Methodologies for Detoxifying Bivalves from Marine Paralytic Shellfish Toxins
Abstract
1. Introduction
2. PST Removal Methods
2.1. Physical Methods
2.1.1. Industrial and Thermal Procedures
2.1.2. Depuration and Feeding Control
2.2. Chemical Methods
2.2.1. Carbon-Based Materials
- The removal of saxitoxin (STX) from water is pH-dependent and seems to be inhibited by the presence of natural organic matter (NOM) at neutral pH [28]. This inhibition may be explained either by the occupation or blocking of the pores of AC, or by preferential interaction/competition for the active sites available and electrostatic interactions with PST [28,63,64].
- STX adsorption by biochar could involve chemical and physical interactions, hydrogen bonding, Van der Waals forces, and pore filling [28,65]. Some of these mechanisms are favoured by the presence of acidic functional groups, such as carboxylic acid moieties, that have a high affinity for interacting with the polar guanidium groups of the STX molecules [32,65].
- The largest volume of mesopores seems to favour the adsorption of STX [63]. However, the same authors, who also tested dcSTX adsorption, did not observe any improvement in dcSTX adsorption capacity in the presence of more mesopores. This interesting observation could be explained by the lower steric hindrance associated with the presence of the -OH group at R4 in dcSTX, rather than the -OCONH2 group in STX (Figure 1). These findings indicate that the adsorption of different PST analogues will differ depending on their molecular structure.
2.2.2. Chitosan-Based Materials
2.2.3. Ion Exchange Resins and Molecular Imprinting
2.2.4. Natural and Modified Clays
2.2.5. Photodegradation and Photocatalysis
2.2.6. Advanced Oxidation Processes (AOPs)
2.3. Comparative Analysis of the Various Removal Technologies
3. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Activated carbon/charcoal |
AOPs | Advanced Oxidation Processes |
ASP | Amnesic Shellfish Poisoning |
AZP | Azaspiracid Poisoning |
BTAB | 4,4′-bis(tributylammoniummethyl chloride)biphenyl |
C1&2 | N-sulfocarbamoyl Gonyautoxins 2 & 3 |
CMC | Carboxyl Methyl Chitosan |
dcGTX2&3 | Decarbamoylgonyautoxins 2 & 3 |
dcNEO | Decarbamoylneosaxitoxin |
dcSTX | Decarbamoylsaxitoxin |
DOM | Dissolved organic matter |
DSP | Diarrheal Shellfish Poisoning |
GTX1&4 | Gonyautoxins 1 & 4 |
GTX2&3 | Gonyautoxins 2 & 3 |
GTX5 | Gonyautoxin 5 |
GTX6 | Gonyautoxin 6 |
HAB | Harmful Algal Blooms |
LCA | Life Cycle Assessment |
LCSA | Life Cycle Sustainability Assessment |
MC | Modified clay |
MNBs | Micro-Nanobubbles |
NOM | Natural Organic Matter |
NSP | Neurotoxic Shellfish Poisoning |
PAC-MC | Polyaluminium Chloride-Modified Clay |
PMPS-MC | Peroxymonosulfate modified clay |
PSP | Paralytic Shellfish Poisoning |
PST | Paralytic shellfish toxins |
SiO2-MA-CS | Silica-malic acid chitosan hydrogel |
STX | Saxitoxin |
TBTA | 4-(tributylammoniummethyl)-benzyltributylammonium chloride |
WAC | Wood-based activated carbon |
References
- Leal, J.F.; Cristiano, M.L.S. Marine Paralytic Shellfish Toxins: Chemical Properties, Mode of Action, Newer Analogues, and Structure–Toxicity Relationship. Nat. Prod. Rep. 2022, 39, 33–57. [Google Scholar] [CrossRef]
- Visciano, P.; Schirone, M.; Berti, M.; Milandri, A.; Tofalo, R.; Suzzi, G. Marine Biotoxins: Occurrence, Toxicity, Regulatory Limits and Reference Methods. Front. Microbiol. 2016, 7, 1051. [Google Scholar] [CrossRef]
- van Egmond, H.P. Natural Toxins: Risks, Regulations and the Analytical Situation in Europe. Anal. Bioanal. Chem. 2004, 378, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Leal, J.F.; Cristiano, M.L.S. Why Are Bivalves Not Detoxified? Curr. Opin. Food Sci. 2024, 57, 101162. [Google Scholar] [CrossRef]
- Poletti, R.; Milandri, A.; Pompei, M. Algal Biotoxins of Marine Origin: New Indications from the European Union. Vet. Res. Commun. 2003, 27, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.-K.; Li, H.-Y.; Yang, W.-D. Marine Algal Toxins and Public Health: Insights from Shellfish and Fish, the Main Biological Vectors. Mar. Drugs 2024, 22, 510. [Google Scholar] [CrossRef]
- Campos, A.; Freitas, M.; de Almeida, A.M.; Martins, J.C.; Domínguez-Pérez, D.; Osório, H.; Vasconcelos, V.; Costa, P.R. OMICs Approaches in Diarrhetic Shellfish Toxins Research. Toxins 2020, 12, 493. [Google Scholar] [CrossRef]
- Petroff, R.; Hendrix, A.; Shum, S.; Grant, K.S.; Lefebvre, K.A.; Burbacher, T.M. Public Health Risks Associated with Chronic, Low-Level Domoic Acid Exposure: A Review of the Evidence. Pharmacol. Ther. 2021, 227, 107865. [Google Scholar] [CrossRef]
- Farabegoli, F.; Blanco, L.; Rodríguez, L.P.; Vieites, J.M. Phycotoxins in Marine Shellfish: Origin, Occurrence and Effects on Humans. Mar. Drugs 2018, 16, 188. [Google Scholar] [CrossRef] [PubMed]
- Hallegraeff, G.M.; Aligizaki, K.; Amzil, Z.; Andersen, P.; Anderson, D.M.; Arneborg, L.; Azanza, R.V.; Bates, S.S.; Benico, G.; Bottein, M.-Y.D.; et al. Global HAB Status Report; University of Copenhagen: Paris, France, 2021. [Google Scholar]
- Díaz, P.A.; Álvarez, G. Effects of Microalgal Blooms on Aquaculture and Fisheries. Fishes 2023, 8, 461. [Google Scholar] [CrossRef]
- Schantz, E.J.; Mold, J.D.; Stanger, D.W.; Shavel, J.; Riel, F.J.; Bowden, J.P.; Lynch, J.M.; Wyler, R.S.; Riegel, B.; Sommer, H. Paralytic Shellfish Poison. VI. A Procedure for the Isolation and Purification of the Poison from Toxic Clam and Mussel Tissues. J. Am. Chem. Soc. 1957, 79, 5230–5235. [Google Scholar] [CrossRef]
- EFSA Marine Biotoxins in Shellfish—Saxitoxin Group. EFSA J. 2009, 1019, 1–76.
- Che, Y.; Ding, L.; Qiu, J.; Ji, Y.; Li, A. Conversion and Stability of New Metabolites of Paralytic Shellfish Toxins under Different Temperature and PH Conditions. J. Agric. Food Chem. 2020, 68, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Meng, F.; Ding, L.; Che, Y.; McCarron, P.; Beach, D.G.; Li, A. Dynamics of Paralytic Shellfish Toxins and Their Metabolites during Timecourse Exposure of Scallops Chlamys Farreri and Mussels Mytilus Galloprovincialis to Alexandrium Pacificum. Aquat. Toxicol. 2018, 200, 233–240. [Google Scholar] [CrossRef]
- Li, A.; Ma, J.; Cao, J.; Wang, Q.; Yu, R.; Thomas, K.; Quilliam, M.A. Analysis of Paralytic Shellfish Toxins and Their Metabolites in Shellfish from the North Yellow Sea of China. Food Addit. Contam. A 2012, 29, 1455–1464. [Google Scholar] [CrossRef]
- Shingai, T.; Chiba, Y.; Kondo, M.; Yotsu-Yamashita, M. Temporal Variation in the Concentrations and Profiles of Paralytic Shellfish Toxins and Tetrodotoxin in Scallop (Mizuhopecten yessoensis) and Bloody Clam (Anadara broughtonii) Collected from the Coast of Miyagi Prefecture, Japan. Toxicon 2024, 243, 107710. [Google Scholar] [CrossRef]
- FDA Appendix 5: FDA and EPA Safety Levels in Regulations and Guidance; FDA: Boca Raton, Florida, 2021.
- Tan, K.S.; Ransangan, J. Factors Influencing the Toxicity, Detoxification and Biotransformation of Paralytic Shellfish Toxins. In Reviews of Environmental Contamination and Toxicology Volume 235; Whitacre, D.M., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–25. ISBN 978-3-319-10861-2. [Google Scholar]
- Abbas, T.; Kajjumba, G.W.; Ejjada, M.; Masrura, S.U.; Marti, E.J.; Khan, E.; Jones-Lepp, T.L. Recent Advancements in the Removal of Cyanotoxins from Water Using Conventional and Modified Adsorbents—A Contemporary Review. Water 2020, 12, 2756. [Google Scholar] [CrossRef]
- daSilva, M.B.; Vianna, M.T.G.; Marques, M. Adsorption Processes Applied for the Removal of Saxitoxins in Water: A Literature Review (2010–2022). Water Air Soil. Pollut. 2022, 233, 529. [Google Scholar] [CrossRef]
- Bian, Y.; Feng, X.; Zhang, Y.; Du, C.; Wen, Y. Marine Toxins in Environment: Recent Updates on Depuration Techniques. Ecotoxicol. Environ. Saf. 2024, 284, 116990. [Google Scholar] [CrossRef]
- Balaji-Prasath, B.; Wang, Y.; Su, Y.P.; Hamilton, D.P.; Lin, H.; Zheng, L.; Zhang, Y. Methods to Control Harmful Algal Blooms: A Review. Environ. Chem. Lett. 2022, 20, 3133–3152. [Google Scholar] [CrossRef]
- Fosso-Kankeu, E.; Mishra, A.K. Photocatalytic Degradation and Adsorption Techniques Involving Nanomaterials for Biotoxins Removal from Drinking Water. In Water Purification; Elsevier: Amsterdam, The Netherlands, 2017; pp. 323–354. [Google Scholar]
- Yu, Z.; Song, X.; Cao, X.; Liu, Y. Mitigation of Harmful Algal Blooms Using Modified Clays: Theory, Mechanisms, and Applications. Harmful Algae 2017, 69, 48–64. [Google Scholar] [CrossRef] [PubMed]
- KuBo, T.; Tominaga, Y.; Watanabe, F.; Kaya, K.; Hosoya, K. Selective Adsorption of Water-Soluble Ionic Compounds by an Interval Immobilization Technique Based on Molecular Imprinting. Anal. Sci. 2008, 24, 1633–1636. [Google Scholar] [CrossRef]
- Olano, D.E.B.; Salvador-Reyes, L.A.; Montaño, M.N.E.; Azanza, R.V. Sorption of Paralytic Shellfish Toxins (PSTs) in Algal Polysaccharide Gels. Algal Res. 2020, 45, 101655. [Google Scholar] [CrossRef]
- Shi, H.; Ding, J.; Timmons, T.; Adams, C. PH Effects on the Adsorption of Saxitoxin by Powdered Activated Carbon. Harmful Algae 2012, 19, 61–67. [Google Scholar] [CrossRef]
- Leal, J.F.; Bombo, G.; Amado, P.S.M.; Pereira, H.; Cristiano, M.L.S. Cation-Exchange Resin Applied to Paralytic Shellfish Toxins Depuration from Bivalves Exposed to Gymnodinium Catenatum. Foods 2023, 12, 768. [Google Scholar] [CrossRef]
- Burns, J.M.; Hall, S.; Ferry, J.L. The Adsorption of Saxitoxin to Clays and Sediments in Fresh and Saline Waters. Water Res. 2009, 43, 1899–1904. [Google Scholar] [CrossRef]
- González-Jartín, J.M.; de Castro Alves, L.; Alfonso, A.; Piñeiro, Y.; Vilar, S.Y.; Rodríguez, I.; Gomez, M.G.; Osorio, Z.V.; Sainz, M.J.; Vieytes, M.R.; et al. Magnetic Nanostructures for Marine and Freshwater Toxins Removal. Chemosphere 2020, 256, 127019. [Google Scholar] [CrossRef]
- Wang, T.; Fernandes, S.P.S.; Araújo, J.; Li, X.; Salonen, L.M.; Espiña, B. A Carboxyl-Functionalized Covalent Organic Polymer for the Efficient Adsorption of Saxitoxin. J. Hazard. Mater. 2023, 452, 131247. [Google Scholar] [CrossRef]
- Mohamed, Z.A.; Mostafa, Y.; Alamri, S.; Hashem, M.; Alrumman, S. Biotransformation and Detoxification of Saxitoxin by Bacillus Flexus in Batch Experiments. Arch. Microbiol. 2023, 205, 63. [Google Scholar] [CrossRef] [PubMed]
- Vasama, M.; Kumar, H.; Salminen, S.; Haskard, C. Removal of Paralytic Shellfish Toxins by Probiotic Lactic Acid Bacteria. Toxins 2014, 6, 2127–2136. [Google Scholar] [CrossRef]
- Coral, L.A.; Proença, L.A.d.O.; de Jesus Bassetti, F.; Lapolli, F.R. Nanofiltration Membranes Applied to the Removal of Saxitoxin and Congeners. Desalination Water Treat. 2011, 27, 8–17. [Google Scholar] [CrossRef]
- Tominaga, Y.; Kubo, T.; Hosoya, K. Surface Modification of TiO2 for Selective Photodegradation of Toxic Compounds. Catal. Commun. 2011, 12, 785–789. [Google Scholar] [CrossRef]
- Norris, K.E.; Kurtz, T.; Wang, S.; Zeng, T.; Leresche, F.; Rosario-Ortiz, F.L. Photochemical Degradation of Saxitoxins in Surface Waters. ACS EST Water 2024, 4, 346–354. [Google Scholar] [CrossRef]
- Navarro, J.M.; Oyarzún, P.A.; Haarmann, V.; Toro, J.E.; Garrido, C.; Valenzuela, A.; Pizarro, G. Feeding Response and Dynamic of Intoxication and Detoxification in Two Populations of the Flat Oyster Ostrea Chilensis Exposed to Paralytic Shellfish Toxins (PST). Mar. Environ. Res. 2022, 177, 105634. [Google Scholar] [CrossRef]
- Lewis, A.M.; Dean, K.J.; Hartnell, D.M.; Percy, L.; Turner, A.D.; Lewis, J.M. The Value of Toxin Profiles in the Chemotaxonomic Analysis of Paralytic Shellfish Toxins in Determining the Relationship between British alexandrium Spp. and Experimentally Contaminated mytilus Sp. Harmful Algae 2022, 111, 102131. [Google Scholar] [CrossRef] [PubMed]
- Guéguen, M.; Bardouil, M.; Baron, R.; Lassus, P.; Truquet, P.; Massardier, J.; Amzil, Z. Detoxification of Pacific Oyster Crassostrea gigas Fed on Diets of Skeletonema costatum with and without Silt, Following PSP Contamination by Alexandrium minutum. Aquat. Living Res. 2008, 21, 13–20. [Google Scholar] [CrossRef]
- Dong, C.; Wu, H.; Peng, J.; Guo, M.; Zhai, Y.; Tan, Z. Thermal Processing Induced Release and Degradation of Paralytic Shellfish Toxin from Mussels Mytilus Edulis. J. Oceanol. Limnol. 2022, 40, 2267–2276. [Google Scholar] [CrossRef]
- Cabado, A.G.; Lago, J.; González, V.; Blanco, L.; Paz, B.; Diogène, J.; Ferreres, L.; Rambla-Alegre, M. Detoxification of Paralytic Shellfish Poisoning Toxins in Naturally Contaminated Mussels, Clams and Scallops by an Industrial Procedure. Food Chem. Toxicol. 2020, 141, 111386. [Google Scholar] [CrossRef]
- Reboreda, A.; Lago, J.; Chapela, M.J.; Vieites, J.M.; Botana, L.M.; Alfonso, A.; Cabado, A.G. Decrease of Marine Toxin Content in Bivalves by Industrial Processes. Toxicon 2010, 55, 235–243. [Google Scholar] [CrossRef]
- Nicholson, B.C.; Shaw, G.R.; Morrall, J.; Senogles, P.-J.; Woods, T.A.; Papageorgiou, J.; Kapralos, C.; Wickramasinghe, W.; Davis, B.C.; Eaglesham, G.K.; et al. Chlorination for Degrading Saxitoxins (Paralytic Shellfish Poisons) in Water. Environ. Technol. 2003, 24, 1341–1348. [Google Scholar] [CrossRef]
- Zamyadi, A.; Ho, L.; Newcombe, G.; Daly, R.I.; Burch, M.; Baker, P.; Prévost, M. Release and Oxidation of Cell-Bound Saxitoxins during Chlorination of Anabaena circinalis Cells. Environ. Sci. Technol. 2010, 44, 9055–9061. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, Y.; Wang, J.; Zhang, H.; Sun, L.; Cui, M. Micro-Nanobubbles-Assisted Advanced Oxidation Processes and Their Inactivation Effect on Gymnodinium Catenatum: O3/H2O2/UV Multi-Oxidant System. J. Chem. Eng. 2025, 520, 166123. [Google Scholar] [CrossRef]
- Rositano, J.; Newcombe, G.; Nicholson, B.; Sztajnbok, P. Ozonation of Nom and Algal Toxins in Four Treated Waters. Water Res. 2001, 35, 23–32. [Google Scholar] [CrossRef]
- Leal, J.; Esteves, V.; Santos, E. Is Ozonation an Efficient Method for the Treatment of Marine Waters? Front. Mar. Sci. 2019, 5. [Google Scholar] [CrossRef]
- Leal, J.F.; Esteves, V.I.; Santos, E.B.H. Does Light-Screening by Humic Substances Completely Explain Their Retardation Effect on Contaminants Photo-Degradation? J. Environ. Chem. Eng. 2015, 3, 3015–3019. [Google Scholar] [CrossRef]
- Leal, J.F.; Esteves, V.I.; Santos, E.B.H. Solar Photodegradation of Oxytetracycline in Brackish Aquaculture Water: New Insights about Effects of Ca2+ and Mg2+. J. Photochem. Photobiol. A 2019, 372, 218–225. [Google Scholar] [CrossRef]
- Leal, J.F.; Cruz, S.M.A.; Almeida, B.T.A.; Esteves, V.I.; Marques, P.A.A.P.; Santos, E.B.H. TiO2-RGO Nanocomposite as an Efficient Catalyst to Photodegrade Formalin in Aquaculture’s Waters, under Solar Light. Environ. Sci. Water Res. Technol. 2020, 6, 1018–1027. [Google Scholar] [CrossRef]
- Artigas, M.L.; Vale, P.J.V.; Gomes, S.S.; Botelho, M.J.; Rodrigues, S.M.; Amorim, A. Profiles of Paralytic Shellfish Poisoning Toxins in Shellfish from Portugal Explained by Carbamoylase Activity. J. Chromatogr. A 2007, 1160, 99–105. [Google Scholar] [CrossRef]
- Nielsen, L.T.; Hansen, P.J.; Krock, B.; Vismann, B. Accumulation, Transformation and Breakdown of DSP Toxins from the Toxic Dinoflagellate Dinophysis Acuta in Blue Mussels, Mytilus Edulis. Toxicon 2016, 117, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Moroño, A.; Arévalo, F.; Fernández, M.L.; Maneiro, J.; Pazos, Y.; Salgado, C.; Blanco, J. Accumulation and Transformation of DSP Toxins in Mussels Mytilus Galloprovincialis during a Toxic Episode Caused by Dinophysis Acuminata. Aquat. Toxicol. 2003, 62, 269–280. [Google Scholar] [CrossRef]
- Qiu, J.; Fan, H.; Liu, T.; Liang, X.; Meng, F.; Quilliam, M.A.; Li, A. Application of Activated Carbon to Accelerate Detoxification of Paralytic Shellfish Toxins from Mussels Mytilus Galloprovincialis and Scallops Chlamys Farreri. Ecotoxicol. Environ. Saf. 2018, 148, 402–409. [Google Scholar] [CrossRef]
- European Comission 96/77/EC: Commission Decision of 18 January 1996 Establishing the Conditions for the Harvesting and Processing of Certain Bivalve Molluscs Coming from Areas Where the Paralytic Shellfish Poison Level Exceeds the Limit Laid down by Council Directive 91/492/EEC. Off. J. Eur. Communities 1996, L015, 46–47.
- EUMOFA. EUMOFA Case Study—Oysters in the EU; EUMOFA: Brussels, Belgium, 2022. [Google Scholar]
- Lee, R.; Lovatelli, A.; Ababouch, L. Bivalve Depuration: Fundamental and Practical Aspects; FAO: Rome, Italy, 2008. [Google Scholar]
- Lavaud, R.; Durier, G.; Nadalini, J.-B.; Filgueira, R.; Comeau, L.A.; Babarro, J.M.F.; Michaud, S.; Scarratt, M.; Tremblay, R. Effects of the Toxic Dinoflagellate Alexandrium Catenella on the Behaviour and Physiology of the Blue Mussel Mytilus Edulis. Harmful Algae 2021, 108, 102097. [Google Scholar] [CrossRef]
- Choi, M.C.; Hsieh, D.P.H.; Lam, P.K.S.; Wang, W.X. Field Depuration and Biotransformation of Paralytic Shellfish Toxins in Scallop Chlamys Nobilis and Green-Lipped Mussel Perna Viridis. Mar. Biol. 2003, 143, 927–934. [Google Scholar] [CrossRef]
- Haya, K.; Martin, J.L.; Robinson, S.M.C.; Martin, J.D.; Khots, A. Does Uptake of Alexandrium Fundyense Cysts Contribute to the Levels of PSP Toxin Found in the Sea Scallop, Placopecten Magellanicus? Harmful Algae 2003, 2, 75–81. [Google Scholar] [CrossRef]
- Waiwood, B.A.; Haya, K.; Martin, J.L. Depuration of Paralytic Shellfish Toxins by Giant Scallops from the Bay of Fundy, Canada. In Harmful Marine Algal Blooms; Lavoisier: Paris, France, 1995; pp. 525–530. [Google Scholar]
- Silva Buarque, N.M.; de Brito Buarque, H.L.; Capelo-Neto, J. Adsorption Kinetics and Diffusion of Saxitoxins on Granular-Activated Carbon: Influence of Pore Size Distribution. J. Water Supply Res. Technol.-AQUA 2015, 64, 344–353. [Google Scholar] [CrossRef]
- Zhang, S.; Shao, T.; Karanfil, T. The Effects of Dissolved Natural Organic Matter on the Adsorption of Synthetic Organic Chemicals by Activated Carbons and Carbon Nanotubes. Water Res. 2011, 45, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Chambers, C.; Grimes, S.; Fire, S.; Reza, M.T. Influence of Biochar on the Removal of Microcystin-LR and Saxitoxin from Aqueous Solutions. Sci. Rep. 2024, 14, 11058. [Google Scholar] [CrossRef]
- Yang, X.; Hu, X.; Dong, Z.; Li, M.; Zheng, Z.; Xie, W. Effect of Carboxymethyl Chitosan on the Detoxification and Biotransformation of Paralytic Shellfish Toxins in Oyster Ostrea Rivularis. Toxicon 2021, 196, 1–7. [Google Scholar] [CrossRef]
- Bricelj, V.M.; Shumway, S.E. Paralytic Shellfish Toxins in Bivalve Molluscs: Occurrence, Transfer Kinetics, and Biotransformation. Rev. Fish. Sci. 1998, 6, 315–383. [Google Scholar] [CrossRef]
- Xie, W.; Liu, X.; Yang, X.; Zhang, C.; Bian, Z. Accumulation and Depuration of Paralytic Shellfish Poisoning Toxins in the Oyster Ostrea Rivularis Gould—Chitosan Facilitates the Toxin Depuration. Food Control 2013, 30, 446–452. [Google Scholar] [CrossRef]
- Tobke, J.; Giarratano, E.; Ortiz, A.; Garrido, C.; Serra, M.; Gil, M.N.; Navarro, J.M. Chitosan Performance during Paralytic Shellfish Toxins (PST) Depuration of Mytilus Chilensis Exposed to Alexandrium Catenella. Toxicon 2021, 195, 48–57. [Google Scholar] [CrossRef]
- Guo, H.; Bao, Q.; Hu, X.; Li, H.; Yang, X.; Xie, W. Transcriptomic Analysis of Chitosan Derivatives on Detoxification of Hepatopancreas in Bay Scallops (Argopecten irradians) Infected with Paralytic Shellfish Toxin. Aquaculture 2023, 567, 739261. [Google Scholar] [CrossRef]
- dos Santos, V.C.G.; Grassi, M.T.; Abate, G. Sorption of Hg(II) by Modified K10 Montmorillonite: Influence of PH, Ionic Strength and the Treatment with Different Cations. Geoderma 2015, 237–238, 129–136. [Google Scholar] [CrossRef]
- España, V.A.A.; Sarkar, B.; Biswas, B.; Rusmin, R.; Naidu, R. Environmental Applications of Thermally Modified and Acid Activated Clay Minerals: Current Status of the Art. Environ. Technol. Innov. 2019, 13, 383–397. [Google Scholar] [CrossRef]
- Lu, G.; Song, X.; Yu, Z.; Cao, X.; Yuan, Y. Environmental Effects of Modified Clay Flocculation on Alexandrium Tamarense and Paralytic Shellfish Poisoning Toxins (PSTs). Chemosphere 2015, 127, 188–194. [Google Scholar] [CrossRef]
- Li, J.; Song, X.; Zhang, Y.; Xu, X.; Yu, Z. Effect of Modified Clay on the Transition of Paralytic Shellfish Toxins within the Bay Scallop Argopecten irradians and Sediments in Laboratory Trials. Aquaculture 2019, 505, 112–117. [Google Scholar] [CrossRef]
- Zang, X.; Yu, Z.; Jiang, W.; Song, X.; Cao, X. Dosage-Effectiveness of Modified Clay Flocculating Red Tide Organisms: Mechanical Mechanism and Mathematical Model. Sep. Purif. Technol. 2023, 305, 122422. [Google Scholar] [CrossRef]
- Sengco, M.; Li, A.; Tugend, K.; Kulis, D.; Anderson, D. Removal of Red- and Brown-Tide Cells Using Clay Flocculation. I. Laboratory Culture Experiments with Gymnodinium Breve and Aureococcus Anophagefferens. Mar. Ecol. Prog. Ser. 2001, 210, 41–53. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, X.; Song, X.; Zhang, B. Clay Surface Modification and Its Coagulation of Red Tide Organisms. Sci. Bull. 1999, 44, 617–620. [Google Scholar] [CrossRef]
- Song, W.; Song, X.; Shen, H.; Ding, Y.; Cheng, R.; Yu, Z. Degradation of Paralytic Shellfish Toxins during Flocculation of Alexandrium Pacificum by an Oxidized Modified Clay: A Laboratory Experiment. Ecotoxicol. Environ. Saf. 2023, 253, 114667. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced Oxidation Processes: Performance, Advantages, and Scale-up of Emerging Technologies. J. Env. Manag. 2022, 316, 115295. [Google Scholar] [CrossRef] [PubMed]
- Norris, K.E.; Payne, E.M.; Rosario-Ortiz, F.L. Enhanced Removal of Saxitoxins by Far-UVC Advanced Oxidation Processes. ACS EST Water 2025, 5, 4729–4736. [Google Scholar] [CrossRef]
Methods | Strengths | Limitations | Recommendations |
---|---|---|---|
Industrial and thermal procedures | Includes the only legally approved method for detoxifying the cockle Acanthocardia tuberculata. Simple, and widely used in food processing. | The approved method is very limited in terms of the number of species and toxins concentration. Not suitable for live shellfish detoxification. It alters the texture and marketability of seafood. More conventional heat treatments show little, or no efficiency. Energy costs. | Modify thermal treatment parameters to minimize nutrient loss. Explore low-energy microwave-assisted techniques. Combine heat treatment with other methods (e.g., adsorption) for better efficiency. |
(Natural) depuration | Natural process. Suitable for live bivalves. It can be accelerated by the presence of non-toxic food. | It takes weeks to months depending on several factors such as species, toxin concentration, environmental conditions, etc. Increase in excreted by-products resulting from food supply. | Combine with other methods, such as adsorption, photodegradation or photocatalysis, to accelerate the detoxification process. |
Adsorption | Suitable for live bivalves Conventional adsorbents (carbon- and chitosan-based, clays, resins) are relatively cheap and easy to obtain. Possibility of modifying the starting material. Removal efficiency demonstrated with different PST concentrations and bivalve species, within days (for most of the adsorbents). Ease of removal from the aqueous system (mainly for magnetic particles). Possible reuse. | Adsorbents removal from the system. The accumulation of nanoparticles in the environment raises potential eco-toxicological concerns. Efficiency varies with the type and properties of the adsorbent. Some modifiers may render the adsorbent more expensive and less environmentally sustainable. Efficiency may be reduced in high amounts of NOM and salts. The detoxification time is still longer than desirable (around 48 h [58]). Scarce toxicity studies for marine organisms. | Utilizing surface-modified clays can significantly improve toxin binding, while hybrid approaches offer promising synergistic effects. Environmental safety assessments should be conducted before large-scale applications to address potential eco-toxicological risks. Exploring bio-based nanomaterials presents a sustainable alternative. Improving the recovery and reuse of magnetic nanoparticles can further reduce operational costs. |
Photodegradation and photocatalysis | Can rely on irradiation systems already installed in controlled systems (e.g., in purification centres). Relatively low cost. Does not require very specific technical skills. Photodegradation can be sensitized by DOM. | It is a complementary method of degrading toxins in an aqueous medium. It may result in the formation of byproducts. There are no known studies on seawater. Its effectiveness may be affected by the presence of naturally occurring substances. | Studies using seawater. Ecotoxicity studies of by-products. Combination with a priori techniques, particularly adsorption, to increase their combined effectiveness. Conduct field studies to assess real-world applicability. |
AOPs | Fast toxin degradation, compared to other methods (within minutes). Suitable for live bivalves. | High operational and maintenance costs. Requires technical expertise. No studies were reported in seawater or involving bivalves. Its effectiveness may be affected by the presence of naturally occurring substances. Potential risks of toxic byproducts from oxidation reactions. The organoleptic properties of bivalves may be compromised due to non-selective oxidation by free radicals. | Develop cost-effective catalysts for sustainable AOPs. Development of studies using bivalves in seawater. Evaluation of bivalve properties after treatment. Ecotoxicity studies of by-products. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aderogba, A.; Leal, J.F.; Cristiano, M.L.S. Methodologies for Detoxifying Bivalves from Marine Paralytic Shellfish Toxins. Mar. Drugs 2025, 23, 398. https://doi.org/10.3390/md23100398
Aderogba A, Leal JF, Cristiano MLS. Methodologies for Detoxifying Bivalves from Marine Paralytic Shellfish Toxins. Marine Drugs. 2025; 23(10):398. https://doi.org/10.3390/md23100398
Chicago/Turabian StyleAderogba, Adewale, Joana F. Leal, and Maria L. S. Cristiano. 2025. "Methodologies for Detoxifying Bivalves from Marine Paralytic Shellfish Toxins" Marine Drugs 23, no. 10: 398. https://doi.org/10.3390/md23100398
APA StyleAderogba, A., Leal, J. F., & Cristiano, M. L. S. (2025). Methodologies for Detoxifying Bivalves from Marine Paralytic Shellfish Toxins. Marine Drugs, 23(10), 398. https://doi.org/10.3390/md23100398