvelder, J.S.; Verpoorte, R.; Choi, Y.H.; Witkamp, G.-J.; Lauersen, K.J.; Fortunato, L. Green Extraction of Pigment from Astaxanthin-Producing Algae Using Natural Deep Eutectic Solvents. Algal Res. 2024, 82, 103668. [Google Scholar] [CrossRef]
- Moreno Martínez, P.; Ortiz-Martínez, V.M.; Sánchez Segado, S.; Salar-García, M.J.; de los Ríos, A.P.; Hernández Fernández, F.J.; Lozano-Blanco, L.J.; Godínez, C. Deep Eutectic Solvents for the Extraction of Fatty Acids from Microalgae Biomass: Recovery of Omega-3 Eicosapentaenoic Acid. Sep. Purif. Technol. 2022, 300, 121842. [Google Scholar] [CrossRef]
- Singh, K.; Krishna Paidi, M.; Kulshrestha, A.; Bharmoria, P.; Kumar Mandal, S.; Kumar, A. Deep Eutectic Solvents Based Biorefining of Value-Added Chemicals from the Diatom Thalassiosira andamanica at Room Temperature. Sep. Purif. Technol. 2022, 298, 121636. [Google Scholar] [CrossRef]
- Qu, H.; Wu, Y.; Luo, Z.; Dong, Q.; Yang, H.; Dai, C. An Efficient Approach for Extraction of Polysaccharide from Abalone (Haliotis discus Hannai Ino) Viscera by Natural Deep Eutectic Solvent. Int. J. Biol. Macromol. 2023, 244, 125336. [Google Scholar] [CrossRef]
- Ma, J.; Yu, Y.; Chu, D.; Zhu, S.; Liu, Q.; Yin, H. Efficient and Eco-Friendly Chitin Production from Crab Shells Using Novel Deep Eutectic Solvents. J. Polym. Environ. 2024, 32, 6070–6079. [Google Scholar] [CrossRef]
- Abdallah, M.M.; Cardeira, M.; Matias, A.A.; Bronze, M.R.; Fernández, N. Lactic Acid-Based Natural Deep Eutectic Solvents to Extract Bioactives from Marine By-Products. Molecules 2022, 27, 4356. [Google Scholar] [CrossRef]
- Silva, I.; Vaz, B.M.C.; Sousa, S.; Pintado, M.M.; Coscueta, E.R.; Ventura, S.P.M. Gastrointestinal Delivery of Codfish Skin-Derived Collagen Hydrolysates: Deep Eutectic Solvent Extraction and Bioactivity Analysis. Food Res. Int. 2024, 175, 113729. [Google Scholar] [CrossRef]
- McReynolds, C.; Adrien, A.; de Fraissinette, N.B.; Olza, S.; Fernandes, S.C.M. Deep Eutectic Solvents for the Extraction of β-Chitin from Loligo vulgaris Squid Pens: A Sustainable Way to Valorize Fishery by-Products. Biomass Convers. Biorefin. 2024, 14, 13847–13859. [Google Scholar] [CrossRef]
- Topal, T.; Card, A.; Mackenzie, A.D.; Lagutin, K.; Marshall, S.N.; Cumming, A.H.; Killeen, D.P. Hydrophobic Natural Deep Eutectic Solvents for Marine Lipid Extraction. J. Am. Oil Chem. Soc. 2024, 101, 361–367. [Google Scholar] [CrossRef]
- Ortizo, R.G.G.; Sharma, V.; Tsai, M.-L.; Nargotra, P.; Sun, P.-P.; Chen, C.-W.; Dong, C.-D. A Novel Deep Eutectic Solvent-Based Green Extraction and Purification of DPP-IV Inhibitory Peptides from Tilapia (Oreochromis niloticus) Viscera Hydrolysate. Food Biosci. 2024, 61, 104658. [Google Scholar] [CrossRef]
- Ali, M.S.; Roy, V.C.; Park, J.-S.; Haque, A.R.; Mok, J.H.; Zhang, W.; Chun, B.-S. Protein and Polysaccharide Recovery from Shrimp Wastes by Natural Deep Eutectic Solvent Mediated Subcritical Water Hydrolysis for Biodegradable Film. Mar. Biotechnol. 2024, 26, 876–890. [Google Scholar] [CrossRef] [PubMed]
- Anstiss, L.; Weber, C.C.; Baroutian, S.; Shahbaz, K. Menthol-Based Deep Eutectic Solvents as Green Extractants for the Isolation of Omega-3 Polyunsaturated Fatty Acids from Perna Canaliculus. J. Chem. Technol. Biotechnol. 2023, 98, 1791–1802. [Google Scholar] [CrossRef]
- McReynolds, C.; Adrien, A.; Petitpas, A.; Rubatat, L.; Fernandes, S.C.M. Double Valorization for a Discard—α-Chitin and Calcium Lactate Production from the Crab Polybius henslowii Using a Deep Eutectic Solvent Approach. Mar. Drugs 2022, 20, 717. [Google Scholar] [CrossRef]
- Batista, M.P.; Fernández, N.; Gaspar, F.B.; do Rosário Bronze, M.; Duarte, A.R.C. Extraction of Biocompatible Collagen From Blue Shark Skins Through the Conventional Extraction Process Intensification Using Natural Deep Eutectic Solvents. Front. Chem. 2022, 10, 937036. [Google Scholar] [CrossRef]
- Wahlgren, C.-F.; Quiding, H. Depth of Cutaneous Analgesia after Application of a Eutectic Mixture of the Local Anesthetics Lidocaine and Prilocaine (EMLA Cream). J. Am. Acad. Dermatol. 2000, 42, 584–588. [Google Scholar] [CrossRef]
- Sawyer, J.; Febbraro, S.; Masud, S.; Ashburn, M.A.; Campbell, J.C. Heated Lidocaine/Tetracaine Patch (Synera™, Rapydan™) Compared with Lidocaine/Prilocaine Cream (EMLA®) for Topical Anaesthesia before Vascular Access. Br. J. Anaesth. 2009, 102, 210–215. [Google Scholar] [CrossRef]
- Mano, F.; Martins, M.; Sá-Nogueira, I.; Barreiros, S.; Borges, J.P.; Reis, R.L.; Duarte, A.R.C.; Paiva, A. Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatin. AAPS PharmSciTech 2017, 18, 2579–2585. [Google Scholar] [CrossRef]
- del Mar Contreras-Gámez, M.; Galán-Martín, Á.; Seixas, N.; da Costa Lopes, A.M.; Silvestre, A.; Castro, E. Deep Eutectic Solvents for Improved Biomass Pretreatment: Current Status and Future Prospective towards Sustainable Processes. Bioresour. Technol. 2023, 369, 128396. [Google Scholar] [CrossRef]
Marine Organisms | DES/NADES | Biomolecules | References |
---|---|---|---|
Macroalgae | |||
Ascophyllum nodosum | Betaine:lactic acid:H2O (1:1:2) Choline chloride:malic acid:H2O (2:1:1) | Phlorotannins | [16] |
Codium tomentosum | Menthol:octanoic acid | Phytosterols | [63] |
Fucus vesiculosus | Choline chloride:1,4-butanediol (1:5) | Sugars | [59] |
Fucus vesiculosus | Lactic acid:glucose:H2O (5:3:1) | Trace Metals | [64] |
Fucus vesiculosus | Betaine:lactic acid:H2O (1:1:2) Choline chloride:malic acid:H2O (2:1:1) | Phlorotannins | [16] |
Fucus vesiculosus | Lactic acid:choline chloride (3:1) Lactic acid:glucose:H2O (5:1:3) | Ascorbic Acid Fucoxanthin | [17] |
Gelidium corneum | L-lactic acid:fructose (7:1) | Phenolics | [65] |
Kappaphycus alvarezii | Choline chloride:urea (1:2) Choline chloride:ethylene glycol (1:2) Choline chloride:glycerol (1:2) 10% hydrated choline chloride:urea (1:2) 10% hydrated choline chloride: ethylene glycol (1:2) 10% hydrated choline chloride: glycerol (1:2) | Carrageenans | [59] |
Palmaria palmata | Glycerol:glucose (2:1/50%) Choline chloride:glycerol (1:2/60%) | R-Phycocyanin Allophycocyanin B-Phycoerythrin Proteins Sulfated Polysaccharides Polyphenols | [66] |
Saccharina japonica | Choline chloride:glycerol (1:2) | Fucoidan Alginate | [59] |
Saccharina latissima | Betaine:1,3-butanediol (1:1) | Polyphenols | [67] |
Saccharina latissima | Choline chloride:oxalic acid; choline chloride:urea; choline chloride:levulinic acid; betaine:urea:water | Proteins | [68] |
Saccharina latissima | Menthol:levulinic acid | Chlorophyll Fucoxanthin | [69] |
Sargassummuticum | L-lactic acid:fructose (5:1) L-lactic acid:glucose (5:1) L-lactic acid:sodium acetate (7:1) | Phenolics | [65] |
Sargassummuticum | Proline:propylene glycol Proline:1,2-butanediol Choline:citric acid | Phenolics | [70] |
Microalgae | |||
Arthrospira platensis | Octanoic acid:1,3-propanediol (5:1) Octanoic acid:decanoic acid:1,3-propanediol (3:1:1) | Free Fatty Acids | [71] |
Chlorella vulgaris | Choline chloride:acetic acid (1:2) Choline chloride:urea (1:2) | Lipids Carotenoids Proteins Carbohydrates Phenolics | [72] |
Chlorella vulgaris | Choline chloride:1,2-butanediol (1:4) Choline chloride:ethylene glycol (1:2) Choline chloride:glycerol (1:2) | Carotenoids Phenolics | [73] |
Engineered Chlamydomonas reinhardtii | Menthol:acetic acid (1:1) Menthol:lactic acid:H2O (3:3:1) Menthol:caprylic acid (1:1) | Astaxanthin | [74] |
Haematococcus lacustris | Menthol:acetic acid (1:1) Menthol:lactic acid:H2O (3:3:1) Menthol:caprylic acid (1:1) | Astaxanthin | [74] |
Haematococcuspluvialis | Oleic acid:thymol (1:1) | Astaxanthin | [60] |
Nannochloropsis gaditana | Choline chloride:ethylene glycol | Eicosapentaenoic Acid (EPA) | [75] |
Neochloris texensis | Choline chloride:acetic acid (1:2) Choline chloride:urea (1:2) | Lipids Carotenoids Proteins Carbohydrates Phenolics | [72] |
Porphyridium cruentum | Octanoic acid:1,3-propanediol (5:1) Octanoic acid:decanoic acid:1,3-propanediol (3:1:1) | Free Fatty Acids | [71] |
Scenedesmus protuberans | Choline chloride:acetic acid (1:2) Choline chloride:urea (1:2) | Lipids Carotenoids Proteins Carbohydrates Phenolics | [72] |
Schizochytrium sp. | Choline chloride:acetic acid (1:2) Choline chloride:urea (1:2) | Lipids Carotenoids Proteins Carbohydrates Phenolics | [72] |
Spirulina sp. | Nonanoic acid:decanoic acid:lauric acid (3:2:1) | Fatty Acids | [60] |
Thalassiosira andamanica | HBA:quaternary ammonium salt HBD:organic acids and alcohols | Fucoxanthin Chlorophyll Biosilica | [76] |
Tisochrysis lutea | Thymol:dodecanoic acid (1.25:1) | Fucoxanthin | [62] |
Mollusk | |||
Haliotis discus Hannai Ino | Choline chloride:ethylene glycol (1:3/25%) | Polysaccharides | [77] |
Marine By-Products | |||
Chionoecetes opilio (crab shells) | Triethylbenzylammonium chloride:lactic acid (1:27) | Chitin | [78] |
Codfish bones | Fructose:lactic acid (1:5) Urea:lactic acid (1:4) | Lipids Proteins | [79] |
Gadus morhua (fish skin, Atlantic codfish) | Urea:propionic acid (1:2) | Collagen Hydrolisates | [80] |
Loligo vulgaris (squid pens) | Potassium carbonate:glycerol | beta-Chitin | [81] |
Macruronus novaezelandaiae (tissues of fish species) | Menthol:carvacrol Menthol:thymol | Lipids | [82] |
Mussel meat | Fructose:lactic acid (1:5) Urea:lactic acid (1:4) | Lipids Proteins | [79] |
Oreochromis niloticus (tilapia viscera hydrolysate) | Choline chloride:1,4-butanediol Choline chloride:glycerol Choline chloride:lactic acid Choline chloride:urea Betaine:propylene glycol | Protein-Rich Extracts | [83] |
Penaeus monodon (Shrimp shells) | Choline chloride:glycerol (1:2) | Chitin | [84] |
Perna canaliculus | Menthol:carvacrol Menthol:thymol | Lipids | [82] |
Perna canaliculus | Menthol:lidocaine (1:1) Menthol:lidocaine (1:2) | Eicosapentaenoic Acid (EPA) Docosahexaenoic Acid (DHA) | [85] |
Polybius henslowii | Choline chloride:malonic acid Choline chloride:lactic acid | alpha-Chitin | [86] |
Prionace glauca (fish skins) | Citric acid:xylitol:H2O (1:1:10) | Collagen | [87] |
Trachurus declivis (tissues of fish species) | Menthol:carvacrol Menthol:thymol | Lipids | [82] |
Tuna vitreous humor | Fructose:lactic acid (1:5) Urea:lactic acid (1:4) | Lipids Proteins | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amador, S.; Martins, A.; Matias, M.; Pedrosa, R.; Pinteus, S. Deep Eutectic Systems: A Game Changer for Marine Bioactives Recovery. Mar. Drugs 2025, 23, 211. https://doi.org/10.3390/md23050211
Amador S, Martins A, Matias M, Pedrosa R, Pinteus S. Deep Eutectic Systems: A Game Changer for Marine Bioactives Recovery. Marine Drugs. 2025; 23(5):211. https://doi.org/10.3390/md23050211
Chicago/Turabian StyleAmador, Sandro, Alice Martins, Margarida Matias, Rui Pedrosa, and Susete Pinteus. 2025. "Deep Eutectic Systems: A Game Changer for Marine Bioactives Recovery" Marine Drugs 23, no. 5: 211. https://doi.org/10.3390/md23050211
APA StyleAmador, S., Martins, A., Matias, M., Pedrosa, R., & Pinteus, S. (2025). Deep Eutectic Systems: A Game Changer for Marine Bioactives Recovery. Marine Drugs, 23(5), 211. https://doi.org/10.3390/md23050211