Purification, Identification, and In Silico Analysis of Anti-Obesity and Antidiabetic Peptides from the Red Seaweed Palmaria palmata
Abstract
1. Introduction
2. Results
2.1. Protein Content and Degree of Hydrolysis (DH)
2.2. Anti-Obesity and Antidiabetic Properties of Extracts
2.3. Anti-Obesity and Antidiabetic Properties of Fractions Obtained from Enzymatic/Alkaline Extracts Using Alcalase®
2.4. In Silico Prediction and Docking Analysis of Peptides
2.4.1. Bioactivity Prediction
2.4.2. Toxicity and Allergenicity Assessment
2.4.3. Functional Activity Screening
2.4.4. Molecular Docking Analysis
3. Discussion
3.1. Protein Content and Degree of Hydrolysis
3.2. Anti-Obesity and Antidiabetic Properties of Enzymatic/Alkaline Extracts
3.3. Inhibitory Effects of Alcalase®-Derived Extract Fractions on Metabolic Enzymes
3.4. In Silico Analysis and Molecular Docking
4. Materials and Methods
4.1. Seaweed Biomass Preparation
4.2. Chemicals and Enzymes
4.3. Extraction Procedure
- Control (no enzyme)
- Alcalase® at 5% (w/w, based on biomass protein content)
- Formea® Prime at 5%
- Combined Alcalase® and Formea® Prime (2.5% each)
4.4. Protein Content Determination
4.5. Degree of Hydrolysis (DH)
4.6. Porcine Pancreatic Lipase Inhibition Activity
4.7. Porcine Pancreatic α-Amylase Inhibition Activity
4.8. Fractionation of Extracts Through Ultrafiltration
4.9. Peptide Purification Through Size Exclusion Chromatography (SEC)
4.10. Peptide Identification Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
4.11. In Silico Analysis of Purified Peptides
4.11.1. Peptide Prediction of Bioactivity
4.11.2. Toxicity Prediction
4.11.3. Allergenicity Assessment
4.11.4. Anti-Obesity and Antidiabetic Activity Prediction
4.11.5. Molecular Docking
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hajfathalian, M.; Ghelichi, S.; Jacobsen, C. Anti-Obesity Peptides from Food: Production, Evaluation, Sources, and Commercialization. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70158. [Google Scholar] [CrossRef]
- Aguiar, A.J.F.C.; de Medeiros, W.F.; da Silva-Maia, J.K.; Bezerra, I.W.L.; Piuvezam, G.; Morais, A.H.d.A. Peptides Evaluated In Silico, In Vitro, and In Vivo as Therapeutic Tools for Obesity: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 9646. [Google Scholar] [CrossRef] [PubMed]
- Su, N.; Yi, L.; He, J.; Ming, L.; Jambal, T.; Mijiddorj, B.; Maizul, B.; Enkhtuul, T.; Ji, R. Identification and Molecular Docking of a Novel Antidiabetic Peptide from Protamex-Camel Milk Protein Hydrolysates against α-Amylase and DPP-IV. Int. Dairy J. 2024, 152, 105884. [Google Scholar] [CrossRef]
- Hajfathalian, M.; Ghelichi, S.; García-Moreno, P.J.; Moltke Sørensen, A.-D.; Jacobsen, C. Peptides: Production, Bioactivity, Functionality, and Applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 3097–3129. [Google Scholar] [CrossRef] [PubMed]
- Suryaningtyas, I.T.; Je, J.Y. Bioactive Peptides from Food Proteins as Potential Anti-Obesity Agents: Mechanisms of Action and Future Perspectives. Trends Food Sci. Technol. 2023, 138, 141–152. [Google Scholar] [CrossRef]
- Kehinde, B.A.; Sharma, P. Recently Isolated Antidiabetic Hydrolysates and Peptides from Multiple Food Sources: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 322–340. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, S.; Takeuchi, A.; Banno, A. Plant-Derived Peptides Improving Lipid and Glucose Metabolism. Peptides 2021, 142, 170577. [Google Scholar] [CrossRef]
- Joshua Ashaolu, T.; Joshua Olatunji, O.; Can Karaca, A.; Lee, C.C.; Mahdi Jafari, S. Anti-Obesity and Anti-Diabetic Bioactive Peptides: A Comprehensive Review of Their Sources, Properties, and Techno-Functional Challenges. Food Res. Int. 2024, 187, 114427. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, C.; Wang, S.; Du, M.; Zhu, B. Efficient Screening of Pancreatic Lipase Inhibitors from Cod Meat Hydrolysate through Ligand Fishing Strategy. Front. Nutr. 2022, 9, 969558. [Google Scholar] [CrossRef]
- Chen, H.; Dong, X.; Zhao, Y.; Zhou, X.; Zhou, M.; Xu, Z.; Xu, Z. Oyster-Derived Peptides as Pancreatic Lipase Inhibitors: Kinetics, Molecular Interactions, and Gastrointestinal Stability. Food Biosci. 2025, 63, 105637. [Google Scholar] [CrossRef]
- Xu, Z.; Chang, J.; Qin, Z.; Liu, H.; Yan, X.; Guan, S.; Dong, X.; Wu, J.; Li, T. Preparation and Characterization of a Sea Cucumber Collagen-Derived Peptide and the Inhibition of Pancreatic Lipase. Food Biosci. 2025, 65, 106013. [Google Scholar] [CrossRef]
- Zhu, D.; Yuan, Z.; Wu, D.; Wu, C.; El-Seedi, H.R.; Du, M. The Dual-Function of Bioactive Peptides Derived from Oyster (Crassostrea gigas) Proteins Hydrolysates. Food Sci. Hum. Wellness 2023, 12, 1609–1617. [Google Scholar] [CrossRef]
- Wan, P.; Cai, B.; Chen, H.; Chen, D.; Zhao, X.; Yuan, H.; Huang, J.; Chen, X.; Luo, L.; Pan, J. Antidiabetic Effects of Protein Hydrolysates from Trachinotus ovatus and Identification and Screening of Peptides with α-Amylase and DPP-IV Inhibitory Activities. Curr. Res. Food Sci. 2023, 6, 100446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, S.; Rui, X.; Simpson, B.K. Interactions of C. Frondosa-Derived Inhibitory Peptides against Angiotensin I-Converting Enzyme (ACE), α-Amylase and Lipase. Food Chem. 2022, 367, 130695. [Google Scholar] [CrossRef] [PubMed]
- Ghelichi, S.; Hajfathalian, M.; Falcione, S.; Jacobsen, C. Antioxidant and Anti-Obesity Properties of Acidic and Alkaline Seaweed Extracts Adjusted to Different PH Levels. Mar. Drugs 2025, 23, 35. [Google Scholar] [CrossRef]
- Echave, J.; Otero, P.; Garcia-Oliveira, P.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M.; Simal-Gandara, J.; Prieto, M.A. Seaweed-Derived Proteins and Peptides: Promising Marine Bioactives. Antioxidants 2022, 11, 176. [Google Scholar] [CrossRef]
- Amin, M.A.; Chondra, U.; Mostafa, E.; Alam, M.M. Green Seaweed Ulva lactuca, a Potential Source of Bioactive Peptides Revealed by in Silico Analysis. Inform. Med. Unlocked 2022, 33, 101099. [Google Scholar] [CrossRef]
- Rawiwan, P.; Peng, Y.; Paramayuda, I.G.P.B.; Quek, S.Y. Red Seaweed: A Promising Alternative Protein Source for Global Food Sustainability. Trends Food Sci. Technol. 2022, 123, 37–56. [Google Scholar] [CrossRef]
- Ghelichi, S.; Sørensen, A.-D.M.; Hajfathalian, M.; Holdt, S.L.; Jacobsen, C. Screening Enzymatic Extracts of Palmaria palmata Based on Composition and Bioactivity. Algal Res. 2025, 89, 104048. [Google Scholar] [CrossRef]
- Wu, H.; Lee, J.; Shannon, E.; Hayes, M. Alaria esculenta, Ulva lactuca, and Palmaria palmata as Potential Functional Food Ingredients for the Management of Metabolic Syndrome. Foods 2025, 14, 284. [Google Scholar] [CrossRef]
- Animish, A.; Jayasri, M.A. A Retrospective Review of Marine Algae and the Strategies Employed for Prospective Diabetes Management. Algal Res. 2023, 74, 103209. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Morellon-Sterling, R.; Siar, E.H.; Tavano, O.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R. Use of Alcalase in the Production of Bioactive Peptides: A Review. Int. J. Biol. Macromol. 2020, 165, 2143–2196. [Google Scholar] [CrossRef]
- Šlechtová, T.; Gilar, M.; Kalíková, K.; Tesařová, E. Insight into Trypsin Miscleavage: Comparison of Kinetic Constants of Problematic Peptide Sequences. Anal. Chem. 2015, 87, 7636–7643. [Google Scholar] [CrossRef] [PubMed]
- Enzyme-, C.; Dolores Torres, M.; Flórez-Fernández, N.; Chinh Nguyen, H.; Ngan Ngo, K.; Khang Tran, H.; Barrow, C.J. Enzyme-Assisted Coextraction of Phenolics and Polysaccharides from Padina gymnospora. Mar. Drugs 2024, 22, 42. [Google Scholar] [CrossRef] [PubMed]
- Blanco, S.; Sapatinha, M.; Mackey, M.; Maguire, J.; Paolacci, S.; Gonçalves, S.; Lourenço, H.M.; Mendes, R.; Bandarra, N.M.; Pires, C. Effect of Deployment and Harvest Date on Growth and High-Value Compounds of Farmed Alaria esculenta. Mar. Drugs 2023, 21, 305. [Google Scholar] [CrossRef]
- Rodrigues, D.; Costa-Pinto, A.R.; Sousa, S.; Vasconcelos, M.W.; Pintado, M.M.; Pereira, L.; Rocha-Santos, T.A.P.; Da Costa, J.P.; Silva, A.M.S.; Duarte, A.C.; et al. Sargassum muticum and Osmundea pinnatifida Enzymatic Extracts: Chemical, Structural, and Cytotoxic Characterization. Mar. Drugs 2019, 17, 209. [Google Scholar] [CrossRef]
- Sun, S.; Xu, X.; Sun, X.; Zhang, X.; Chen, X.; Xu, N. Preparation and Identification of ACE Inhibitory Peptides from the Marine Macroalga Ulva Intestinalis. Mar. Drugs 2019, 17, 179. [Google Scholar] [CrossRef] [PubMed]
- Calokerinos, C.; Karwowska, M.; Batkowska, J.; Jeong, Y.; Kim, E.J.; Shin, K.-S.; Song, E.-C.; Lee, D.-H.; Kim, K.-W.; Hwang, J.; et al. Comparative Exploration of Antioxidant Properties of Alcalase- and Trypsin-Hydrolyzed Porcine By-Products and Their Classification for Industrial Use. Appl. Sci. 2024, 15, 47. [Google Scholar] [CrossRef]
- Xiang, H.; Waterhouse, D.S.; Liu, P.; Waterhouse, G.I.N.; Li, J.; Cui, C. Pancreatic Lipase-Inhibiting Protein Hydrolysate and Peptides from Seabuckthorn Seed Meal: Preparation Optimization and Inhibitory Mechanism. LWT 2020, 134, 109870. [Google Scholar] [CrossRef]
- Awosika, T.O.; Aluko, R.E. Inhibition of the in Vitro Activities of α-Amylase, α-Glucosidase and Pancreatic Lipase by Yellow Field Pea (Pisum sativum L.) Protein Hydrolysates. Int. J. Food Sci. Technol. 2019, 54, 2021–2034. [Google Scholar] [CrossRef]
- Le Vo, T.D.; Vo, B.C.; Nguyen, K.T.; Nguyen, H.H. Fabrication and Characterization of a Lipase Inhibition Protein Hydrolysate Derived from Baby Clam (Corbiculidae sp.) Meat. Waste Biomass Valorization 2025, 1–14. [Google Scholar] [CrossRef]
- Mudgil, P.; Baba, W.N.; Kamal, H.; FitzGerald, R.J.; Hassan, H.M.; Ayoub, M.A.; Gan, C.Y.; Maqsood, S. A Comparative Investigation into Novel Cholesterol Esterase and Pancreatic Lipase Inhibitory Peptides from Cow and Camel Casein Hydrolysates Generated upon Enzymatic Hydrolysis and In-Vitro Digestion. Food Chem. 2022, 367, 130661. [Google Scholar] [CrossRef]
- Sharifuddin, Y.; Chin, Y.X.; Lim, P.E.; Phang, S.M. Potential Bioactive Compounds from Seaweed for Diabetes Management. Mar. Drugs 2015, 13, 5447–5491. [Google Scholar] [CrossRef]
- Ghelichi, S.; Jacobsen, C. Seaweed Proteins: Properties, Extraction, Challenges, and Prospects. J. Food Sci. 2025, 90, e70418. [Google Scholar] [CrossRef] [PubMed]
- Gunathilaka, T.L.; Samarakoon, K.; Ranasinghe, P.; Peiris, L.D.C. Antidiabetic Potential of Marine Brown Algae—A Mini Review. J. Diabetes Res. 2020, 2020, 1230218. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.K.; Chang, J.S. Proteins and Bioactive Peptides from Algae: Insights into Antioxidant, Anti-Hypertensive, Anti-Diabetic and Anti-Cancer Activities. Trends Food Sci. Technol. 2024, 145, 104352. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, J.; Yang, R.; Zhao, W. Bioactive Peptides with Antidiabetic Properties: A Review. Int. J. Food Sci. Technol. 2019, 54, 1909–1919. [Google Scholar] [CrossRef]
- Cian, R.E.; Martínez-Augustin, O.; Drago, S.R. Bioactive Properties of Peptides Obtained by Enzymatic Hydrolysis from Protein Byproducts of Porphyra Columbina. Food Res. Int. 2012, 49, 364–372. [Google Scholar] [CrossRef]
- Huamán-Castilla, N.L.; Allcca-Alca, E.E.; Hervas Nina, F.; León-Calvo, N.C.; Zirena Vilca, F.; Vilcanqui Chura, Y.L. Pressurized Liquid Extraction of Antioxidant and α-Amylase-Inhibitory Compounds from Red Seaweed Using Water–Ethanol Mixtures. Molecules 2024, 29, 5018. [Google Scholar] [CrossRef]
- Zhu, W.; Jia, Y.; Peng, J.; Li, C.M. Inhibitory Effect of Persimmon Tannin on Pancreatic Lipase and the Underlying Mechanism In Vitro. J. Agric. Food Chem. 2018, 66, 6013–6021. [Google Scholar] [CrossRef]
- Mudgil, P.; Ajayi, F.F.; Alkaabi, A.; Alsubousi, M.; Singh, B.P.; Maqsood, S. Flaxseed- and Chia Seed-Derived Protein Hydrolysates Exhibiting Enhanced In Vitro Antidiabetic, Anti-Obesity, and Antioxidant Properties. Front. Sustain. Food Syst. 2023, 7, 1223884. [Google Scholar] [CrossRef]
- Lin, M.; Zeng, Q.; Yang, J.; Huang, J.; Zhou, M.; Lin, Z.; Zhang, Z.; Xu, F.; Wang, J.J. Spirulina Derived Peptides: Inhibition Mechanism on Pancreatic Lipase and Impact on Lipid-Lowering Effects of Caenorhabditis elegans. Int. J. Biol. Macromol. 2025, 319, 145403. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.C.L.; Harris, J.L.; Khanna, K.K.; Hong, J.H. A Comprehensive Review on Current Advances in Peptide Drug Development and Design. Int. J. Mol. Sci. 2019, 20, 2383. [Google Scholar] [CrossRef]
- Wang, P.; Song, X.; Liang, Q. Molecular Docking Studies and In Vitro Activity of Pancreatic Lipase Inhibitors from Yak Milk Cheese. Int. J. Mol. Sci. 2025, 26, 756. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Derdemezis, C.S.; Gazi, I.F.; Nakou, E.S.; Mikhailidis, D.P.; Elisaf, M.S. Orlistat-Associated Adverse Effects and Drug Interactions. Drug Saf. 2008, 31, 53–65. [Google Scholar] [CrossRef]
- Ashraf, Z.U.; Gani, A.; Shah, A.; Gani, A. Identification of Antidiabetic Peptides from Broad Bean Protein: Sequencing Using LC-MS-QTOF and In-Vitro Confirmative Studies. Food Biosci. 2024, 61, 104903. [Google Scholar] [CrossRef]
- Chaipoot, S.; Punfa, W.; Ounjaijean, S.; Phongphisutthinant, R.; Kulprachakarn, K.; Parklak, W.; Phaworn, L.; Rotphet, P.; Boonyapranai, K. Antioxidant, Anti-Diabetic, Anti-Obesity, and Antihypertensive Properties of Protein Hydrolysate and Peptide Fractions from Black Sesame Cake. Molecules 2022, 28, 211. [Google Scholar] [CrossRef] [PubMed]
- del Carmen Hernández-Barillas, A.; Carrera-Gómez, A.M.; Rodríguez-Miranda, J.; Hernández-Santos, B.; Godínez-Ruiz, M.A.; Ramírez-Figueroa, E.; Guzmán-Ortiz, F.A.; Torruco-Uco, J.G. Hypocholesterolemic and Antidiabetic Activity of Peptide Fractions Obtained by Ultrafiltration of Protein Hydrolysates From Sunflower (Helianthus annuus) Seeds. J. Food Process Preserv. 2025, 2025, 1537620. [Google Scholar] [CrossRef]
- Mohd Rodhi, A.; Yap, P.G.; Olalere, O.A.; Gan, C.Y. Unveiling α-Amylase Inhibition: A Bioinformatics Perspective on Peptide Properties and Amino Acid Contributions. J. Mol. Struct. 2024, 1305, 137768. [Google Scholar] [CrossRef]
- Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Fractionation and Identification of Antioxidant Peptides from an Enzymatically Hydrolysed Palmaria palmata Protein Isolate. Food Res. Int. 2017, 100, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Chelliah, R.; Wei, S.; Daliri, E.B.M.; Elahi, F.; Yeon, S.J.; Tyagi, A.; Liu, S.; Madar, I.H.; Sultan, G.; Oh, D.H. The Role of Bioactive Peptides in Diabetes and Obesity. Foods 2021, 10, 2220. [Google Scholar] [CrossRef]
- Subramaniyan, V.; Hanim, Y.U. Role of Pancreatic Lipase Inhibition in Obesity Treatment: Mechanisms and Challenges towards Current Insights and Future Directions. Int. J. Obes. 2025, 49, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, C.; Yang, Q.; Ji, J.; Jiang, X.; Liu, C.; Sun, F.; Wang, X.; Dou, S. Analysis of the Effects of Differently Charged Peptides on α-Amylase and Their Interaction Mechanisms. Bioorg. Chem. 2024, 153, 107972. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Cui, T.; Yang, Y.; Ren, T.L. Sensing of Digestive Enzymes—Diagnosis and Monitoring of Pancreatitis. Chemosensors 2023, 11, 469. [Google Scholar] [CrossRef]
- Tang, X.; Chen, X.; Wang, H.; Yang, J.; Li, L.; Zhu, J.; Liu, Y. Virtual Screening Technology for Two Novel Peptides in Soybean as Inhibitors of α-Amylase and α-Glucosidase. Foods 2023, 12, 4387. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ai, X.; Zhu, Z.; Zhang, M.; Pan, F.; Yang, Z.; Wang, O.; Zhao, L.; Zhao, L. Pancreatic Lipase Inhibitory Effects of Peptides Derived from Sesame Proteins: In Silico and in Vitro Analyses. Int. J. Biol. Macromol. 2022, 222, 1531–1537. [Google Scholar] [CrossRef]
- Fadimu, G.J.; Farahnaky, A.; Gill, H.; Olalere, O.A.; Gan, C.Y.; Truong, T. In-Silico Analysis and Antidiabetic Effect of α-Amylase and α-Glucosidase Inhibitory Peptides from Lupin Protein Hydrolysate: Enzyme-Peptide Interaction Study Using Molecular Docking Approach. Foods 2022, 11, 3375. [Google Scholar] [CrossRef]
- de Medeiros, W.F.; Gomes, A.F.T.; Aguiar, A.J.F.C.; de Queiroz, J.L.C.; Bezerra, I.W.L.; da Silva-Maia, J.K.; Piuvezam, G.; Morais, A.H.d.A. Anti-Obesity Therapeutic Targets Studied In Silico and In Vivo: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 4699. [Google Scholar] [CrossRef]
- Zaworski, K.; Wychowański, P.; Szkopek, D.; Woliński, J.; Donaldson, J.; Pierzynowski, S.; Pierzynowska, K. The Regulatory Role of Pancreatic Enzymes in the Maintenance of Small Intestinal Structure and Enterocyte Turnover with Special Reference to Alpha Amylase. Int. J. Mol. Sci. 2025, 26, 249. [Google Scholar] [CrossRef] [PubMed]
- Ghelichi, S.; Sørensen, A.-D.M.; Hajfathalian, M.; Jacobsen, C. Effect of Post-Extraction Ultrasonication on Compositional Features and Antioxidant Activities of Enzymatic/Alkaline Extracts of Palmaria palmata. Mar. Drugs 2024, 22, 179. [Google Scholar] [CrossRef] [PubMed]
- Bjørlie, M.; Hartmann, J.C.; Rasmussen, L.H.; Yesiltas, B.; Sørensen, A.D.M.; Gregersen Echers, S.; Jacobsen, C. Screening for Metal-Chelating Activity in Potato Protein Hydrolysates Using Surface Plasmon Resonance and Peptidomics. Antioxidants 2024, 13, 346. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Castilho, P.C. Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest. Molecules 2021, 26, 2023. [Google Scholar] [CrossRef]
- Balasubramaniam, V.; Mustar, S.; Mustafa Khalid, N.; Abd Rashed, A.; Mohd Noh, M.F.; Wilcox, M.D.; Chater, P.I.; Brownlee, I.A.; Pearson, J.P. Inhibitory Activities of Three Malaysian Edible Seaweeds on Lipase and α-Amylase. J. Appl. Phycol. 2013, 25, 1405–1412. [Google Scholar] [CrossRef]
Extract (mg.mL−1) | No Enz | Alc | Form | Alc+Form |
---|---|---|---|---|
4 | 16.74 ± 1.01 b,v | 51.20 ± 0.33 a,v | 22.23 ± 2.89 b,v | 46.72 ± 4.21 a,v |
2 | 15.54 ± 0.50 c,v | 50.23 ± 0.62 a,vw | 16.84 ± 0.69 c,w | 29.00 ± 3.12 b,w |
1 | 14.44 ± 1.87 c,v | 47.62 ± 2.59 a,vw | 11.89 ± 1.43 c,x | 22.55 ± 2.59 b,wx |
0.5 | 8.69 ± 1.50 c,w | 43.19 ± 1.25 a,w | 4.18 ± 2.19 d,y | 19.60 ± 0.59 b,xy |
0.25 | 7.66 ± 2.38 c,w | 33.88 ± 2.52 a,x | 2.57 ± 1.30 c,y | 14.11 ± 1.23 b,y |
0.125 | 1.41 ± 0.93 b,x | 19.19 ± 5.21 a,y | 1.78 ± 0.87 b,y | 6.59 ± 1.35 b,z |
Extract (mg.mL−1) | No Enz | Alc | Form | Alc+Form |
---|---|---|---|---|
4 | 21.97 ± 1.70 b,x | 45.00 ± 4.52 a,x | 3.71 ± 1.67 c,x | 23.44 ± 1.42 b,x |
2 | 15.94 ± 2.07 b,y | 36.39 ± 5.96 a,x | 4.09 ± 0.26 c,x | 13.16 ± 2.91 bc,y |
1 | 12.22 ± 0.23 a,y | 13.69 ± 1.68 a,y | 1.05 ± 0.37 c,y | 7.19 ± 2.12 b,z |
<1 kDa | 1–3 kDa | 3–5 kDa | >5 kDa | ||
---|---|---|---|---|---|
Lipase Inhibition | 4 mg.mL−1 | 54.59 ± 0.87 a,x | 53.26 ± 0.51 a,x | 46.27 ± 0.65 b,x | 41.33 ± 0.78 c,x |
2 mg.mL−1 | 43.07 ± 2.01 a,y | 41.12 ± 0.81 a,y | 32.01 ± 1.39 b,y | 30.49 ± 0.73 b,y | |
1 mg.mL−1 | 33.51 ± 2.06 a,z | 30.89 ± 2.02 a,z | 20.57 ± 3.11 b,z | 14.80 ± 1.48 b,z | |
IC50 | 3.25 ± 0.04 a | 3.47 ± 0.05 b | NR * | NR | |
α-amylase Inhibition | 4 mg.mL−1 | 58.25 ± 0.95 a,x | 55.11 ± 0.79 a,x | 29.68 ± 3.91 b,x | 6.78 ± 1.07 c,x |
2 mg.mL−1 | 36.12 ± 1.70 a,y | 32.65 ± 2.70 a,y | 16.27 ± 2.27 b,y | 5.41 ± 0.59 c,x | |
1 mg.mL−1 | 28.15 ± 2.46 a,z | 22.47 ± 2.11 b,z | 7.16 ± 1.43 c,z | 1.39 ± 0.74 d,y | |
IC50 | 3.24 ± 0.09 a | 3.55 ± 0.07 b | NR | NR |
Sequence | Target | Number of Residues | Molecular Weight (g.mol−1) | Extinction Coefficient (M−1cm−1) | Isoelectric Point | Net Charge at pH 7 | Solubility (Estimation) |
---|---|---|---|---|---|---|---|
SWDGPALVVFT | Lipase inhibitor | 11 | 1191.33 | 5690 | 0.75 | −1 | Poor water solubility |
LDLWKDITF | Lipase inhibitor | 9 | 1150.32 | 5690 | 3.71 | −1 | Good water solubility |
NFYGGKLNGKV | α-amylase inhibitor | 11 | 1196.35 | 1280 | 10.18 | 2 | Good water solubility |
ESFNIPAFY | α-amylase inhibitor | 9 | 1087.18 | 1280 | 0.95 | −1 | Poor water solubility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghelichi, S.; Hajfathalian, M.; Helalat, S.H.; Svensson, B.; Jacobsen, C. Purification, Identification, and In Silico Analysis of Anti-Obesity and Antidiabetic Peptides from the Red Seaweed Palmaria palmata. Mar. Drugs 2025, 23, 392. https://doi.org/10.3390/md23100392
Ghelichi S, Hajfathalian M, Helalat SH, Svensson B, Jacobsen C. Purification, Identification, and In Silico Analysis of Anti-Obesity and Antidiabetic Peptides from the Red Seaweed Palmaria palmata. Marine Drugs. 2025; 23(10):392. https://doi.org/10.3390/md23100392
Chicago/Turabian StyleGhelichi, Sakhi, Mona Hajfathalian, Seyed Hossein Helalat, Birte Svensson, and Charlotte Jacobsen. 2025. "Purification, Identification, and In Silico Analysis of Anti-Obesity and Antidiabetic Peptides from the Red Seaweed Palmaria palmata" Marine Drugs 23, no. 10: 392. https://doi.org/10.3390/md23100392
APA StyleGhelichi, S., Hajfathalian, M., Helalat, S. H., Svensson, B., & Jacobsen, C. (2025). Purification, Identification, and In Silico Analysis of Anti-Obesity and Antidiabetic Peptides from the Red Seaweed Palmaria palmata. Marine Drugs, 23(10), 392. https://doi.org/10.3390/md23100392