Cancer Cell Cytotoxicity of Marinopyrroles, Pyrrolomycins, and Their Derivatives
Abstract
1. Introduction
2. Mechanism of Action
2.1. Mcl-1 Inhibition and Proteasomal Degradation
2.2. Integration of Mcl-1 Degradation into Apoptotic Signaling Networks
2.3. Actin Cytoskeleton Targeting as a Secondary Mechanism of Marinopyrrole A
2.4. Mitochondrial Dysfunction and ROS Accumulation
2.5. TRAIL Sensitization via DR5 and cFLIP Regulation
2.6. MYCN/MYC Modulation with MP1
3. Natural Compounds
3.1. Cancer Cell Cytotoxicity of Natural Marinopyrroles and Pyrrolomycins
3.2. Limitations of Natural Marinopyrroles and Pyrrolomycins
3.2.1. Chemical and Structural Limitations
3.2.2. Potential Toxicity
4. Synthetic Derivatives
Anti-Cancer Activity of Synthetic Derivatives
5. Discussion
6. Conclusions
Future Directions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Bizuayehu, H.M.; Ahmed, K.Y.; Kibret, G.D.; Dadi, A.F.; Belachew, S.A.; Bagade, T.; Tegegne, T.K.; Venchiarutti, R.L.; Kibret, K.T.; Hailegebireal, A.H.; et al. Global Disparities of Cancer and Its Projected Burden in 2050. JAMA Netw. Open 2024, 7, e2443198. [Google Scholar] [CrossRef]
- Wang, K.; Tepper, J.E. Radiation Therapy-Associated Toxicity: Etiology, Management, and Prevention. CA Cancer J. Clin. 2021, 71, 437–454. [Google Scholar] [CrossRef] [PubMed]
- Mariotto, A.B.; Enewold, L.; Zhao, J.; Zeruto, C.A.; Yabroff, K.R. Medical Care Costs Associated with Cancer Survivorship in the United States. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Tian, Q.; Teng, Q.; Wurpel, J.N.D.; Zeng, L.; Pan, Y.; Chen, Z. Understanding and Targeting Resistance Mechanisms in Cancer. MedComm 2023, 4, e265. [Google Scholar] [CrossRef] [PubMed]
- Debela, D.T.; Muzazu, S.G.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New Approaches and Procedures for Cancer Treatment: Current Perspectives. SAGE Open Med. 2021, 9, 20503121211034366. [Google Scholar] [CrossRef]
- Dalisay, D.S.; Tenebro, C.P.; Sabido, E.M.; Suarez, A.F.L.; Paderog, M.J.V.; Reyes-Salarda, R.; Saludes, J.P. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar. Drugs 2024, 22, 114. [Google Scholar] [CrossRef]
- Marine Organisms as a Source of New Anticancer Agents—The Lancet Oncology. Available online: https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(00)00292-8/abstract (accessed on 1 September 2025).
- Barone, A.; Chi, D.-C.; Theoret, M.R.; Chen, H.; He, K.; Kufrin, D.; Helms, W.S.; Subramaniam, S.; Zhao, H.; Patel, A.; et al. FDA Approval Summary: Trabectedin for Unresectable or Metastatic Liposarcoma or Leiomyosarcoma Following an Anthracycline-Containing Regimen. Clin. Cancer Res. 2017, 23, 7448–7453. [Google Scholar] [CrossRef]
- Osgood, C.L.; Chuk, M.K.; Theoret, M.R.; Huang, L.; He, K.; Her, L.; Keegan, P.; Pazdur, R. FDA Approval Summary: Eribulin for Patients with Unresectable or Metastatic Liposarcoma Who Have Received a Prior Anthracycline-Containing Regimen. Clin. Cancer Res. 2017, 23, 6384–6389. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research. FDA Grants Accelerated Approval to Lubinectedin for Metastatic Small Cell Lung Cancer. FDA. June 2020. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-grants-accelerated-approval-lurbinectedin-metastatic-small-cell-lung-cancer (accessed on 6 October 2025).
- de Claro, R.A.; McGinn, K.; Kwitkowski, V.; Bullock, J.; Khandelwal, A.; Habtemariam, B.; Ouyang, Y.; Saber, H.; Lee, K.; Koti, K.; et al. Food and Drug Administration Approval Summary: Brentuximab Vedotin for the Treatment of Relapsed Hodgkin Lymphoma or Relapsed Systemic Anaplastic Large-Cell Lymphoma. Clin. Cancer Res. 2012, 18, 5845–5849. [Google Scholar] [CrossRef]
- Venkatesh, P.; Kasi, A. Anthracyclines. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Alam, K.; Mazumder, A.; Sikdar, S.; Zhao, Y.-M.; Hao, J.; Song, C.; Wang, Y.; Sarkar, R.; Islam, S.; Zhang, Y.; et al. Streptomyces: The Biofactory of Secondary Metabolites. Front. Microbiol. 2022, 13, 968053. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.C.; Prieto-Davo, A.; Jensen, P.R.; Fenical, W. The Marinopyrroles, Antibiotics of an Unprecedented Structure Class from a Marine Streptomyces sp. Org. Lett. 2008, 10, 629. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.C.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Structures, Reactivities, and Antibiotic Properties of the Marinopyrroles A–F. J. Org. Chem. 2010, 75, 3240–3250. [Google Scholar] [CrossRef]
- Charan, R.D.; Schlingmann, G.; Bernan, V.S.; Feng, X.; Carter, G.T. Additional Pyrrolomycins from Cultures of Streptomyces Fumanus. J. Nat. Prod. 2005, 68, 277–279. [Google Scholar] [CrossRef]
- Mahan, K.M.; Klingeman, D.M.; Hettich, R.L.; Parry, R.J.; Graham, D.E. Draft Genome Sequence of Streptomyces Vitaminophilus ATCC 31673, a Producer of Pyrrolomycin Antibiotics, Some of Which Contain a Nitro Group. Genome Announc. 2016, 4, e01582-15. [Google Scholar] [CrossRef]
- PYRROLOMYCINS C, D AND E, NEW MEMBERS OF PYRROLOMYCINS. Available online: https://www.jstage.jst.go.jp/article/antibiotics1968/36/10/36_10_1263/_article (accessed on 1 September 2025).
- Ezaki, N.; Koyama, M.; Kodama, Y.; Shomura, T.; Tashiro, K.; Tsuruoka, T.; Inouye, S.; Sakai, S.-I. Pyrrolomycins F1, F2a, F2b and F3, New Metabolites Produced by the Addition of Bromide to the Fermentation. J. Antibiot. 1983, 36, 1431–1438. [Google Scholar] [CrossRef]
- Barreca, M.; Buttacavoli, M.; Di Cara, G.; D’Amico, C.; Peri, E.; Spanò, V.; Li Petri, G.; Barraja, P.; Raimondi, M.V.; Cancemi, P.; et al. Exploring the Anticancer Activity and the Mechanism of Action of Pyrrolomycins F Obtained by Microwave-Assisted Total Synthesis. Eur. J. Med. Chem. 2023, 253, 115339. [Google Scholar] [CrossRef]
- Cheng, C.; Pan, L.; Chen, Y.; Song, H.; Qin, Y.; Li, R. Total Synthesis of (±)-Marinopyrrole A and Its Library as Potential Antibiotic and Anticancer Agents. J. Comb. Chem. 2010, 12, 541–547. [Google Scholar] [CrossRef]
- Euteneuer, C.F.; Davis, B.N.; Lui, L.M.; Neville, A.J.; Davis, P.H. Expanded Gram-Negative Activity of Marinopyrrole A. Pathogens 2025, 14, 290. [Google Scholar] [CrossRef]
- Cascioferro, S.; Raimondi, M.V.; Cusimano, M.G.; Raffa, D.; Maggio, B.; Daidone, G.; Schillaci, D. Pharmaceutical Potential of Synthetic and Natural Pyrrolomycins. Molecules 2015, 20, 21658–21671. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, A. MCL-1 as a Potent Target for Cancer: Recent Advancements, Structural Insights and SAR Studies. Bioorganic Chem. 2025, 156, 108211. [Google Scholar] [CrossRef]
- Li, R. Marinopyrroles: Unique Drug Discoveries Based on Marine Natural Products. Med. Res. Rev. 2016, 36, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, M.V.; Presentato, A.; Li Petri, G.; Buttacavoli, M.; Ribaudo, A.; De Caro, V.; Alduina, R.; Cancemi, P. New Synthetic Nitro-Pyrrolomycins as Promising Antibacterial and Anticancer Agents. Antibiotics 2020, 9, 292. [Google Scholar] [CrossRef] [PubMed]
- McGuire, T.R.; Coulter, D.W.; Bai, D.; Sughroue, J.A.; Li, J.; Yang, Z.; Qiao, Z.; Liu, Y.; Murry, D.J.; Chhonker, Y.S.; et al. Effects of Novel Pyrrolomycin MP1 in MYCN Amplified Chemoresistant Neuroblastoma Cell Lines Alone and Combined with Temsirolimus. BMC Cancer 2019, 19, 837. [Google Scholar] [CrossRef] [PubMed]
- Aldhafiri, W.N.; Chhonker, Y.S.; Zhang, Y.; Coutler, D.W.; McGuire, T.R.; Li, R.; Murry, D.J. Assessment of Tissue Distribution and Metabolism of MP1, a Novel Pyrrolomycin, in Mice Using a Validated LC-MS/MS Method. Molecules 2020, 25, 5898. [Google Scholar] [CrossRef]
- Coulter, D.W.; Chhonker, Y.S.; Kumar, D.; Kesherwani, V.; Aldhafiri, W.N.; McIntyre, E.M.; Alexander, G.; Ray, S.; Joshi, S.S.; Li, R.; et al. Marinopyrrole Derivative MP1 as a Novel Anti-Cancer Agent in Group 3 MYC-Amplified Medulloblastoma. J. Exp. Clin. Cancer Res. CR 2024, 43, 18. [Google Scholar] [CrossRef]
- Kale, J.; Osterlund, E.J.; Andrews, D.W. BCL-2 Family Proteins: Changing Partners in the Dance towards Death. Cell Death Differ. 2018, 25, 65–80. [Google Scholar] [CrossRef]
- Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of Apoptosis by the BCL-2 Protein Family: Implications for Physiology and Therapy. Nat. Rev. Mol. Cell Biol. 2014, 15, 49–63. [Google Scholar] [CrossRef]
- BH3-Mimetics: Recent Developments in Cancer Therapy|Journal of Experimental & Clinical Cancer Research|Full Text. Available online: https://jeccr.biomedcentral.com/articles/10.1186/s13046-021-02157-5 (accessed on 1 September 2025).
- Tse, C.; Shoemaker, A.R.; Adickes, J.; Anderson, M.G.; Chen, J.; Jin, S.; Johnson, E.F.; Marsh, K.C.; Mitten, M.J.; Nimmer, P.; et al. ABT-263: A Potent and Orally Bioavailable Bcl-2 Family Inhibitor. Cancer Res. 2008, 68, 3421–3428. [Google Scholar] [CrossRef]
- Doi, K.; Gowda, K.; Liu, Q.; Lin, J.-M.; Sung, S.-S.; Dower, C.; Claxton, D.; Loughran, T.P.; Amin, S.; Wang, H.-G. Pyoluteorin Derivatives Induce Mcl-1 Degradation and Apoptosis in Hematological Cancer Cells. Cancer Biol. Ther. 2014, 15, 1688–1699. [Google Scholar] [CrossRef]
- Proteasomal Degradation of Mcl-1 by Maritoclax Induces Apoptosis and Enhances the Efficacy of ABT-737 in Melanoma Cells|PLoS ONE. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078570 (accessed on 1 September 2025).
- Glaser, S.P.; Lee, E.F.; Trounson, E.; Bouillet, P.; Wei, A.; Fairlie, W.D.; Izon, D.J.; Zuber, J.; Rappaport, A.R.; Herold, M.J.; et al. Anti-Apoptotic Mcl-1 Is Essential for the Development and Sustained Growth of Acute Myeloid Leukemia. Genes Dev. 2012, 26, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Letai, A.; Sarosiek, K. Regulation of Apoptosis in Health and Disease: The Balancing Act of BCL-2 Family Proteins. Nat. Rev. Mol. Cell Biol. 2019, 20, 175–193. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Wei, A.H.; Pollyea, D.A.; Fathi, A.T.; Vyas, P.; DiNardo, C.D. New Directions for Emerging Therapies in Acute Myeloid Leukemia: The next Chapter. Blood Cancer J. 2020, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Gerecitano, J.; Robak, T.; Serna, J.D.; et al. Venetoclax–Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2018, 378, 1107–1120. [Google Scholar] [CrossRef]
- Fischer, K.; Al-Sawaf, O.; Bahlo, J.; Fink, A.-M.; Tandon, M.; Dixon, M.; Robrecht, S.; Warburton, S.; Humphrey, K.; Samoylova, O.; et al. Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions. N. Engl. J. Med. 2019, 380, 2225–2236. [Google Scholar] [CrossRef]
- Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F.; Kipps, T.J.; Anderson, M.A.; Brown, J.R.; Gressick, L.; et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2016, 374, 311–322. [Google Scholar] [CrossRef]
- Doi, K.; Li, R.; Sung, S.-S.; Wu, H.; Liu, Y.; Manieri, W.; Krishnegowda, G.; Awwad, A.; Dewey, A.; Liu, X.; et al. Discovery of Marinopyrrole A (Maritoclax) as a Selective Mcl-1 Antagonist That Overcomes ABT-737 Resistance by Binding to and Targeting Mcl-1 for Proteasomal Degradation. J. Biol. Chem. 2012, 287, 10224–10235. [Google Scholar] [CrossRef]
- Xiang, B.L.S.; Kwok-Wai, L.; Soo-Beng, A.K.; MohanaKumaran, N. Single Agent and Synergistic Activity of Maritoclax with ABT-263 in Nasopharyngeal Carcinoma (NPC) Cell Lines. Trop. Life Sci. Res. 2020, 31, 1–13. [Google Scholar] [CrossRef]
- Rice, S.J.; Liu, X.; Wang, H.-G.; Belani, C.P. EGFR Mutations and AKT Phosphorylation Are Markers for Sensitivity to Combined MCL-1 and BCL-2/xL Inhibition in Non-Small Cell Lung Cancer. PLoS ONE 2019, 14, e0217657. [Google Scholar] [CrossRef]
- Doi, K.; Liu, Q.; Gowda, K.; Barth, B.M.; Claxton, D.; Amin, S.; Loughran, T.P., Jr.; Wang, H.-G. Maritoclax Induces Apoptosis in Acute Myeloid Leukemia Cells with Elevated Mcl-1 Expression. Cancer Biol. Ther. 2014, 15, 1077–1086. [Google Scholar] [CrossRef]
- Milani, M.; Byrne, D.P.; Greaves, G.; Butterworth, M.; Cohen, G.M.; Eyers, P.A.; Varadarajan, S. DRP-1 Is Required for BH3 Mimetic-Mediated Mitochondrial Fragmentation and Apoptosis. Cell Death Dis. 2018, 8, e2552. [Google Scholar] [CrossRef] [PubMed]
- Soderquist, R.S.; Eastman, A. BCL2 Inhibitors as Anticancer Drugs: A Plethora of Misleading BH3 Mimetics. Mol. Cancer Ther. 2016, 15, 2011–2017. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, J.M.; Alford, S.E.; Hughes, C.C.; Fenical, W.; Chambers, T.C. Purported Mcl-1 Inhibitor Marinopyrrole A Fails to Show Selective Cytotoxicity for Mcl-1-Dependent Cell Lines. Cell Death Dis. 2013, 4, e880. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Liu, Y.; Balasis, M.E.; Simmons, N.L.; Li, J.; Song, H.; Pan, L.; Qin, Y.; Nicolaou, K.C.; Sebti, S.M.; et al. Cyclic Marinopyrrole Derivatives as Disruptors of Mcl-1 and Bcl-x(L) Binding to Bim. Mar. Drugs 2014, 12, 1335–1348. [Google Scholar] [CrossRef]
- Cooper, J.A.; Walker, S.B.; Pollard, T.D. Pyrene Actin: Documentation of the Validity of a Sensitive Assay for Actin Polymerization. J. Muscle Res. Cell Motil. 1983, 4, 253–262. [Google Scholar] [CrossRef]
- Spector, I.; Shochet, N.R.; Kashman, Y.; Groweiss, A. Latrunculins: Novel Marine Toxins That Disrupt Microfilament Organization in Cultured Cells. Science 1983, 219, 493–495. [Google Scholar] [CrossRef]
- Hughes, C.C.; Yang, Y.-L.; Liu, W.-T.; Dorrestein, P.C.; Clair, J.J.L.; Fenical, W. Marinopyrrole A Target Elucidation by Acyl Dye Transfer. J. Am. Chem. Soc. 2009, 131, 12094–12096. [Google Scholar] [CrossRef]
- Varadarajan, S.; Poornima, P.; Milani, M.; Gowda, K.; Amin, S.; Wang, H.-G.; Cohen, G.M. Maritoclax and Dinaciclib Inhibit MCL-1 Activity and Induce Apoptosis in Both a MCL-1-Dependent and -Independent Manner. Oncotarget 2015, 6, 12668–12681. [Google Scholar] [CrossRef]
- Turrens, J.F. Mitochondrial Formation of Reactive Oxygen Species. J. Physiol. 2003, 552 Pt 2, 335–344. [Google Scholar] [CrossRef]
- Murphy, M.P. How Mitochondria Produce Reactive Oxygen Species. Biochem. J. 2009, 417 Pt 1, 1–13. [Google Scholar] [CrossRef]
- Sena, L.A.; Chandel, N.S. Physiological Roles of Mitochondrial Reactive Oxygen Species. Mol. Cell 2012, 48, 158–167. [Google Scholar] [CrossRef]
- Mitochondria and Cell Death: Outer Membrane Permeabilization and Beyond|Nature Reviews Molecular Cell Biology. Available online: https://www.nature.com/articles/nrm2952 (accessed on 2 September 2025).
- Jeon, M.-Y.; Min, K.; Woo, S.M.; Seo, S.U.; Choi, Y.H.; Kim, S.H.; Kim, D.E.; Lee, T.-J.; Kim, S.; Park, J.-W.; et al. Maritoclax Enhances TRAIL-Induced Apoptosis via CHOP-Mediated Upregulation of DR5 and miR-708-Mediated Downregulation of cFLIP. Molecules 2018, 23, 3030. [Google Scholar] [CrossRef]
- Jang, J.H.; Lee, T.-J. The Role of microRNAs in Cell Death Pathways. Yeungnam Univ. J. Med. 2021, 38, 107–117. [Google Scholar] [CrossRef]
- Dhanasekaran, R.; Deutzmann, A.; Mahauad-Fernandez, W.D.; Hansen, A.S.; Gouw, A.M.; Felsher, D.W. The MYC Oncogene—The Grand Orchestrator of Cancer Growth and Immune Evasion. Nat. Rev. Clin. Oncol. 2022, 19, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Wolf, E.; Eilers, M. Targeting MYC Proteins for Tumor Therapy. Annu. Rev. Cancer Biol. 2020, 4, 61–75. [Google Scholar] [CrossRef]
- Tanida, I.; Ueno, T.; Kominami, E. LC3 and Autophagy. Methods Mol. Biol. Clifton NJ 2008, 445, 77–88. [Google Scholar] [CrossRef]
- Gomez-Bougie, P.; Dousset, C.; Descamps, G.; Schnitzler, A.; Audiger, L.; Tessier, A.; Dubreuil, D.; Lebreton, J.; Pellat-Deceunynck, C.; Amiot, M. The Selectivity of Marinopyrrole A to Induce Apoptosis in MCL1high BCL2low Expressing Myeloma Cells Is Related to Its Ability to Impair Protein Translation. Br. J. Haematol. 2018, 180, 157–159. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, Y.; Balasis, M.E.; Garner, T.P.; Li, J.; Simmons, N.L.; Berndt, N.; Song, H.; Pan, L.; Qin, Y.; et al. Marinopyrrole Derivatives with Sulfide Spacers as Selective Disruptors of Mcl-1 Binding to Pro-Apoptotic Protein Bim. Mar. Drugs 2014, 12, 4311–4325. [Google Scholar] [CrossRef]
- Pimentel, J.M.; Zhou, J.-Y.; Wu, G.S. The Role of TRAIL in Apoptosis and Immunosurveillance in Cancer. Cancers 2023, 15, 2752. [Google Scholar] [CrossRef]
- Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting MCL-1 in Cancer: Current Status and Perspectives. J. Hematol. Oncol. 2021, 14, 67. [Google Scholar] [CrossRef]
- Leverson, J.D.; Zhang, H.; Chen, J.; Tahir, S.K.; Phillips, D.C.; Xue, J.; Nimmer, P.; Jin, S.; Smith, M.; Xiao, Y.; et al. Potent and Selective Small-Molecule MCL-1 Inhibitors Demonstrate on-Target Cancer Cell Killing Activity as Single Agents and in Combination with ABT-263 (Navitoclax). Cell Death Dis. 2015, 6, e1590. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings1. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Haste, N.M.; Hughes, C.C.; Tran, D.N.; Fenical, W.; Jensen, P.R.; Nizet, V.; Hensler, M.E. Pharmacological Properties of the Marine Natural Product Marinopyrrole A against Methicillin-Resistant Staphylococcus Aureus. Antimicrob. Agents Chemother. 2011, 55, 3305–3312. [Google Scholar] [CrossRef] [PubMed]
- Martens, M.C.; Liu, Y.; Sanford, A.G.; Wallick, A.I.; Warner, R.C.; Li, R.; Davis, P.H. Analogs of Marinopyrrole A Show Enhancement to Observed In Vitro Potency against Acute Toxoplasma Gondii Infection. Antimicrob. Agents Chemother. 2022, 66, e00794-21. [Google Scholar] [CrossRef] [PubMed]
- Valderrama, K.; Pradel, E.; Firsov, A.M.; Drobecq, H.; Bauderlique-le Roy, H.; Villemagne, B.; Antonenko, Y.N.; Hartkoorn, R.C. Pyrrolomycins Are Potent Natural Protonophores. Antimicrob. Agents Chemother. 2019, 63, e01450-19. [Google Scholar] [CrossRef] [PubMed]
- Castro-Falcón, G.; Straetener, J.; Bornikoel, J.; Reimer, D.; Purdy, T.N.; Berscheid, A.; Schempp, F.M.; Liu, D.Y.; Linington, R.G.; Brötz-Oesterhelt, H.; et al. Antibacterial Marinopyrroles and Pseudilins Act as Protonophores. ACS Chem. Biol. 2024, 19, 743–752. [Google Scholar] [CrossRef]
- Demine, S.; Renard, P.; Arnould, T. Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019, 8, 795. [Google Scholar] [CrossRef]
- Tantawy, S.I.; Timofeeva, N.; Sarkar, A.; Gandhi, V. Targeting MCL-1 Protein to Treat Cancer: Opportunities and Challenges. Front. Oncol. 2023, 13, 1226289. [Google Scholar] [CrossRef]
- Li, R.; Cheng, C.; Balasis, M.E.; Liu, Y.; Garner, T.P.; Daniel, K.G.; Li, J.; Qin, Y.; Gavathiotis, E.; Sebti, S.M. Design, Synthesis and Evaluation of Marinopyrrole Derivatives as Selective Inhibitors of Mcl-1 Binding to Pro-Apoptotic Bim and Dual Mcl-1/Bcl-xL Inhibitors. Eur. J. Med. Chem. 2015, 90, 315–331. [Google Scholar] [CrossRef]
- Lotfy, G.; Abdel Aziz, Y.M.; Said, M.M.; El Ashry, E.S.H.; El Tamany, E.S.H.; Abu-Serie, M.M.; Teleb, M.; Dömling, A.; Barakat, A. Molecular Hybridization Design and Synthesis of Novel Spirooxindole-Based MDM2 Inhibitors Endowed with BCL2 Signaling Attenuation; a Step towards the next Generation P53 Activators. Bioorganic Chem. 2021, 117, 105427. [Google Scholar] [CrossRef]
- Al-Odat, O.S.; Elbezanti, W.O.; Gowda, K.; Srivastava, S.K.; Amin, S.G.; Jonnalagadda, S.C.; Budak-Alpdogan, T.; Pandey, M.K. KS18, a Mcl-1 Inhibitor, Improves the Effectiveness of Bortezomib and Overcomes Resistance in Refractory Multiple Myeloma by Triggering Intrinsic Apoptosis. Front. Pharmacol. 2024, 15, 1436786. [Google Scholar] [CrossRef]
- Gomez-Bougie, P.; Maiga, S.; Tessoulin, B.; Bourcier, J.; Bonnet, A.; Rodriguez, M.S.; Le Gouill, S.; Touzeau, C.; Moreau, P.; Pellat-Deceunynck, C.; et al. BH3-Mimetic Toolkit Guides the Respective Use of BCL2 and MCL1 BH3-Mimetics in Myeloma Treatment. Blood 2018, 132, 2656–2669. [Google Scholar] [CrossRef]
- Berry, B.J.; Trewin, A.J.; Amitrano, A.M.; Kim, M.; Wojtovich, A.P. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species. J. Mol. Biol. 2018, 430, 3873–3891. [Google Scholar] [CrossRef]
Compound | Target Cell | Bioactivity | Mechanism of Action | IC50 (μM) | Toxicity to Healthy Cells | Reference |
---|---|---|---|---|---|---|
Marinopyrrole A | Primary large-granular lymphocyte leukemia, myeloid leukemia (K562), Burkitt’s lymphoma (Raji), acute promyelocytic leukemia (HL60/VCR) | Induces apoptosis in Mcl-1-dependent cell lines, synergistically sensitizes cancer cells to ABT-737 treatment. | Blocks binding of Bim BH3 alpha-helix to Mcl-1, caspase 3 activation, PARP cleavage, proteasomal degradation of Mcl-1, cytochrome c release. | Sensitive LGLL patient samples = 4.64–11.82 μM Raji cells = 2.5 μM marinopyrrole A + 0.051 μM ABT-737 | Healthy donor PBMCs were sensitive with IC50 = 40–50 μM Less toxicity than pan Bcl-2 inhibitor obatoclax | [43] |
Cervical cancer (HeLa), acute lymphoid leukemia (RS4;11), murine leukemia. | Increased cytotoxicity in Bcl-2-dependent cells compared to Mcl-1-dependent cells. | ND | Hela cells = 20 μM RS4;11 cells = 2 μM | ND | [49] | |
Acute myeloid leukemia (HL60, HL60/ABTR, Kasumi-1, Kasumi-1/ABTR, KG1, KG1/ABTR, KG1a/ABTR, U937) | Induces apoptosis, sensitivity correlated to Mcl-1 protein levels, synergizes with ABT-737, overcomes stroma-mediated drug resistance of the tumor microenvironment, decreased toxicity to bone marrow cells compared to daunorubicin, decreases tumor volume in xenograft model. | Proteasomal degradation of Mcl-1, caspase 3 activation, PARP cleavage | Sensitive AML patient samples = 7.2–8.8 μM U937 cells = 1.4 μM HL60 cells harboring ABT-737 resistance = 1.7 μM | 10-fold less toxic to mouse bone marrow cells than ABT-737 and daunorubicin Less toxic to mouse hematopoietic progenitor cells compared to daunorubicin Maximum tolerated dose and 50% lethal dose of 20 mg/kg/day and 25 mg/kg/day respectively | [46] | |
Triple negative breast cancer (MDA-MB-468) | Induces apoptosis | Decreased Mcl-1 protein levels, caspase 3 activation | MDA-MB-468 cells = 2 μM | ND | [65] | |
Non-small cell lung cancer (H23, H460, H1299) | Induces apoptosis in cell-type specific manner, Mcl-1-dependent and -independent apoptosis, moderate increase in apoptosis with co-treatment with navitoclax (ABT-263), | Loss of Mcl-1 protein, PARP cleavage, PS externalization, release of cytochrome c, loss of mitochondrial membrane potential, mitochondrial fragmentation, mitochondrial ROS | ND | ND | [54] | |
Myeloma (SKMM2, XG11, KMS-12PE, XG5, OPM2, NAN1, LP1, XG1, JJN-3, NAN10, MDN, U266, NAN3, L363, BCN, XG7, NCI-H929, NAN8, XG6, MM1-S) | Efficacy correlated with increased Mcl-1 and decreased Bcl-2, and wild type TP53 | cleavage of caspase 3 and caspase 9, decreased Mcl-1 protein levels, | MM1-S cells = 0.7 μM XG6 cells = 1 μM NAN8 cells = 1.2 μM | ND | [64] | |
Renal carcinoma (Caki, ACHN, A498), lung cancer (A549), hepatocellular carcinoma (SK-Hep1) | Marinopyrrole A sensitizes cells to TRAIL-induced apoptosis | miR-708 mediated cFLIP downregulation, CHOP-mediated DR5 upregulation, cleaved PARP, chromatin fragmentation, increased sub-G1%, | ND | ND | [59] | |
Nasopharyngeal carcinoma (HK1, C666-1) | Inhibits cell proliferation, synergistic efficacy of marinopyrrole A + navitoclax (ABT-263) | Reduced expression level of Mcl-1 in both cell lines tested, modestly reduced expression level of Bcl-XL in HK1 cells and reduced Bcl-2 expression in C666-1 cells, | ND | ND | [44] | |
Non-small cell lung cancer (H23, A549, H358, H460, H1299, H1650, H1755, H1975, H441) | Induced apoptosis, synergistic combination of marinopyrrole A + navitoclax (ABT-263) or ABT-737, AKT phosphorylation and EGFR status correlate with combination treatment susceptibility | Decreased Mcl-1 protein levels dependent on proteasomal degradation, cleaved PARP and caspase 3, increased PS externalization | H23 cells = 1.1 μM H441 cells = 9.2 μM | ND | [45] | |
Melanoma (UACC903, A375M, 1205LU) | Induction of apoptosis, synergistic interaction of marinopyrrole A andABT-737, suppression of melanoma colony formation, inhibits growth of 3D melanoma spheroids | Down regulation of Mcl-1 protein through proteasomal degradation, increased PS externalization, PARP and caspase 3 cleavage, induction of BAX and BAK expression, | UACC903 cells = 2.8 μM A375M cells = 2.2 μM 1205Lu cells = 2.6 μM | ND | [36] | |
Marinopyrrole B | Colon cancer (HCT-116) | Cytotoxic | ND | HCT-116 cells = 9.0 μM | ND | [15,16] |
Marinopyrrole C | Colon cancer (HCT-116) | Cytotoxic | ND | HCT-116 cells = 0.4 μM | ND | [16] |
Marinopyrrole F | Colon cancer (HCT-116) | Cytotoxic | ND | HCT-116 cells = 6.1 μM | ND | [16] |
Pyrrolomycin F1 | Colon cancer (HCT-116), Breast cancer (MCF7) | Inhibition of cell proliferation, induction of non-conventional cell death, possible induction of autophagy | Upregulation of acidic vesicular organelles, downregulation of AKT, increased ROS | HCT-116 cells = 0.35 μM MCF7 Cells = 0.61 μM | hTERT RPE-1/HCT-116 selectivity index = 179 hTERT RPE-1/MCF7 selectivity index = 103 | [21] |
Pyrrolomycin F2a | Colon cancer (HCT-116), Breast cancer (MCF7) | Inhibition of cell proliferation, induction of non-conventional cell death, possible induction of autophagy | Upregulation of acidic vesicular organelles, downregulation of AKT, increased ROS | HCT-116 cells = 0.49 μM MCF7 Cells = 0.73 μM | hTERT RPE-1/HCT-116 selectivity index = 177 hTERT RPE-1/MCF7 selectivity index = 119 | [21] |
Pyrrolomycin F2b | Colon cancer (HCT-116), Breast cancer (MCF7) | Inhibition of cell proliferation, induction of non-conventional cell death, possible induction of autophagy | Upregulation of acidic vesicular organelles, downregulation of AKT, increased ROS | HCT-116 cells = 0.41 μM MCF7 Cells = 0.65 μM | hTERT RPE-1/HCT-116 selectivity index = 150 hTERT RPE-1/MCF7 selectivity index = 95 | [21] |
Pyrrolomycin F3 | Colon cancer (HCT-116), Breast cancer (MCF7) | Inhibition of cell proliferation, induction of non-conventional cell death, possible induction of autophagy | Upregulation of acidic vesicular organelles, downregulation of AKT, increased ROS | HCT-116 cells = 0.88 μM MCF7 Cells = 1.21 μM | hTERT RPE-1/HCT-116 selectivity index = 199 hTERT RPE-1/MCF7 selectivity index = 145 | [21] |
Pyrrolomycin C | Colon cancer (HCT-116), Breast cancer (MCF7) | Induction of apoptosis | ND | HCT-116 cells = 0.8 μM MCF7 cells = 1.5 μM | hTERT RPE-1/HCT-116 selectivity index = 10 hTERT RPE-1/MCF7 selectivity index = 6 | [27] |
Compound | Host Cell Target | Bioactivity | Mechanism of Action | Cancer Cell IC50 (μM) | Mcl-1/Bim IC50 (μM) | Bcl-XL/Bim IC50 (μM) | ClogP/LogP | Toxicity to Healthy Cells | Reference |
---|---|---|---|---|---|---|---|---|---|
Cheng et al. Compound 9 | ND | ND | ND | ND | 4.5 μM | 7.3 μM | 6.7 | ND | [50] |
Cheng et al. Compound 3 | ND | ND | ND | ND | 1.4 μM | 2.3 μM | 7.0 | ND | [50] |
Cheng et al. Compound 4 | ND | ND | ND | ND | 4.3 μM | 3.4 μM | 4.7 | ND | [50] |
Cheng et al. Compound 3 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis, inhibition of tumor growth | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | 3 μM | 1.8 μM | 1.2 μM | 6.1 | ND | [65] |
Cheng et al. Compound 4 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis, inhibition of tumor growth | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | 28 μM | 0.7 μM | 0.6 μM | 10.2 | ND | [65] |
Cheng et al. Compound 5 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis, inhibition of tumor growth | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | 50 μM | 0.7 μM | 0.6 μM | 9.7 | ND | [65] |
Cheng et al. Compound 9 | Triple negative breast cancer (MDA-MB-468) | Weakly induces apoptosis, inhibition of tumor growth | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | 29 μM | 6.1 μM | >100 μM | 5.3 | ND | [65] |
Cheng et al. Compound 11 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis, inhibition of tumor growth | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | 2 μM | 25.1 μM | 96.6 μM | 4.5 | ND | [65] |
Cheng et al. Compound 12 | Triple negative breast cancer (MDA-MB-468) | Weakly induces apoptosis, inhibition of tumor growth | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | 16 μM | 11.5 μM | 17.6 μM | 4.5 | ND | [65] |
Li et al. Compound 32 | Triple negative breast cancer (MDA-MB-468) | Limited activity to induce apoptosis | ND | ND | 0.7 μM | 0.6 μM | NP | ND | [76] |
Li et al. Compound 33 | Triple negative breast cancer (MDA-MB-468) | Limited activity to induce apoptosis | ND | ND | 0.7 μM | 0.6 μM | NP | ND | [76] |
Li et al. Compound 34 | Triple negative breast cancer (MDA-MB-468) | Inactive at inducing apoptosis | ND | ND | 6.1 μM | >100 μM | NP | ND | [76] |
Li et al. Compound 36 | Triple negative breast cancer (MDA-MB-468) | Inactive at inducing apoptosis | ND | ND | 7.8 μM | >100 μM | NP | ND | [76] |
Li et al. Compound 37 | Triple negative breast cancer (MDA-MB-468) | Limited activity to induce apoptosis | ND | ND | 1.6 μM | 14.0 μM | NP | ND | [76] |
Li et al. Compound 42 | Triple negative breast cancer (MDA-MB-468) | Limited activity to induce apoptosis | ND | ND | 0.6 μM | 0.5 μM | NP | ND | [76] |
Li et al. Compound 23 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | ND | 8.1 μM | 9.7 μM | NP | ND | [76] |
Li et al. Compound 25 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | ND | 3.9 μM | 5.6 μM | NP | ND | [76] |
Li et al. Compound 26 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | ND | 3.7 μM | 3.5 μM | NP | ND | [76] |
Li et al. Compound 24 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | ND | 2.6 μM | 2.5 μM | NP | ND | [76] |
Li et al. Compound 27 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | ND | 2.1 μM | 3.9 μM | NP | ND | [76] |
Li et al. Compound 28 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | ND | 1.0 μM | 2.1 μM | NP | ND | [76] |
Li et al. Compound 49 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | ND | 6.5 μM | 9.2 μM | NP | ND | [76] |
Li et al. Compound 50 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | ND | 8.9 μM | 13.3 μM | NP | ND | [76] |
Li et al. Compound 51 | Triple negative breast cancer (MDA-MB-468) | Induces apoptosis | Decrease in Mcl-1 protein level, induction of caspase 3 cleavage | ND | 9.6 μM | 21.3 μM | NP | ND | [76] |
McGuire et al. MP1 NP | Neuroblastoma (BE-2c, CCL-127), medulloblastoma (Daoy, ONS-76, D-283, D-341, HD-MB03) | Induces apoptosis/necrosis /autophagy /quiescent, synergy with co-treatment of MP1 + TEM, MP1 susceptibility correlated to MYCN amplification status, reduced tumor growth in vivo | Concentration-dependent decline in S-phase and increase in G2-phase, uncoupling of OXPHOS, inhibition of glycolysis, decrease in Mcl-1 protein, decrease in MYCN, increase in LC3I/II | BE-2c cells = 0.096 μM CCL-127 cells = 0.89 μM D-341 cells = 0.177 μM | ND | ND | 3.8 | MP1 tumor concentrations observed above IC50 MP1 was well tolerated in vivo No bone marrow toxicity observed. | [28,30] |
Lotfy et al. Compound 5i | Triple negative breast cancer (MDA-MB-468), hepatocellular carcinoma (HepG2), colorectal adenocarcinoma (Cacco-2) | Induces apoptosis | PS externalization, increased p53, Bcl-2 down-regulated gene expression, caspase 3/7 activation, MDM2 inhibition | MDA-MB-468 cells = 0.2529 μM HepG2 cells = 1.3954 μM Caco-2 cells = 0.9079 μM | ND | ND | 3.45 | Therapeutic window between cancer cell potency and toxicity to normal lung fibroblasts (Wi-38) | [77] |
Lotfy et al. Compound 5q | Triple negative breast cancer (MDA-MB-468), hepatocellular carcinoma (HepG2), colorectal adenocarcinoma (Cacco-2) | Induces apoptosis | PS externalization, increased p53, Bcl-2 down-regulated gene expression, caspase 3/7 activation, MDM2 inhibition | MDA-MB-468 cells = 0.0002 μM HepG2 cells = 0.0091 μM Caco-2 cells = 0.0003 μM | ND | ND | 4.13 | Therapeutic window between cancer cell potency and toxicity to normal lung fibroblasts (Wi-38) | [77] |
Hughes et al. Compound 11 | Colon cancer (HCT-116) | Cytotoxic | ND | HCT-116 cells = 0.42 ug/mL | ND | ND | NP | ND | [16] |
Hughes et al. Compound 14 | Colon cancer (HCT-116) | Cytotoxic | ND | HCT-116 cells = 1.1 ug/mL | ND | ND | NP | ND | [16] |
Hughes et al. Compound 16 | Colon cancer (HCT-116) | Cytotoxic | ND | HCT-116 cells = 4.4 ug/mL | ND | ND | NP | ND | [16] |
Raimondi et al. Compound 1 | Colon cancer (HCT-116), breast cancer (MCF7) | Induces necrosis, inhibits cancer cell proliferation | Morphological changes including membrane elongations resembling filopodia | HCT-116 cells = 1.3 μM MCF7 cells = 1.2 μM | ND | ND | 4.889 | HCT-116/hTERT RPE-1 selectivity index = 44 MCF7/hTERT RPE-1 selectivity index = 47 | [21,27] |
Raimondi et al. Compound 5a | Colon cancer (HCT-116), breast cancer (MCF7) | Induces apoptosis | Morphological changes including membrane elongations resembling filopodia | HCT-116 cells = 1.9 μM MCF7 cells = 2.2 μM | ND | ND | 2.496 | HCT-116/hTERT RPE-1 selectivity index = 35 MCF7/hTERT RPE-1 selectivity index = 30 | [27] |
Raimondi et al. Compound 5d | Colon cancer (HCT-116), breast cancer (MCF7) | Induces apoptosis | Morphological changes including membrane elongations resembling filopodia | HCT-116 cells = 1.6 μM MCF7 cells = 1.6 μM | ND | ND | 3.746 | HCT-116/hTERT RPE-1 selectivity index = 143 MCF7/hTERT RPE-1 selectivity index = 143 | [27] |
Doi et al. KS04 | Monocytic leukemia (U937), chronic myelogenous leukemia (K562), acute T-cell leukemia (Jurkat, JurkatΔBak), acute myeloid leukemia (HL60, Kasumi-1, THP-1), murine acute myeloid leukemia (C1498), multiple myeloma (RPMI 8226, MM.1S, NCI-H929, U266) | Induces apoptosis in Mcl-1-dependent cancer cells, synergistic interaction between KS04 + ABT-737, overcomes stroma-mediated drug resistance | Induces caspase 3 and PARP cleavage, decreased Mcl-1 protein half-life | NCI-H929 cells = 1.00 μM C1498 cells = 1.12 μM RPMI 8226 cells = 1.87 μM | ND | ND | NP | Less toxic to primary mouse bone marrow cells compared to daunorubicin and ABT-737 | [35] |
Doi et al. KS18 | Monocytic leukemia (U937), chronic myelogenous leukemia (K562), acute T-cell leukemia (Jurkat, JurkatΔBak), acute myeloid leukemia (HL60, Kasumi-1, THP-1), murine acute myeloid leukemia (C1498), multiple myeloma (RPMI 8226, MM.1S, NCI-H929, U266) | Induces apoptosis in Mcl-1-dependent cancer cells, synergistic interaction between KS18 + ABT-737, synergistic interaction between KS18 + bortezomib, overcomes stroma-mediated drug resistance, decreases tumor volume in vivo | Induces caspase 3 and PARP cleavage, decreased Mcl-1 protein half-life, modulation STAT-3 activation | U266 cells = 0.9 μM MM.1S cells = 0.79 μM U937 cells = 0.5 μM | ND | ND | NP | Less toxic to primary mouse bone marrow cells compared to daunorubicin and ABT-737 Intraperitoneal maximum tolerated dose and median lethal dose of 10 mg/kg/day and 15 mg/kg/day Oral maximum tolerated dose and median lethal dose of 20 mg/kg/day and 30 mg/kg/day | [35,78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmerly, J.M.; Armstrong, N.A.; Euteneuer, C.F.; Davis, B.N.; Griffis-Anchala, M.B.; Vargas, A.; Davis, P.H. Cancer Cell Cytotoxicity of Marinopyrroles, Pyrrolomycins, and Their Derivatives. Mar. Drugs 2025, 23, 403. https://doi.org/10.3390/md23100403
Zimmerly JM, Armstrong NA, Euteneuer CF, Davis BN, Griffis-Anchala MB, Vargas A, Davis PH. Cancer Cell Cytotoxicity of Marinopyrroles, Pyrrolomycins, and Their Derivatives. Marine Drugs. 2025; 23(10):403. https://doi.org/10.3390/md23100403
Chicago/Turabian StyleZimmerly, Jeffrey M., Nicholas A. Armstrong, Clare F. Euteneuer, Brianna N. Davis, M. Beth Griffis-Anchala, Angelique Vargas, and Paul H. Davis. 2025. "Cancer Cell Cytotoxicity of Marinopyrroles, Pyrrolomycins, and Their Derivatives" Marine Drugs 23, no. 10: 403. https://doi.org/10.3390/md23100403
APA StyleZimmerly, J. M., Armstrong, N. A., Euteneuer, C. F., Davis, B. N., Griffis-Anchala, M. B., Vargas, A., & Davis, P. H. (2025). Cancer Cell Cytotoxicity of Marinopyrroles, Pyrrolomycins, and Their Derivatives. Marine Drugs, 23(10), 403. https://doi.org/10.3390/md23100403