Ecological Characteristics and Nutritional Values of Australia-Native Brown Algae Species
Abstract
1. Introduction
2. Ecological Characteristics of Five Australian Native Brown Algae
2.1. Cystophora torulosa
2.2. Durvillaea potatorum
2.3. Ecklonia radiata
2.4. Hormosira banksii
2.5. Phyllospora comosa
Species | Characteristics | Distribution in Australia | Reproduction | Environmental Requirements |
---|---|---|---|---|
Cystophora torulosa | Sausage-shaped leaves, single disc-shaped fixative, long and serrated stipe, thick and branched lateral branches, tightly clustered. The color is brownish brown [29] | From Apollo Bay to Wilsons Promontory in Victoria, around the Bass Straight Islands and Tasmania [82] | Monoecious [36] | Adhere to low tide zones up to 30 m deep reefs, temperate and cold temperate zones [82], prefer moderate wave conditions. |
Durvillaea potatorum | Dark brown leaf-like body, medium brown tender buds, 2–10 m long (usually 2–8 m), with cone-shaped to wide cone-shaped fixatives with a massive discoid to broadly conical holdfast. 5–50 cm long and 2–12 cm in diameter terete stipe. No internal honeycomb structure [38]. | Around King island [83] and Tasmania [84]. The west of Wilson Promontory [38]. | Dioecious [85] | Located in an environment of low intertidal and shallow subtidal, rocky substrate, and ocean waves [39]. High turbulence is fluent in reproduction [40]. It often grows in cold temperate waters and is susceptible to the influence of ice scour before disappearing [41]. |
Ecklonia radiata | The stipe is straight and flat, with lateral branches located on both sides, wide and flat. The leaves are brownish wavy in color [29]. | Can be found on subtidal rocky substrate from ∼27° S to 48° S [56]. From Houtman Abrolhos on the west coast of Australia, along the south coast to near Queensland on the east coast, including Tasmania, Moreton Island [55]. | Dioecious [56] | Located in the low intertidal to a depth of 40 m, it is distributed in temperate and subtropical regions and often lives in water at 8–25 °C [56]. |
Hormosira banksii | Composed of vesicles containing air and liquid [86], they are irregularly spotted circular or elliptical in shape, and can grow up to 30 cm in length. The disc-shaped holder has simple branches. Color brown or dark brown [29]. | Can be found from King George’s Sound on the west coast of Australia, along the southern coastline to Coffs Harbor in New South Wales, and also around Tasmania [87]. | Dioecious [67] | Commonly found in higher intertidal zones and along the middle and lower coasts [86], it is more resistant to dryness, prefers shelter from wind and moderate wave conditions, and dislikes exposed environments [88]. |
Phyllospora comosa | The main branch is flat, with many closely arranged lateral branches, smooth lateral leaves, and toothed edges. There are vesicles on the short branches, which are randomly distributed with the lateral leaves. Disk-shaped elliptical fixator. Dark brown [29,89]. | Along the coast of Victoria to the coast of New South Wales, including Tasmania [89] | Dioecious [29] | Usually inhabiting shallow subtidal reefs at 0–10 m in temperate zones [89]. High requirements for water quality and high sensitivity to sewage [78]. |
3. Nutritive Value of Five Australian Native Brown Algae
3.1. Protein
3.2. Lipids
Species | TFA | SFA | MUFA | PUFA | n-6/n-3 | EPA + DHA | ALA | Location | References | |
---|---|---|---|---|---|---|---|---|---|---|
Cystophora torulosa | 0.8 ± 0.1 % dry weight | 30.2 ± 0.7 | 17.8 ± 0.6 | 51.6 ± 1.2 | 1.4 ± 0.2 | 3.6 ± 0.6 mg/10 g DW | 5.8 ± 0.8 mg/10 g DW | Tasmania | [124] | |
13.98 ± 2.13 mg/g DW | 26.04 ± 0.32 | 12.94 ± 0.19 | 59.45 ± 0.19 | 0.72 ± 0.01 | 6.56 ± 0.16 | 8.07 ± 0.06 | Victoria | [28] | ||
Durvillaea potatorum | 1.87 ± 0.48 mg/g DW | 33.55 ± 1.51 | 15.46 ± 1.48 | 49.70 ± 1.14 | 0.94 ± 0.06 | 6.38 ± 0.19 | 11.21 ± 1.14 | Victoria | [28] | |
Fresh | 13 mg/g DW | 12.1 | 11.6 | 56.9 | 0.73 | 5.1 | 23.8 | Tasmania | [126] | |
Factory-Dried | 5 mg/g DW | 28.2 | 21 | 37.3 | 1.25 | 3.7 | 10.2 | Tasmania | [126] | |
Beach | 1 mg/g DW | 39.3 | 18.3 | 22.2 | 2.13 | 1.9 | 4.3 | Tasmania | [126] | |
Ecklonia radiata | 1.2 ± 0.2 % dry weight | 25.0 ± 1.9 | 22.3 ± 2.1 | 52.3 ± 4.0 | 1.1 ± 0.2 | 6.8 ± 1.5 mg/10 g DW | 7.9 ± 1.4 mg/10 g DW | Tasmania | [124] | |
50.7 | 33 | 16.3 | 3 | 2.3 | 1.8 | New South Wales | [125] | |||
7.47 ± 0.34 mg/g DW | 32.29 ± 1.00 | 20.95 ± 0.31 | 45.50 ± 1.12 | 0.98 ± 0.06 | 6.43 ± 0.27 | 5.69 ± 0.44 | Victoria | [28] | ||
Hormosira banksii | 1.0 ± 0.1 % dry weight | 31.3 ± 0.9 | 21.1 ± 1.4 | 47.4 ± 0.7 | 1.0 ± 0.2 | 9.2 ± 1.2 mg/10 g DW | 8.9 ± 3.0 mg/10 g DW | Tasmania | [124] | |
40.6 | 24.6 | 34.8 | 1.5 | 5.8 | 7.4 | New South Wales | [125] | |||
3.93 ± 0.26 mg/g DW | 31.48 ± 0.42 | 19.06 ± 0.27 | 47.81 ± 0.26 | 1.05 ± 0.09 | 6.38 ± 0.32 | 8.98 ± 0.69 | Victoria | [28] | ||
Phyllospora comosa | 42 | 20.8 | 37.2 | 3.8 | 3.9 | 3.9 | New South Wales | [125] | ||
2.53 ± 0.19 mg/g DW | 36.63 ± 0.65 | 20.29 ± 0.46 | 40.81 ± 0.97 | 1.83 ± 0.02 | 5.14 ± 0.16 | 5.11 ± 0.30 | Victoria | [28] | ||
Laminaria digitata | 0.11 ± 0.01 –1.03 ± 0.08 %DW | 28.40 ± 1.22 –47.57 ± 4.50 | 14.31 ± 5.05 –17.63 ± 0.18 | 32.93 ± 4.22 –49.93 ± 3.06 | 0.65 ± 0.03 –0.98 ± 0.03 | - | - | Ireland | [135] | |
Sargassum fusiforme | - | 36.78 | 18.09 | 45.13 | 1.2 | - | - | China | [105] | |
Undaria pinnatifida | - | 4.47 ± 0.64 | 2.22 ± 0.12 | 11.2 ± 1.06 | 0.71 | - | - | New Zealand | [136] |
3.3. Trace Elements
3.4. Polysaccharides
3.5. Other Bioactive Components and Applications
4. Australians’ Attitudes Towards Seaweed and Seaweed Products
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NFE | Nitrogen-Free Extract |
TFA | Total Fatty Acids |
SFA | Saturated Fatty Acids |
MUFA | Monounsaturated Fatty Acids |
PUFA | Polyunsaturated Fatty Acids |
EPA | Eicosapentaenoic Acid |
ALA | Alpha-Linolenic Acid |
FRDC | Fisheries Research and Development Corporation |
DW | Dry weight |
References
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef] [PubMed]
- Tanna, B.; Mishra, A. Nutraceutical potential of seaweed polysaccharides: Structure, bioactivity, safety, and toxicity. Compr. Rev. Food Sci. Food Saf. 2019, 18, 817–831. [Google Scholar] [CrossRef]
- Choi, S.-W.; Graf, L.; Choi, J.W.; Jo, J.; Boo, G.H.; Kawai, H.; Choi, C.G.; Xiao, S.; Knoll, A.H.; Andersen, R.A.; et al. Ordovician origin and subsequent diversification of the brown algae. Curr. Biol. 2024, 34, 740–754.e4. [Google Scholar] [CrossRef]
- Zhao, W.; Subbiah, V.; Xie, C.; Yang, Z.; Shi, L.; Barrow, C.; Dunshea, F.; Suleria, H.A.R. Bioaccessibility and bioavailability of phenolic compounds in seaweed. Food Rev. Int. 2023, 39, 5729–5760. [Google Scholar] [CrossRef]
- Krzyzanowska, J.; Czubacka, A.; Oleszek, W. Dietary phytochemicals and human health. Adv. Exp. Med. Biol. 2010, 698, 74–98. [Google Scholar]
- Charoensiddhi, S.; Conlon, M.A.; Franco, C.M.; Zhang, W. The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends Food Sci. Technol. 2017, 70, 20–33. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Rhatigan, P.; Pérez-Lloréns, J.L. World cuisine of seaweeds: Science meets gastronomy. Int. J. Gastron. Food Sci. 2018, 14, 55–65. [Google Scholar] [CrossRef]
- Nisizawa, K.; Noda, H.; Kikuchi, R.; Watanabe, T. The main seaweed foods in Japan. Hydrobiologia 1987, 151, 5–29. [Google Scholar] [CrossRef]
- Porterfield, W. References to the algae in the Chinese classics. Bull. Torrey Bot. Club 1922, 49, 297–300. [Google Scholar] [CrossRef]
- Tseng, C.-K. Common Seaweeds of China; Berkelouw Rare Books: Berrima, Australia, 1983. [Google Scholar]
- Pratt, A. Chapters on the Common Things of the Sea-Coast; Society for Promoting Christian Knowledge: London, UK, 1853. [Google Scholar]
- Salas, E.P.; Valdes, R. Apuntes Para la Historia de la Cocina Chilena: Edición a Cargo de Rosario Valdés Chadwick; Uqbar: Santiago, Chile, 2007. [Google Scholar]
- Kuhnlein, H.; Turner, N. Traditional Plant Foods of Canadian Indigenous Peoples: Nutrition, Botany and Use; Routledge: Abingdon, UK, 2020. [Google Scholar]
- Mouritsen, O.G.; Cornish, M.L.; Critchley, A.C.; Pérez-Lloréns, J.L. Chapter 1—History of seaweeds as a food. In Applications of Seaweeds in Food and Nutrition; Hefft, D.I., Adetunji, C.O., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–17. [Google Scholar]
- Lucas, S.; Gouin, S.; Lesueur, M. Seaweed Consumption and Label Preferences in France. Mar. Resour. Econ. 2019, 34, 143–162. [Google Scholar] [CrossRef]
- Ficheux, A.-S.; Pierre, O.; Le Garrec, R.; Roudot, A.-C. Seaweed consumption in France: Key data for exposure and risk assessment. Food Chem. Toxicol. 2022, 159, 112757. [Google Scholar] [CrossRef]
- Smith, J.; Summers, G.; Wong, R. Nutrient and heavy metal content of edible seaweeds in New Zealand. N. Z. J. Crop Hortic. Sci. 2010, 38, 19–28. [Google Scholar] [CrossRef]
- Hurd, C.L.; Wright, J.T.; Layton, C.; Strain, E.M.A.; Britton, D.; Visch, W.; Barrett, N.; Bennett, S.; Chang, K.J.L.; Edgar, G.; et al. From Tasmania to the world: Long and strong traditions in seaweed use, research, and development. Bot. Mar. 2023, 66, 1–36. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef]
- Bennett, S.; Wernberg, T.; Connell, S.D.; Hobday, A.J.; Johnson, C.R.; Poloczanska, E.S. The ‘Great Southern Reef’: Social, ecological and economic value of Australia’s neglected kelp forests. Mar. Freshw. Res. 2015, 67, 47–56. [Google Scholar] [CrossRef]
- Bolton, J. Global seaweed diversity: Patterns and anomalies. Bot. Mar. 1994, 37, 241–245. [Google Scholar] [CrossRef]
- Fragkopoulou, E.; Serrão, E.A.; De Clerck, O.; Costello, M.J.; Araújo, M.B.; Duarte, C.M.; Krause-Jensen, D.; Assis, J. Global biodiversity patterns of marine forests of brown macroalgae. Glob. Ecol. Biogeogr. 2022, 31, 636–648. [Google Scholar] [CrossRef]
- Prajogo, D.; Alam, J.F.; Malina, A.C.; Hasanuddin, K.; Alhaqqi, M.S.; Mustafa, M.D. Unleashing Australia-Indonesia Seaweed Industry’s Trade Potential; The Australia-Indonesia Centre: Melbourne, Australia, 2023. [Google Scholar]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Verma, P.; Arun, A.; Sahoo, D. Brown Algae. In The Algae World; Sahoo, D., Seckbach, J., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 177–204. [Google Scholar]
- Guiry, M.D. How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing. J. Phycol. 2024, 60, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczyk, V.M.; Hermon, K.M.; Norambuena, F.; Turchini, G.M.; Keast, R.; Bellgrove, A. Is Australian seaweed worth eating? Nutritional and sensorial properties of wild-harvested Australian versus commercially available seaweeds. J. Appl. Phycol. 2019, 31, 709–724. [Google Scholar] [CrossRef]
- Womersley, H. The Marine Benthic Flora of Southern Australia, Part II; Adelaide Government Printer: Adelaide, Australia, 1987. [Google Scholar]
- Pessarrodona, A. Functional extinction of a genus of canopy-forming macroalgae (Cystophora spp.) across Western Australia. Reg. Environ. Change 2022, 22, 130. [Google Scholar] [CrossRef]
- Phillips, J.A.; Blackshaw, J.K. Extirpation of macroalgae (Sargassum spp.) on the subtropical east Australian coast. Conserv. Biol. 2011, 25, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Pearce, A.; Feng, M. Observations of warming on the Western Australian continental shelf. Mar. Freshw. Res. 2007, 58, 914–920. [Google Scholar] [CrossRef]
- Martínez, B.; Radford, B.; Thomsen, M.S.; Connell, S.D.; Carreño, F.; Bradshaw, C.J.A.; Fordham, D.A.; Russell, B.D.; Gurgel, C.F.D.; Wernberg, T. Distribution models predict large contractions of habitat-forming seaweeds in response to ocean warming. Divers. Distrib. 2018, 24, 1350–1366. [Google Scholar] [CrossRef]
- Wernberg, T.; Bennett, S.; Babcock, R.C.; de Bettignies, T.; Cure, K.; Depczynski, M.; Dufois, F.; Fromont, J.; Fulton, C.J.; Hovey, R.K.; et al. Climate-driven regime shift of a temperate marine ecosystem. Science 2016, 353, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Pessarrodona, A.; Grimaldi, C.M. On the ecology of Cystophora spp. forests. J. Phycol. 2022, 58, 760–772. [Google Scholar] [CrossRef]
- Schiel, D.R. Rivets or bolts? When single species count in the function of temperate rocky reef communities. J. Exp. Mar. Biol. Ecol. 2006, 338, 233–252. [Google Scholar] [CrossRef]
- Vairo, D.; Bellgrove, A.; Biancacci, C. Temporal and small-scale spatial variation in standing stock phenology and reproduction of Australian hijiki analogues informs aquaculture potential. Phycol. Res. 2025, 73, 92–103. [Google Scholar] [CrossRef]
- Velásquez, M.; Fraser, C.I.; Nelson, W.A.; Tala, F.; Macaya, E.C. Concise review of the genus Durvillaea Bory de Saint-Vincent, 1825. J. Appl. Phycol. 2020, 32, 3–21. [Google Scholar] [CrossRef]
- HAY, C.H. Durvillaea Bory. Biol. Econ. Algae 1994, 353–384. [Google Scholar]
- Cheshire, A.C.; Hallam, N.D. Biomass and density of native stands of Durvillaea potatorum (Southern bull-kelp) in south eastern Australia. Mar. Ecol. Prog. Ser. 1988, 48, 277–283. [Google Scholar] [CrossRef]
- Fraser, C.I.; Morrison, A.K.; Hogg, A.M.; Macaya, E.C.; van Sebille, E.; Ryan, P.G.; Padovan, A.; Jack, C.; Valdivia, N.; Waters, J.M. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 2018, 8, 704–708. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Mondardini, L.; Alestra, T.; Gerrity, S.; Tait, L.; South, P.M.; Lilley, S.A.; Schiel, D.R. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 2019, 6, 84. [Google Scholar] [CrossRef]
- Schiel, D.R.; Lilley, S.A.; South, P.M. Ecological tipping points for an invasive kelp in rocky reef algal communities. Mar. Ecol. Prog. Ser. 2018, 587, 93–104. [Google Scholar] [CrossRef]
- Weber, X.A.; Edgar, G.J.; Banks, S.C.; Waters, J.M.; Fraser, C.I. A morphological and phylogenetic investigation into divergence among sympatric Australian southern bull kelps (Durvillaea potatorum and D. amatheiae sp. nov.). Mol. Phylogenetics Evol. 2017, 107, 630–643. [Google Scholar] [CrossRef]
- Fraser, C.I.; Velásquez, M.; Nelson, W.A.; Macaya, E.C.; Hay, C.H. The Biogeographic Importance of Buoyancy in Macroalgae: A Case Study of the Southern Bull-Kelp Genus Durvillaea (Phaeophyceae), Including Descriptions of Two New Species1. J. Phycol. 2020, 56, 23–36. [Google Scholar] [CrossRef]
- PIRSA. South Australian Beach-Cast Seagrass and Marine Algae Fishery Assessment; Adelaide, A., Ed.; PIRSA: Adelaide, Australia, 2014; p. 23. [Google Scholar]
- Fraser, C.I.; Spencer, H.G.; Waters, J.M. Durvillaea poha sp. nov. (Fucales, Phaeophyceae): A buoyant southern bull-kelp species endemic to New Zealand. Phycologia 2012, 51, 151–156. [Google Scholar] [CrossRef]
- Thurstan, R.H.; Brittain, Z.; Jones, D.S.; Cameron, E.; Dearnaley, J.; Bellgrove, A. Aboriginal uses of seaweeds in temperate Australia: An archival assessment. J. Appl. Phycol. 2018, 30, 1821–1832. [Google Scholar] [CrossRef]
- Mattner, S.W.; Milinkovic, M.; Arioli, T. Increased growth response of strawberry roots to a commercial extract from Durvillaea potatorum and Ascophyllum nodosum. J. Appl. Phycol. 2018, 30, 2943–2951. [Google Scholar] [CrossRef]
- Mattner, S.W.; Villalta, O.N.; McFarlane, D.J.; Islam, T.; Arioli, T.; Cahill, D.M. The biostimulant effect of an extract from Durvillaea potatorum and Ascophyllum nodosum is associated with the priming of reactive oxygen species in strawberry in south-eastern Australia. J. Appl. Phycol. 2023, 35, 1789–1800. [Google Scholar] [CrossRef]
- Silberfeld, T.; Leigh, J.W.; Verbruggen, H.; Cruaud, C.; de Reviers, B.; Rousseau, F. A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): Investigating the evolutionary nature of the “brown algal crown radiation”. Mol. Phylogenetics Evol. 2010, 56, 659–674. [Google Scholar] [CrossRef]
- Durrant, H.M.; Barrett, N.S.; Edgar, G.J.; Coleman, M.A.; Burridge, C.P. Shallow phylogeographic histories of key species in a biodiversity hotspot. Phycologia 2015, 54, 556–565. [Google Scholar] [CrossRef]
- Rothman, M.D.; Mattio, L.; Wernberg, T.; Anderson, R.J.; Uwai, S.; Mohring, M.B.; Bolton, J.J. A molecular investigation of the genus Ecklonia (Phaeophyceae, Laminariales) with special focus on the Southern Hemisphere. J. Phycol. 2015, 51, 236–246. [Google Scholar] [CrossRef]
- Kordas, R.L.; Harley, C.D.; O’Connor, M.I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 2011, 400, 218–226. [Google Scholar] [CrossRef]
- Marzinelli, E.M.; Williams, S.B.; Babcock, R.C.; Barrett, N.S.; Johnson, C.R.; Jordan, A.; Kendrick, G.A.; Pizarro, O.R.; Smale, D.A.; Steinberg, P.D. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests. PLoS ONE 2015, 10, e0118390. [Google Scholar] [CrossRef]
- Wernberg, T.; Coleman, M.A.; Babcock, R.C.; Bell, S.Y.; Bolton, J.J.; Connell, S.D.; Hurd, C.L.; Johnson, C.R.; Marzinelli, E.M.; Shears, N.T.; et al. Biology and ecology of the globally significant kelp Ecklonia radiata. In Oceanography and Marine Biology; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Wernberg, T.; Coleman, M.; Fairhead, A.; Miller, S.; Thomsen, M. Morphology of Ecklonia radiata (Phaeophyta: Laminarales) along its geographic distribution in south-western Australia and Australasia. Mar. Biol. 2003, 143, 47–55. [Google Scholar] [CrossRef]
- Staehr, P.A.; Wernberg, T. Physiological responses of Ecklonia radiata (laminariales) to a latitudinal gradient IN ocean temperature. J. Phycol. 2009, 45, 91–99. [Google Scholar] [CrossRef]
- Mabin, C.J.; Gribben, P.; Fischer, A.; Wright, J. Variation in the morphology, reproduction and development of the habitat-forming kelp Ecklonia radiata with changing temperature and nutrients. Mar. Ecol. Prog. Ser. 2013, 483, 117–131. [Google Scholar] [CrossRef]
- Bearham, D.; Vanderklift, M.A.; Gunson, J.R. Temperature and light explain spatial variation in growth and productivity of the kelp Ecklonia radiata. Mar. Ecol. Prog. Ser. 2013, 476, 59–70. [Google Scholar] [CrossRef]
- Akatsuka, I. Biology of Economic Algae; SPB Academic Publishing bv: The Hague, The Netherlands, 1994. [Google Scholar]
- Nepper-Davidsen, J.; Glasson, C.R.K.; Lawton, R.J.; Magnusson, M. High spatial and temporal variation in biomass composition of the novel aquaculture target Ecklonia radiata. J. Appl. Phycol. 2023, 35, 1755–1768. [Google Scholar] [CrossRef] [PubMed]
- Blain, C.O.; Rees, T.A.V.; Hansen, S.C.; Shears, N.T. Morphology and photosynthetic response of the kelp Ecklonia radiata across a turbidity gradient. Limnol. Oceanogr. 2020, 65, 529–544. [Google Scholar] [CrossRef]
- Veenhof, R.J.; Champion, C.; Dworjanyn, S.A.; Schwoerbel, J.; Visch, W.; Coleman, M.A. Projecting kelp (Ecklonia radiata) gametophyte thermal adaptation and persistence under climate change. Ann. Bot. 2024, 133, 153–168. [Google Scholar] [CrossRef]
- Gonzalez, S.V.; Wood, G.; Tiong, H.Y.R.; Lema, K.A.; Mayer-Pinto, M.; Lauro, F.M.; Kjelleberg, S.; Bulleri, F.; Steinberg, P.D.; Marzinelli, E.M. Effect of seaweed canopy disturbance on understory microbial communities on rocky shores. Front. Mar. Sci. 2023, 10, 1264797. [Google Scholar] [CrossRef]
- Kain, J.M. Hormosira banksii (Phaeophyceae): A tough survivor in the harsh conditions of high intertidal pools in southeast Australia. Eur. J. Phycol. 2015, 50, 408–421. [Google Scholar] [CrossRef]
- Taylor, D.I.; Schiel, D.R. Wave-related mortality in zygotes of habitat-forming algae from different exposures in southern New Zealand: The importance of ‘stickability’. J. Exp. Mar. Biol. Ecol. 2003, 290, 229–245. [Google Scholar] [CrossRef]
- Ralph, P.J.; Morrison, D.A.; Addison, A. A quantitative study of the patterns of morphological variation within Hormosira banksii (Turner) Decaisne (Fucales: Phaeophyta) in south-eastern Australia. J. Exp. Mar. Biol. Ecol. 1998, 225, 285–300. [Google Scholar] [CrossRef]
- NESDIS, N.A. World Ocean Atlas 2009; U.S. Government Printing Office: Washington, DC, USA, 2010; Volume 1–4. [Google Scholar]
- Underwood, A. Grazing and disturbance: An experimental analysis of patchiness in recovery from a severe storm by the intertidal alga Hormosira banksii on rocky shores in New South Wales. J. Exp. Mar. Biol. Ecol. 1998, 231, 291–306. [Google Scholar] [CrossRef]
- Cameron, H.; Amor, M.D.; Bellgrove, A. Barriers to restoration: Pollution alters nurse effects for an ecosystem engineer. J. Appl. Ecol. 2021, 58, 2783–2796. [Google Scholar] [CrossRef]
- Schiel, D.R.; Taylor, D.I. Effects of trampling on a rocky intertidal algal assemblage in southern New Zealand. J. Exp. Mar. Biol. Ecol. 1999, 235, 213–235. [Google Scholar] [CrossRef]
- Lewis, R.D.; Johnson, C.R.; Wright, J.T. Demography of the intertidal fucoid Hormosira banksii: Importance of recruitment to local abundance. J. Phycol. 2021, 57, 664–676. [Google Scholar] [CrossRef]
- McKenzie, P.F.; Bellgrove, A. Dispersal of Hormosira banksii (phaeophyceae) via detached fragments: Reproductive viability and longevity. J. Phycol. 2008, 44, 1108–1115. [Google Scholar] [CrossRef]
- Mueller, R.; Wright, J.T.; Bolch, C.J.S. Historical demography and colonization pathways of the widespread intertidal seaweed Hormosira banksii (Phaeophyceae) in southeastern Australia. J. Phycol. 2018, 54, 56–65. [Google Scholar] [CrossRef]
- Coleman, M.A.; Kelaher, B.P.; Steinberg, P.D.; Millar, A.J.K. Absence of a large brown macroalga on urbanized rocky reefs around Sydney, Australia, and evidence for historical decline 1. J. Phycol. 2008, 44, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Reichelt, J.L.; Borowitzka, M.A. Antimicrobial activity from marine algae: Results of a large-scale screening programme. In Eleventh International Seaweed Symposium, Proceedings of the Eleventh International Seaweed Symposium, Qingdao, China, 19–25 June 1983; Springer: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Burridge, T.; Portelli, T.; Ashton, P. Effect of sewage effluents on germination of three marine brown algal macrophytes. Mar. Freshw. Res. 1996, 47, 1009–1014. [Google Scholar] [CrossRef]
- Peters, T. Patterns, Mechanisms and Consequences of Disease in a Habitat-Forming Macroalga. Ph.D. Thesis, The University of New South Wales, Sydney, Australia, 2015. [Google Scholar]
- Cumming, E.E.; Matthews, T.G.; Sanderson, C.J.; Ingram, B.A.; Bellgrove, A. Optimal spawning conditions of Phyllospora comosa (Phaeophyceae, Fucales) for mariculture. J. Appl. Phycol. 2019, 31, 3041–3050. [Google Scholar] [CrossRef]
- Britton, D.; Schmid, M.; Noisette, F.; Havenhand, J.N.; Paine, E.R.; McGraw, C.M.; Revill, A.T.; Virtue, P.; Nichols, P.D.; Mundy, C.N.; et al. Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitat-forming seaweed Phyllospora comosa (Labillardière) C.Agardh. Glob. Change Biol. 2020, 26, 3512–3524. [Google Scholar] [CrossRef] [PubMed]
- Womersley, H.B.S. The Marine Benthic Flora of Southern Australia; The State Herbarium of South Australia: Adelaide, Australia, 2004. [Google Scholar]
- Cheshire, A.; Hallam, N. Morphology of the southern bull-kelp (Durvillaea potatorum, Durvilleales, Phaeophyta) from King Island (Bass Strait, Australia). Bot. Mar. 1988, 31, 139–148. [Google Scholar] [CrossRef]
- Astorga-España, M.S.; Mansilla, A.; Ojeda, J.; Marambio, J.; Rosenfeld, S.; Mendez, F.; Rodriguez, J.P.; Ocaranza, P. Nutritional properties of dishes prepared with sub-Antarctic macroalgae—An opportunity for healthy eating. J. Appl. Phycol. 2017, 29, 2399–2406. [Google Scholar] [CrossRef]
- Collantes, G.; Merino, A.; Lagos, V. Fenología de la gametogénesis, madurez de conceptáculos, fertilidad y embriogénesis en Durvillaea antarctica (Chamisso) Hariot (Phaeophyta, Durvillaeales). Rev. De Biol. Mar. Y Oceanogr. 2002, 37, 83–112. [Google Scholar] [CrossRef]
- Osborn, J.E. The structure and life history of Hormosira banksii (Turner) Decaisne. Trans. R. Soc. N. Z. 1948, 77, 47–77. [Google Scholar]
- Macinnis-Ng, C.M.; Morrison, D.A.; Ralph, P.J. Temporal and spatial variation in the morphology of the brown macroalga Hormosira banksii (Fucales, Phaeophyta). Bot. Mar. 2005, 48, 198–207. [Google Scholar] [CrossRef]
- Brown, M. Effects of desiccation on photosynthesis of intertidal algae from a southern New Zealand shore. Bot. Mar. 1987, 30, 121–128. [Google Scholar] [CrossRef]
- Coleman, M.A.; Wernberg, T. Forgotten underwater forests: The key role of fucoids on Australian temperate reefs. Ecol. Evol. 2017, 7, 8406–8418. [Google Scholar] [CrossRef]
- Galanakis, C.M. The future of food. Foods 2024, 13, 506. [Google Scholar] [CrossRef]
- Pereira, L.; Cotas, J.; Gonçalves, A.M. Seaweed proteins: A step towards sustainability? Nutrients 2024, 16, 1123. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Ramírez, J.; Mondragón-Portocarrero, A.C.; Rodríguez, J.A.; Lorenzo, J.M.; Santos, E.M. Algae as a potential source of protein meat alternatives. Front. Nutr. 2023, 10, 1254300. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, D.; Caminiti, J.; Edmundson, S.; Gao, S.; Wick, M.; Huesemann, M. Seaweed proteins are nutritionally valuable components in the human diet. Am. J. Clin. Nutr. 2022, 116, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of novel extraction technologies for bioactives from marine algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef]
- Lafarga, T.; Acién-Fernández, F.G.; Garcia-Vaquero, M. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Res. 2020, 48, 101909. [Google Scholar] [CrossRef]
- Michalak, I.; Tiwari, R.; Dhawan, M.; Alagawany, M.; Farag, M.R.; Sharun, K.; Bin Emran, T.; Dhama, K. Antioxidant effects of seaweeds and their active compounds on animal health and production—A review. Vet. Q. 2022, 42, 48–67. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Mohamed, A.A.; Mohamed, H.I.; Ramadan, K.M.A.; Barqawi, A.A.; Mansour, A.T. Phytochemical and potential properties of seaweeds and their recent applications: A review. Mar. Drugs 2022, 20, 342. [Google Scholar] [CrossRef]
- Černá, M. Seaweed proteins and amino acids as nutraceuticals. Adv. Food Nutr. Res. 2011, 64, 297–312. [Google Scholar]
- Harnedy, P.A.; FitzGerald, R.J. Bioactive proteins, peptides, and amino acids from macroalgae 1. J. Phycol. 2011, 47, 218–232. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Fonseca, P.; Carneiro, M.; Moreira, W. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 2006, 97, 2402–2406. [Google Scholar] [CrossRef]
- Rupérez, P. Mineral content of edible marine seaweeds. Food Chem. 2002, 79, 23–26. [Google Scholar] [CrossRef]
- Collins, K.G.; Fitzgerald, G.F.; Stanton, C.; Ross, R.P. Looking beyond the terrestrial: The potential of seaweed derived bioactives to treat non-communicable diseases. Mar. Drugs 2016, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, M.M.M.; Marson, G.V.; Turgeon, S.L.; Tamigneaux, E.; Beaulieu, L. Environmental conditions influence on the physicochemical properties of wild and cultivated Palmaria palmata in the Canadian Atlantic shore. J. Appl. Phycol. 2022, 34, 2565–2578. [Google Scholar] [CrossRef]
- Schiener, P.; Black, M.; Stanley, M.; Green, S.D. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Bai, Y.; Fu, Y.; Chen, K.; Sun, Y.; Zhou, C.; Han, J.; Yan, X. The dietary supplementation of Sargassum fusiforme can effectively alleviate high-fat diet induced metabolic abnormalities. Algal Res. 2024, 83, 103722. [Google Scholar] [CrossRef]
- Meng, W.; Mu, T.; Sun, H.; Garcia-Vaquero, M. Evaluation of the chemical composition and nutritional potential of brown macroalgae commercialised in China. Algal Res. 2022, 64, 102683. [Google Scholar] [CrossRef]
- Taboada, M.C.; Millán, R.; Miguez, M.I. Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements. J. Appl. Phycol. 2013, 25, 1271–1276. [Google Scholar] [CrossRef]
- Zheng, L.; Fleith, M.; Giuffrida, F.; O’NEill, B.V.; Schneider, N. Dietary polar lipids and cognitive development: A narrative review. Adv. Nutr. 2019, 10, 1163–1176. [Google Scholar] [CrossRef]
- van Meer, G. Cellular lipidomics. EMBO J. 2005, 24, 3159–3165. [Google Scholar] [CrossRef]
- Goodman, B.E. Insights into digestion and absorption of major nutrients in humans. Adv. Physiol. Educ. 2010, 34, 44–53. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, H.; Lyu, X.; Chen, H.; Wei, F. Lipid oxidation in food science and nutritional health: A comprehensive review. Oil Crop Sci. 2023, 8, 35–44. [Google Scholar] [CrossRef]
- Mišurcová, L.; Ambrožová, J.; Samek, D. Seaweed lipids as nutraceuticals. Adv. Food Nutr. Res. 2011, 64, 339–355. [Google Scholar] [PubMed]
- Broadhurst, C.L.; Wang, Y.; Crawford, M.A.; Cunnane, S.C.; Parkington, J.E.; Schmidt, W.F. Brain-specific lipids from marine, lacustrine, or terrestrial food resources: Potential impact on early African Homo sapiens. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2002, 131, 653–673. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Li-Beisson, Y.; Thelen, J.J.; Fedosejevs, E.; Harwood, J.L. The lipid biochemistry of eukaryotic algae. Prog. Lipid Res. 2019, 74, 31–68. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, J.; Tavares, J.; Pinto, C.A.; Saraiva, J.A.; Prieto, M.A.; Cao, H.; Xiao, J.; Simal-Gandara, J.; Barba, F.J. Applications of algae to obtain healthier meat products: A critical review on nutrients, acceptability and quality. Crit. Rev. Food Sci. Nutr. 2023, 63, 8357–8374. [Google Scholar] [CrossRef] [PubMed]
- Lands, W. Nutritional Evaluation of Long Chain Fatty Acids in Fish Oil; Barlow, S.M., Stansby, M.E., Eds.; Academic Press: London, UK, 1982. [Google Scholar]
- Wootton, H.F.; Audzijonyte, A.; Morrongiello, J. Multigenerational exposure to warming and fishing causes recruitment collapse, but size diversity and periodic cooling can aid recovery. Proc. Natl. Acad. Sci. USA 2021, 118, e2100300118. [Google Scholar] [CrossRef]
- Dadswell, M.; Spares, A.; Reader, J.; McLean, M.; McDermott, T.; Samways, K.; Lilly, J. The decline and impending collapse of the Atlantic salmon (Salmo salar) population in the North Atlantic Ocean: A review of possible causes. Rev. Fish. Sci. Aquac. 2022, 30, 215–258. [Google Scholar] [CrossRef]
- Möllmann, C.; Cormon, X.; Funk, S.; Otto, S.A.; Schmidt, J.O.; Schwermer, H.; Sguotti, C.; Voss, R.; Quaas, M. Tipping point realized in cod fishery. Sci. Rep. 2021, 11, 14259. [Google Scholar] [CrossRef] [PubMed]
- El Maghraby, D.M.; Fakhry, E.M. Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production. Oceanologia 2015, 57, 86–92. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Bases, E.A.; El-Shenody, R.A.; El Shafay, S.M. Lipid extraction from some seaweeds and evaluation of its biodiesel production. Biocatal. Agric. Biotechnol. 2021, 35, 102087. [Google Scholar] [CrossRef]
- Rodrigues, D.; Freitas, A.C.; Pereira, L.; Rocha-Santos, T.A.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.; Duarte, A.C. Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem. 2015, 183, 197–207. [Google Scholar] [CrossRef]
- Schmid, M.; Kraft, L.G.; van der Loos, L.M.; Kraft, G.T.; Virtue, P.; Nichols, P.D.; Hurd, C.L. Southern Australian seaweeds: A promising resource for omega-3 fatty acids. Food Chem. 2018, 265, 70–77. [Google Scholar] [CrossRef]
- McCauley, J.I.; Meyer, B.J.; Winberg, P.C.; Ranson, M.; Skropeta, D. Selecting Australian marine macroalgae based on the fatty acid composition and anti-inflammatory activity. J. Appl. Phycol. 2015, 27, 2111–2121. [Google Scholar] [CrossRef]
- Virtue, P.; Nichols, P.D. Lipids from the bull kelp Durvillaea potatorum. Phytochemistry 1994, 37, 673–676. [Google Scholar] [CrossRef]
- Molendi-Coste, O.; Legry, V.; Leclercq, I.A. Why and how meet n-3 PUFA dietary recommendations? Gastroenterol. Res. Pract. 2011, 2011, 364040. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef]
- Liput, K.P.; Lepczyński, A.; Ogłuszka, M.; Nawrocka, A.; Poławska, E.; Grzesiak, A.; Ślaska, B.; Pareek, C.S.; Czarnik, U.; Pierzchała, M. Effects of dietary n–3 and n–6 polyunsaturated fatty acids in inflammation and cancerogenesis. Int. J. Mol. Sci. 2021, 22, 6965. [Google Scholar] [CrossRef]
- O’Sullivan, T.A.; Ambrosini, G.L.; Mori, T.A.; Beilin, L.J.; Oddy, W.H. Omega-3 Index correlates with healthier food consumption in adolescents and with reduced cardiovascular disease risk factors in adolescent boys. Lipids 2011, 46, 59–67. [Google Scholar] [CrossRef]
- Grant, R.; Guest, J.; Bilgin, A.; Morris, M.J.; Garg, M.; Pearce, R. Suboptimal omega-3 levels in Australian adolescents. Int. J. Child Health Nutr. 2013, 2, 309–315. [Google Scholar] [CrossRef]
- Carlson, S.J.; Fallon, E.M.; Kalish, B.T.; Gura, K.M.; Puder, M. The role of the ω-3 fatty acid DHA in the human life cycle. J. Parenter. Enter. Nutr. 2013, 37, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Innis, S.M. Dietary omega-3 fatty acids and the developing brain. Brain Res. 2008, 1237, 35–43. [Google Scholar] [CrossRef]
- Schmid, M.; Guihéneuf, F.; Stengel, D.B. Evaluation of food grade solvents for lipid extraction and impact of storage temperature on fatty acid composition of edible seaweeds Laminaria digitata (Phaeophyceae) and Palmaria palmata (Rhodophyta). Food Chem. 2016, 208, 161–168. [Google Scholar] [CrossRef]
- Boulom, S.; Guihéneuf, F.; Stengel, D.B. Seasonal changes in lipid, fatty acid, α-tocopherol and phytosterol contents of seaweed, Undaria pinnatifida, in the Marlborough Sounds, New Zealand. Food Chem. 2014, 161, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Lozano Muñoz, I.; Díaz, N.F. Minerals in edible seaweed: Health benefits and food safety issues. Crit. Rev. Food Sci. Nutr. 2020, 62, 1592–1607. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Boelaert, K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015, 3, 286–295. [Google Scholar] [CrossRef]
- Ahad, F.; Ganie, S.A. Iodine, Iodine metabolism and Iodine deficiency disorders revisited. Indian J. Endocrinol. Metab. 2010, 14, 13–17. [Google Scholar]
- Ackland, M.L.; Michalczyk, A. Zinc deficiency and its inherited disorders a review. Genes Nutr. 2006, 1, 41–49. [Google Scholar] [CrossRef]
- Kumar, S.B.; Arnipalli, S.R.; Mehta, P.; Carrau, S.; Ziouzenkova, O. Iron deficiency anemia: Efficacy and limitations of nutritional and comprehensive mitigation strategies. Nutrients 2022, 14, 2976. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
- Holloway, R.E.; Graham, R.D.; Stacey, S.P. Micronutrient deficiencies in Australian field crops. In Micronutrient Deficiencies in Global Crop Production; Springer: Dordrecht, The Netherlands, 2008; pp. 63–92. [Google Scholar]
- AIHW. Nutrition Across the Life Stages; Australian Institute of Health and Welfare: Canberra, Australia, 2018; Cat. no. PHE 227. [Google Scholar]
- Skrzypczyk, V.M.; Callahan, D.L.; Francis, D.S.; Bellgrove, A. Australian brown seaweeds as a source of essential dietary minerals. J. Appl. Phycol. 2024, 36, 797–809. [Google Scholar] [CrossRef]
- Smyth, P.P. Iodine, seaweed, and the thyroid. Eur. Thyroid. J. 2021, 10, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Charlton, K.; Probst, Y.; Kiene, G. Dietary iodine intake of the Australian population after introduction of a mandatory iodine fortification programme. Nutrients 2016, 8, 701. [Google Scholar] [CrossRef] [PubMed]
- Government, A. Brown Seaweed. 2022. Available online: https://www.agriculture.gov.au/biosecurity-trade/import/goods/food/type/brown-seaweed#classes-of-seaweed_2 (accessed on 19 June 2025).
- Somasundaram, T.C.; Mock, T.S.; Callahan, D.L.; Francis, D.S. Safety assurance and nutritional quality enhancement of Phyllospora comosa biomass using hydrothermal treatment derived ensemble machine learning models. Food Control 2025, 167, 110802. [Google Scholar] [CrossRef]
- García-Vaquero, M.; Rajauria, G.; O’DOherty, J.; Sweeney, T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int. 2017, 99, 1011–1020. [Google Scholar] [CrossRef]
- Usman, A.; Khalid, S. Algae Based Polymers, Blends, and Composites; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Lim, C.; Yusoff, S.; Ng, C.; Lim, P.; Ching, Y. Bioplastic made from seaweed polysaccharides with green production methods. J. Environ. Chem. Eng. 2021, 9, 105895. [Google Scholar] [CrossRef]
- Ji, Y.B.; Ji, C.F.; Zhang, H. Laminarin induces apoptosis of human colon cancer LOVO cells through a mitochondrial pathway. Molecules 2012, 17, 9947–9960. [Google Scholar] [CrossRef]
- Kopplin, G.; Rokstad, A.M.; Mélida, H.; Bulone, V.; Skjåk-Bræk, G.; Aachmann, F.L. Structural characterization of fucoidan from Laminaria hyperborea: Assessment of coagulation and inflammatory properties and their structure–function relationship. ACS Appl. Bio Mater. 2018, 1, 1880–1892. [Google Scholar] [CrossRef] [PubMed]
- Setyawidati, N.A.R.; Puspita, M.; Kaimuddin, A.H.; Widowati, I.; Deslandes, E.; Bourgougnon, N.; Stiger-Pouvreau, V. Seasonal biomass and alginate stock assessment of three abundant genera of brown macroalgae using multispectral high resolution satellite remote sensing: A case study at Ekas Bay (Lombok, Indonesia). Mar. Pollut. Bull. 2018, 131, 40–48. [Google Scholar] [CrossRef]
- Loy, C.; Jeffs, A. Assessment of the potential of the fucoid seaweed, Hormosira banksii, as a source of fucoidan and coculture on a Pacific oyster farm in New Zealand. N. Z. J. Mar. Freshw. Res. 2025, 59, 553–573. [Google Scholar] [CrossRef]
- Lorbeer, A.J.; Charoensiddhi, S.; Lahnstein, J.; Lars, C.; Franco, C.M.; Bulone, V.; Zhang, W. Sequential extraction and characterization of fucoidans and alginates from Ecklonia radiata, Macrocystis pyrifera, Durvillaea potatorum, and Seirococcus axillaris. J. Appl. Phycol. 2017, 29, 1515–1526. [Google Scholar] [CrossRef]
- Xie, C.; Leeming, M.G.; Lee, Z.J.; Yao, S.; van de Meene, A.; Suleria, H.A. Physiochemical changes, metabolite discrepancies of brown seaweed-derived sulphated polysaccharides in the upper gastrointestinal tract and their effects on bioactive expression. Int. J. Biol. Macromol. 2024, 272, 132845. [Google Scholar] [CrossRef]
- Abraham, R.E.; Su, P.; Puri, M.; Raston, C.L.; Zhang, W. Optimisation of biorefinery production of alginate, fucoidan and laminarin from brown seaweed Durvillaea potatorum. Algal Res. 2019, 38, 101389. [Google Scholar] [CrossRef]
- Shannon, E.; Conlon, M.; Hayes, M. In vitro enzyme inhibitory effects of green and brown Australian seaweeds and potential impact on metabolic syndrome. J. Appl. Phycol. 2023, 35, 893–910. [Google Scholar] [CrossRef]
- Somasundaram, T.; Mock, T.S.; Callahan, D.L.; Francis, D.S. Nutrient based classification of Phyllospora comosa biomasses using machine learning algorithms: Towards sustainable valorisation. Food Res. Int. 2025, 201, 115554. [Google Scholar] [CrossRef]
- Liu, M.; Hansen, P.E.; Lin, X. Bromophenols in marine algae and their bioactivities. Mar. Drugs 2011, 9, 1273–1292. [Google Scholar] [CrossRef]
- Lever, J.; Brkljača, R.; Kraft, G.; Urban, S. Natural products of marine macroalgae from South Eastern Australia, with emphasis on the Port Phillip Bay and heads regions of Victoria. Mar. Drugs 2020, 18, 142. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Lee, W.; Ahn, G. Marine algal flavonoids and phlorotannins; an intriguing frontier of biofunctional secondary metabolites. Crit. Rev. Biotechnol. 2022, 42, 23–45. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Lee, J.; Park, Y.-K.; Lee, J.-Y. Exploring the health benefits and concerns of brown seaweed consumption: A comprehensive review of bioactive compounds in brown seaweed and its potential therapeutic effects. J. Agric. Food Res. 2024, 17, 101215. [Google Scholar] [CrossRef]
- Subbiah, V.; Ebrahimi, F.; Agar, O.T.; Dunshea, F.R.; Barrow, C.J.; Suleria, H.A.R. Comparative study on the effect of phenolics and their antioxidant potential of freeze-dried Australian beach-cast seaweed species upon different extraction methodologies. Pharmaceuticals 2023, 16, 773. [Google Scholar] [CrossRef]
- Subbiah, V.; Ebrahimi, F.; Duan, X.; Agar, O.T.; Barrow, C.J.; Suleria, H.A.R. Insights into the in vitro biological properties of Australian beach-cast brown seaweed phenolics. Food Sci. Nutr. 2024, 12, 8956–8967. [Google Scholar] [CrossRef] [PubMed]
- Abetz, P. Seaweed extracts: Have they a place in Australian agriculture or horticulture? J. Austral. Inst. Agric. Sci. 1980, 46, 23–29. [Google Scholar]
- Mattner, S.; Wite, D.; Riches, D.A.; Porter, I.J.; Arioli, T. The effect of kelp extract on seedling establishment of broccoli on contrasting soil types in southern Victoria, Australia. Biol. Agric. Hortic. 2013, 29, 258–270. [Google Scholar] [CrossRef]
- Arioli, T.; Mattner, S.W.; Winberg, P.C. Applications of seaweed extracts in Australian agriculture: Past, present and future. J. Appl. Phycol. 2015, 27, 2007–2015. [Google Scholar] [CrossRef]
- Arioli, T.; Mattner, S.W.; Hepworth, G.; McClintock, D.; McClinock, R. Effect of seaweed extract application on wine grape yield in Australia. J. Appl. Phycol. 2021, 33, 1883–1891. [Google Scholar] [CrossRef]
- Arioli, T.; Hepworth, G.; Farnsworth, B.; Kasinadhuni, N.; Noune, C.; Mattner, S. Effect of applications of seaweed extract on sugarcane yield in Australia. Proc. Aust. Soc. Sugar Cane Technol. 2021, 42, 637–644. [Google Scholar]
- Arioli, T.; Villalta, O.N.; Hepworth, G.; Farnsworth, B.; Mattner, S.W. Effect of seaweed extract on avocado root growth, yield and post-harvest quality in far north Queensland, Australia. J. Appl. Phycol. 2024, 36, 745–755. [Google Scholar] [CrossRef]
- Birch, D.; Skallerud, K.; Paul, N. Who eats seaweed? An Australian perspective. J. Int. Food Agribus. Mark. 2019, 31, 329–351. [Google Scholar] [CrossRef]
- Young, M.; Paul, N.; Birch, D.; Swanepoel, L. Factors influencing the consumption of seaweed amongst young adults. Foods 2022, 11, 3052. [Google Scholar] [CrossRef]
- FRDDC. Seaweed Aquaculture in Australia. 2025. Available online: https://www.frdc.com.au/seaweed-aquaculture-australia#:~:text=Back%20to%20top-,Partnering%20for%20sustainable%20seaweed%20growth%20with%20FRDC,Fisheries%20and%20Forestry%20(DAFF) (accessed on 19 June 2025).
- Ścieszka, S.; Klewicka, E. Algae in food: A general review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3538–3547. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Bahmid, N.A.; Mahmud, C.M.M.; Boukid, F.; Lamri, M.; Gagaoua, M. Consumer acceptability of plant-, seaweed-, and insect-based foods as alternatives to meat: A critical compilation of a decade of research. Crit. Rev. Food Sci. Nutr. 2023, 63, 6630–6651. [Google Scholar] [CrossRef]
- Moss, R.; McSweeney, M.B. Do consumers want seaweed in their food? A study evaluating emotional responses to foods containing seaweed. Foods 2021, 10, 2737. [Google Scholar] [CrossRef] [PubMed]
- Raja, K.; Kadirvel, V.; Subramaniyan, T. Seaweeds, an aquatic plant-based protein for sustainable nutrition-A review. Future Foods 2022, 5, 100142. [Google Scholar] [CrossRef]
- Fuge, R.; Johnson, C.C. Iodine and human health, the role of environmental geochemistry and diet, a review. Appl. Geochem. 2015, 63, 282–302. [Google Scholar] [CrossRef]
- Bath, S.C.; Verkaik-Kloosterman, J.; Sabatier, M.; ter Borg, S.; Eilander, A.; Hora, K.; Aksoy, B.; Hristozova, N.; van Lieshout, L.; Besler, H.T.; et al. A systematic review of iodine intake in children, adults, and pregnant women in Europe—Comparison against dietary recommendations and evaluation of dietary iodine sources. Nutr. Rev. 2022, 80, 2154–2177. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J. Australian Seaweed Industry Blueprint—A Blueprint for Growth; AgriFutures Australia: Wagga Wagga, Australia, 2020. [Google Scholar]
Species | Seasons | Cystophora torulosa | Durvillaea potatorum | Ecklonia radiata | Hormosira banksii | Phyllospora comosa | Palmaria palmata | Laminaria digitata | Sargassum fusiforme | Undaria pinnatifida | Porphyra purpurea |
---|---|---|---|---|---|---|---|---|---|---|---|
Classification | Brown | Brown | Brown | Brown | Brown | Red | Brown | Brown | Brown | Red | |
Protein mg/g dry tissue | Autumn | 54.69 ± 1.70 | 30.78 ± 3.39 | 63.69 ± 0.11 | 87.90 ± 1.47 | 57.02 ± 2.37 | 8.40 ± 0.05–16.88 ± 0.11% dw | 6.9 ± 1.1% dw | 3.90% | 16.76 ± 0.06–28.19 ± 0.03% dw | 33–47% dw |
Winter | 60.75 ± 1.10 | 50.53 ± 5.73 | 84.67 ± 6.50 | 30.78 ± 1.44 | 56.06 ± 1.80 | ||||||
Ash mg/g | Autumn | 131.35 ± 2.78 | 160.58 ± 9.99 | 128.52 ± 6.66 | 156.02 ± 0.30 | 133.19 ± 2.69 | 11.14 ± 0.10–39.97 ± 0.23% dw | 31.6 ± 7.1% dw | 31.23% | 17.23 ± 0.12–43.92 ± 0.02% dw | 21.3% dw |
Winter | 134.92 ± 1.73 | 168.61 ± 5.64 | 121.01 ± 5.64 | 195.76 ± 8.04 | 129.70 ± 3.09 | ||||||
Crude fibre mg/g | Autumn | 132.65 ± 37.86 | 43.19 ± 6.40 | 127.30 ± 3.95 | 220.07 ± 90.92 | 86.14 ± 2.57 | 8.09 ± 0.02–12.79 ± 0.04% dw | - | - | 4.68 ± 1.17 –6.14 ± 0.91% dw | 7.5% dw |
Winter | 104.95 ± 13.81 | 30.45 ± 3.59 | 158.07 ± 17.23 | 43.98 ± 5.53 | 79.04 ± 2.04 | ||||||
NFE mg/g | Autumn | 104.95 ± 13.81 | 30.45 ± 3.59 | 158.07 ± 17.23 | 43.98 ± 5.53 | 79.04 ± 2.04 | - | - | - | - | - |
Winter | 468.85 ± 41.45 | 637.32 ± 20.82 | 571.64 ± 11.52 | 439.70 ± 89.54 | 595.83 ± 6.50 | ||||||
ref | [28] | [28] | [28] | [28] | [28] | [103] | [104] | [105] | [106] | [107] |
Element Concentration (mg kg−1) | Cystophora torulosa | Durvillaea potatorum | Ecklonia radiata | Hormosira banksii | Phyllospora comosa |
---|---|---|---|---|---|
Ca | 7461.4 ± 795.8 | 3593.4 ± 73.4 | 6042.3 ± 408.6 | 5931.3 ± 469.1 | 5564.0 ± 144.4 |
I | 58.9 ± 5.9 | 109.9 ± 41.1 | 179.0 ± 29.7 | 221.2 ± 107.2 | 887.8 ± 100.0 |
Fe | 334.1 ± 115.2 | 23.8 ± 7.7 | 67.3 ± 11.2 | 97.4 ± 56.1 | 28.4 ± 4.3 |
Mg | 5718.9 ± 321.2 | 9068.4 ± 307.3 | 6980.3 ± 236.3 | 11,476.5 ± 1461.1 | 8488.5 ± 155.9 |
Zn | 4.9 ± 1.1 | 16.7 ± 4.1 | 23.5 ± 10.6 | 11.0 ± 5.5 | 33.6 ± 9.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Xie, C.; Lou, Z.; Lee, Z.J.; Barrow, C.J.; Suleria, H.A.R. Ecological Characteristics and Nutritional Values of Australia-Native Brown Algae Species. Mar. Drugs 2025, 23, 383. https://doi.org/10.3390/md23100383
Dong C, Xie C, Lou Z, Lee ZJ, Barrow CJ, Suleria HAR. Ecological Characteristics and Nutritional Values of Australia-Native Brown Algae Species. Marine Drugs. 2025; 23(10):383. https://doi.org/10.3390/md23100383
Chicago/Turabian StyleDong, Chao, Cundong Xie, Ziqi Lou, Zu Jia Lee, Colin J. Barrow, and Hafiz A. R. Suleria. 2025. "Ecological Characteristics and Nutritional Values of Australia-Native Brown Algae Species" Marine Drugs 23, no. 10: 383. https://doi.org/10.3390/md23100383
APA StyleDong, C., Xie, C., Lou, Z., Lee, Z. J., Barrow, C. J., & Suleria, H. A. R. (2025). Ecological Characteristics and Nutritional Values of Australia-Native Brown Algae Species. Marine Drugs, 23(10), 383. https://doi.org/10.3390/md23100383