Valorization of the Invasive Blue Crabs (Callinectes sapidus) in the Mediterranean: Nutritional Value, Bioactive Compounds and Sustainable By-Products Utilization
Abstract
:1. Introduction
2. Commercial Value and Management Approach
3. Nutritional Aspects of C. sapidus
Moisture (%) | Lipid (%) | Protein (%) | Ash (%) | Fatty Acids % | Season | Geographic Area | References | |
---|---|---|---|---|---|---|---|---|
Crab meat | 78.71 | 18.40 | 2.32 | - | - | local market (Madrid, Spain) | [20] | |
Crab meat (cooked) | 80.17 | 16.46 | 2.32 | - | - | |||
Claw meat | 83.1 | 0.64 | 15.0 | 1.39 | - | Summer | Gulf of Antalya, the coast of Western Mediterranean of Turkey | [28] |
Body meat | 81.58 | 0.79 | 14.71 | 1.89 | - | Summer | ||
Claw meat (cooked) | 78.02 | 0.44 | 19.55 | 2.13 | - | Winter | Akyazan lagoon on the coast of the eastern Mediterra- nean Sea of Turkey | [26] |
Breast meat (cooked) | 79.05 | 0.44 | 18.10 | 2.03 | - | Winter | ||
Claw meat | 80.12 | - | 15.13 | 1.63 | - | Summer | Acquatina Lagoon (SE Italy) | [41] |
Breast meat (cooked) | - | - | - | - | n3PUFA = 17.0; ARA = 5.02; EPA = 8.4; DHA = 6.8, | Winter | Off the Mediterranean coast of Akyazan Lagoon Karataş/Turkey | [29] |
Claw meat (cooked) | - | - | - | - | n3PUFA = 18.1; ARA = 7.48; EPA = 10.6; DHA = 5.9, | Winter | ||
Lump crab meat (female) | 74.33 | 1.24 | 21.64 | 2.18 | SFA = 25.24; MUFA = 26.24; PUFA = 38.94; ARA = 4.93; EPA = 17.89; DHA = 12.02 | Spring | Eastern Mediterranean Sea | [25] |
Claw crab meat (female) | 72.48 | 0.80 | 24.33 | 2.24 | SFA = 23.65; MUFA = 28.04; PUFA = 37.88; ARA = 6.38; EPA = 16.89; DHA = 10.34 | Spring | Eastern Mediterranean Sea | |
Lump crab meat (male) | 74.98 | 1.22 | 21.41 | 2.25 | SFA = 24.74; MUFA = 23.22; PUFA = 42.64; ARA = 5.84; EPA = 17.91; DHA = 14.13 | Spring | Eastern Mediterranean Sea | |
Claw crab meat (male) | 74.65 | 0.92 | 22.25 | 2.07 | SFA = 23,00; MUFA = 25.86; PUFA = 41.13; ARA = 7.68; EPA = 16.95; DHA = 12.22 | Spring | Eastern Mediterranean Sea | |
Lump crab meat (female) | 76.01 | 0.86 | 20.79 | 2.09 | SFA = 28.25; MUFA = 25.39; PUFA = 39.25; ARA = 5.29; EPA = 17.48; DHA = 13.07 | Summer | Eastern Mediterranean Sea | |
Claw crab meat (female) | 73.36 | 0.81 | 23.32 | 2.35 | SFA = 27.02; MUFA = 27.33; PUFA = 39.25; ARA = 6.11; EPA = 17.83; DHA = 11.55 | Summer | Eastern Mediterranean Sea | [25] |
Lump crab meat (male) | 77.36 | 1.01 | 19.19 | 2.33 | SFA = 28.63; MUFA = 22.64; PUFA = 41.85; ARA = 6.07; EPA = 16.32; DHA = 15.40 | Summer | Eastern Mediterranean Sea | |
Claw crab meat (male) | 76.46 | 0.69 | 20.25 | 2.48 | SFA = 27.38; MUFA = 25.75; PUFA = 40.10; ARA = 7.29; EPA = 15.92; DHA = 12.81 | Summer | Eastern Mediterranean Sea | |
Lump crab meat (female) | 80.83 | 0.89 | 16.61 | 1.53 | SFA = 27.41; MUFA = 27.48; PUFA = 39.77; ARA = 6.10; EPA = 19.19; DHA = 10.64 | Autumn | Eastern Mediterranean Sea | |
Claw crab meat (female) | 76.73 | 0.63 | 20.17 | 2.06 | SFA = 28.00; MUFA = 31.08; PUFA = 34.22; ARA = 6.66; EPA = 15.05; DHA = 8.70 | Autumn | Eastern Mediterranean Sea | |
Lump crab meat (male) | 77.64 | 0.98 | 19.48 | 1.72 | SFA = 26.04; MUFA = 25.04; PUFA = 41.76; ARA = 5.79; EPA = 19.75; DHA = 11.72 | Autumn | Eastern Mediterranean Sea | |
Claw crab meat (male) | 79.64 | 0.58 | 17 | 2.13 | SFA = 25.85; MUFA = 30.46; PUFA = 37.06; ARA = 6.65; EPA = 16.75; DHA = 9.02 | Autumn | Eastern Mediterranean Sea | |
Lump crab meat (female) | 76.45 | 1.21 | 20.48 | 1.76 | SFA = 21.63; MUFA = 22.89; PUFA = 41.60; ARA = 8.96; EPA = 18.50; DHA = 9.83 | Winter | Eastern Mediterranean Sea | |
Claw crab meat (female) | 75.06 | 0.84 | 21.80 | 2.08 | SFA = 22.09; MUFA = 23.11; PUFA = 39.60; ARA = 9.98; EPA = 16.91; DHA = 8.60 | Winter | Eastern Mediterranean Sea | |
Lump crab meat (male) | 77.09 | 1.51 | 19.20 | 1.83 | SFA = 24.82; MUFA = 23.84; PUFA = 44.01; ARA = 7.45; EPA = 19.25; DHA = 13.02 | Winter | Eastern Mediterranean Sea | |
Claw crab meat (male) | 75.66 | 1.04 | 21.05 | 2.06 | SFA = 23.64; MUFA = 27.81; PUFA = 40.14; ARA = 9.24; EPA = 17.56; DHA = 9.35 | Winter | Eastern Mediterranean Sea | [25] |
Cephalothorax muscle (female) | 68.8 | 2 | 26.56 | - | SFA = 30.31; MUFA = 26.06; PUFA = 43.64; ARA = 7.18; EPA = 15.64; DHA = 13.27 | Summer | Southern lagoon of Tunis (north-east of Tunisia) during | [15] |
Chelipeds muscle (female) | 70.3 | 3.69 | 23.71 | - | SFA = 31.64; MUFA = 26.35; PUFA = 42.01; ARA = 7.43; EPA = 13.83; DHA = 13.78 | Summer | Southern lagoon of Tunis (north-east of Tunisia) during | |
Cephalothorax muscle (male) | 67.4 | 2.91 | 27.05 | - | SFA = 32.04; MUFA = 23.80; PUFA = 44.15; ARA = 7.21; EPA = 15.20; DHA = 13.29 | Summer | Southern lagoon of Tunis (north-east of Tunisia) during | |
Chelipeds muscle (male) | 68.7 | 2.86 | 25.77 | - | SFA = 31.74; MUFA = 25.59; PUFA = 42.67; ARA = 9.21; EPA = 12.58; DHA = 11.25 | Summer | Southern lagoon of Tunis (north-east of Tunisia) during | |
Body meat (female) | 67.54 | 1.62 | 26.51 | 1.16 | SFA = 25.98; MUFA = 22.04; PUFA = 41.41; ARA 8.71; EPA = 15.20; DHA = 11.43 | - | Akyatan Lagoon in the south of the Mediterranean Sea | [32] |
Claw meat (female) | 68.12 | 1.12 | 29.59 | 1.58 | SFA = 24.75; MUFA = 23.57; PUFA = 41.60; ARA = 10.89; EPA = 13.11; DHA = 11.23 | - | Akyatan Lagoon in the south of the Mediterranean Sea | |
Body meat (male) | 66.40 | 1.64 | 30.31 | 1.10 | SFA = 26.76; MUFA = 21.79; PUFA = 39.73; ARA = 7.73; EPA = 13.61; DHA = 13.03 | - | Akyatan Lagoon in the south of the Mediterranean Sea | |
Claw meat (male) | 66.59 | 1.22 | 31.03 | 1.32 | SFA = 24.62; MUFA = 23.84; PUFA = 40.98; ARA = 10.59; EPA = 13.0; DHA = 10.84 | - | Akyatan Lagoon in the south of the Mediterranean Sea | |
Body meat (female) | 67.99 | 2.02 | 27.69 | 1.15 | SFA = 31.84; MUFA = 7.55; PUFA = 43.78; ARA = 9.49; EPA = 16.29; DHA = 9.45 | - | Hurma Strait in the south of the Mediterranean Sea | |
Claw meat (female) | 68.15 | 1.39 | 26.78 | 1.64 | SFA = 24.13; MUFA = 23.26; PUFA = 41.38; ARA = 10.9; EPA = 13.01; DHA = 9.51 | - | Hurma Strait in the south of the Mediterranean Sea | [32] |
Crab meat | 83.59 | 1.80 | 9.12 | 1.22 | SFA = 2733.67 mg/100 g of sample; UFA = 1061.93 mg/100 g of sample | Summer | Baltim Fish Market, Kafar Elshaikh, Egypt during | [42] |
Carapace meat (male) | 77.69 | 0.69 | 18.97 | 2.39 | - | - | Fatsa, Ordu, Türkiye | [22] |
Left Claw meat (male) | 78.32 | 0.59 | 18.69 | 2.38 | - | - | Fatsa, Ordu, Türkiye | |
Right Claw meat (male) | 78.58 | 0.58 | 18.26 | 2.35 | - | - | Fatsa, Ordu, Türkiye | |
Legs meat (male) | 77.49 | 0.46 | 19.22 | 2.34 | - | - | Fatsa, Ordu, Türkiye | |
Carapace meat (female) | 76.73 | 0.92 | 19.93 | 2.29 | - | - | Fatsa, Ordu, Türkiye | |
Left Claw meat (female) | 77.85 | 0.79 | 18.75 | 2.32 | - | - | Fatsa, Ordu, Türkiye | |
Right Claw meat (female) | 78.62 | 0.77 | 18.05 | 2.31 | - | - | Fatsa, Ordu, Türkiye | |
Legs meat (female) | 76.98 | 0.63 | 19.72 | 2.30 | - | - | Fatsa, Ordu, Türkiye | |
Claw and body meat (female) | 0.9 | - | - | SFA = 29.0; MUFA = 21.7; PUFA = 39.5; ARA = 6.8; EPA = 15.0; DHA = 12.2 | Autumn | Koycegiz Lagoon (Mugla, Turkey) | [30] | |
Claw and body meat (female) | - | 1.3 | - | - | SFA = 26.9; MUFA = 22.6; PUFA = 39.5; ARA = 8.1; EPA = 14.1; DHA = 12.3 | Winter | Koycegiz Lagoon (Mugla, Turkey) | |
Claw and body meat (female) | - | 0.9 | - | - | SFA = 26.2; MUFA = 21.2; PUFA = 41.1; ARA = 6.7; EPA = 15.0; DHA = 13.8 | Spring | Koycegiz Lagoon (Mugla, Turkey) | |
Claw and body meat (female) | - | 0.9 | - | - | SFA = 30.2; MUFA = 21.7; PUFA = 40.4; ARA = 7.9; EPA = 16.3; DHA = 11.1 | Summer | Koycegiz Lagoon (Mugla, Turkey) | [30] |
Claw and body meat (male) | - | 0.8 | - | - | SFA = 28.01; MUFA = 21.4; PUFA = 41.7; ARA= 8.0; EPA = 14.5; DHA = 13 | Autumn | Koycegiz Lagoon (Mugla, Turkey) | |
Claw and body meat (male) | - | 1.2 | - | - | SFA = 253; MUFA = 22.6; PUFA = 41.6; ARA = 7.7; EPA = 14.0; DHA = 14.9 | Winter | Koycegiz Lagoon (Mugla, Turkey) | |
Claw and body meat (male) | - | 0.8 | - | - | SFA = 26.3; MUFA = 18.5; PUFA = 46.5; ARA = 7.4; EPA = 16.9; DHA = 15.9 | Spring | Koycegiz Lagoon (Mugla, Turkey) | |
Claw and body meat (male) | - | 0.8 | - | - | SFA = 29.23; MUFA = 18.9; PUFA = 43.1; ARA = 8.5; EPA = 16.0; DHA = 13.0 | Summer | Koycegiz Lagoon (Mugla, Turkey) | |
Crab muscle (female) | 75.14 | 3.75 | 9.38 | - | - | - | El-Gamil is an outlet located along the northeast side of Lake Manzala, within the coastal sand bar 5 km west of Port Said on the Mediterranean Sea | [43] |
Crab muscle (male) | 74.38 | 4.77 | 11.51 | - | - | - | El-Gamil is an outlet located along the northeast side of Lake Manzala, within the coastal sand bar 5 km west of Port Said on the Mediterranean Sea | |
Raw crab meat | 81.17 | 1.06 | 16.22 | 1.45 | - | Köyceğiz Dalyan | [44] | |
Steam-cooked crab meat | 76.88 | 1.46 | 18.05 | 1.88 | - | Köyceğiz Dalyan |
4. Blue Crab By-Products Valorization
4.1. Shell Valorization
Blue Crab By-Products | Bioactive Compounds Extracted or Products | Parameters Evaluated | References |
---|---|---|---|
Shell waste | Astaxanthin (extracted with a mixture of supercritical CO, and ethanol as a co-solvent | Chemical composition of demineralized crab shell waste | [86] |
Shell | Chitin | Comparison in the chitin extracted from blue edible crab and market purchased chitin. | [82] |
Shells and tongs | Chitosan to produce chitosan:pectin (Ch:P) based films | Chitosan production and characterization Film characterizations | [85] |
Shell wastes | Chitin and Chitosan | Yield, Moisture and Ash Content of Chitin and Chitosan | [83] |
Shells | Chitin and Chitosan | Characterization of chitin and chitosan through FTIR, TGA, XRD, and SEM analyses. Determination of antimicrobial and antioxidant activities of chitosan. | [79] |
Shells, pincers, and legs | Produce new carbonaceous materials with high adsorption capacity | The adsorption properties of the materials were investigated | [48] |
Shells | Production of Biogenic Micropowders of Crab Shells. | Characterization of Biogenic Micropowders of Crab Shells. | [98] |
Shell | Ethylene pro-pylene diene termonomer (EPDM) and EPDM with different blue crab shell (BCS) incorporated into rubber matrix | The effect of carbon black and blue crab shell content within the Ethylene pro-pylene diene termonomer matrix on the rheological, mechani- cal, morphological, and thermal properties | [87] |
Shells waste | Plant biofertilizer | Crab Shell Powdering Technical Aspects. Macronutrients, heavy metals, bacterial content, and antimicrobial properties were tested | [88] |
Food waste from cooked crabs | Chitin-based polymeric materials | The process of waste shells demineralization and the final products of the treatment were investigated using various Raman techniques and technologies, cross-validating the results with FT-IR, XRD and SEM-EDX techniques. | [84] |
Carapaces and legs | Astaxanthin Chitin Hydrolysates protein | Characterization of blue crab processing waste Enzymatic hydrolysis Astaxanthin recovery and antioxidant activity Chitin characterization | [51] |
Exoskeleton (carapace and legs) | Astaxanthin | Recovery and quantification of astaxanthin, antioxidant and anti-inflammatory activity antimicrobial activity of extracted astaxanthin | [52] |
Exoskeletons | Astaxanthin | Quantification of astaxanthin, extracted with organic solvents (ethyl acetate, acetone, cyclohexane, isopropyl alcohol, hexane, heptane, and a combination of hexane–acetone–ethanol–toluene solvents), by high-performance liquid chromatography analysis. | [80] |
Exoskeleton powder | Carotenoids | Composition and morphology of the exoskeleton powder analysed by SEM, Raman spectroscopy, FTIR and XRD. | [81] |
4.2. Exoskeleton and Cephalothorax Valorization
5. The Potential Future of Blue Crab Valorization
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kevrekidis, K.; Kevrekidis, T.; Mogias, A.; Boubonari, T.; Kantaridou, F.; Kaisari, N.; Malea, P.; Dounas, C.; Thessalou-Legaki, M. Fisheries Biology and Basic Life-Cycle Characteristics of the Invasive Blue Crab Callinectes sapidus Rathbun in the Estuarine Area of the Evros River (Northeast Aegean Sea, Eastern Mediterranean). J. Mar. Sci. Eng. 2023, 11, 462. [Google Scholar] [CrossRef]
- Mancinelli, G.; Bardelli, R.; Zenetos, A. A global occurrence database of the Atlantic blue crab Callinectes sapidus. Sci. Data 2021, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Taybi, A.F.; Mabrouki, Y. The American Blue Crab Callinectes sapidus Rathbun, 1896 (Crustacea: Decapoda: Portunidae) is Rapidly Expanding Through the Mediterranean Coast of Morocco. Thalassas 2020, 36, 267–271. [Google Scholar] [CrossRef]
- Tagatz, M.E. Some Relations of Temperature Acclimation and Salinity to Thermal Tolerance of the Blue Crab, Callinectes sapidus. Trans. Am. Fish. Soc. 1969, 98, 713–716. [Google Scholar] [CrossRef]
- Hines, A.H.; Johnson, E.G.; Darnell, M.Z.; Rittschof, D.; Miller, T.J.; Bauer, L.J.; Rodgers, P.; Aguilar, R. Predicting effects of climate change on blue crabs in Chesapeake bay. In Biology and Management of Exploited Crab Populations under Climate Change; Kruse, G.H., Eckert, G.L., Foy, R.J., Lipcius, R.N., Sainte-Marie, B., Stram, D.L., Woodby, D., Eds.; Alaska Sea Grant College Program University of Alaska Fairbanks: Fairbanks, AK, USA, 2010; pp. 109–127. [Google Scholar]
- Marchessaux, G.; Bosch-Belmar, M.; Cilenti, L.; Lago, N.; Mangano, M.C.; Marsiglia, N.; Sarà, G. The invasive blue crab Callinectes sapidus thermal response: Predicting metabolic suitability maps under future warming Mediterranean scenarios. Front. Mar. Sci. 2022, 9, 1055404. [Google Scholar] [CrossRef]
- Taylor, D.L.; Fehon, M.M. Blue Crab (Callinectes sapidus) Population Structure in Southern New England Tidal Rivers: Patterns of Shallow-Water, Unvegetated Habitat Use and Quality. Estuaries Coasts 2021, 44, 1320–1343. [Google Scholar] [CrossRef]
- Mancinelli, G.; Chainho, P.; Cilenti, L.; Falco, S.; Kapiris, K.; Katselis, G.; Ribeiro, F. On the Atlantic blue crab (Callinectes sapidus Rathbun 1896) in southern European coastal waters: Time to turn a threat into a resource? Fish. Res. 2017, 194, 1–8. [Google Scholar]
- Marchessaux, G.; Mangano, M.C.; Bizzarri, S.; M’Rabet, C.; Principato, E.; Lago, N.; Veyssiere, D.; Garrido, M.; Scyphers, S.B.; Sarà, G. Invasive blue crabs and small-scale fisheries in the Mediterranean sea: Local ecological knowledge, impacts and future management. Mar. Policy 2023, 148, 105461. [Google Scholar] [CrossRef]
- Streftaris, N.; Zenetos, A. Alien marine species in the Mediterranean—The 100 “worst invasives” and their impact. Mediterr. Mar. Sci. 2006, 7, 87–118. [Google Scholar]
- Kampouris, T.E.; Porter, J.S.; Sanderson, W.G. Callinectes sapidus Rathbun, 1896 (Brachyura: Portunidae): An assessment on its diet and foraging behaviour, Thermaikos Gulf, NW Aegean Sea, Greece: Evidence for ecological and economic impacts. Crustac. Res. 2019, 48, 23–37. [Google Scholar] [CrossRef]
- Nehring, S. Invasion History and Success of the American Blue Crab Callinectes sapidus in European and Adjacent Waters. In The Wrong Place—Alien Marine Crustaceans: Distribution, Biology and Impacts; Springer: Dordrecht, the Netherlands, 2011; pp. 607–624. ISBN 978-94-007-0591-3. [Google Scholar]
- Zotti, M.; De Pascali, S.A.; Del Coco, L.; Migoni, D.; Carrozzo, L.; Mancinelli, G.; Fanizzi, F.P. H NMR metabolomic profiling of the blue crab (Callinectes sapidus) from the Adriatic Sea (SE Italy): A comparison with warty crab (Eriphia verrucosa), and edible crab (Cancer pagurus). Food Chem. 2016, 196, 601–609. [Google Scholar] [CrossRef]
- Piras, P.; Esposito, G.; Meloni, D. On the occurrence of the blue crab Callinectes sapidus (Rathbun, 1896) in Sardinian coastal habitats (Italy): A present threat or a future resource for the regional fishery sector? Bioinvasions Rec. 2019, 8, 134–141. [Google Scholar] [CrossRef]
- Khamassi, F.; Bahri, W.R.; Bhouri, A.M.; Chaffai, A.; Soufikechaou, E.; Ghanem, R.; Souissi, J. Ben Biochemical composition, nutritional value, and socio-economic impacts of the invasive crab Callinectes sapidus Rathbun, 1896 in central Mediterranean Sea. Mediterr. Mar. Sci. 2022, 23, 650–663. [Google Scholar] [CrossRef]
- Clavero, M.; Franch, N.; Bernardo-Madrid, R.; López, V.; Abelló, P.; Queral, J.M.; Mancinelli, G. Severe, rapid and widespread impacts of an Atlantic blue crab invasion. Mar. Pollut. Bull. 2022, 176, 113479. [Google Scholar] [CrossRef]
- Nuñez, M.A.; Kuebbing, S.; Dimarco, R.D.; Simberloff, D. Invasive Species: To eat or not to eat, that is the question. Conserv. Lett. 2012, 5, 334–341. [Google Scholar] [CrossRef]
- NOAA. Fisheries Economics of the United States 2020; NOAA Technical Memorandum; NOAA Fisheries: Silver Spring, MD, USA, 2023; p. 58. [Google Scholar]
- Tarkan, A.S.; Tricarico, E.; Vilizzi, L.; Bİlge, G.; Ekmekçİ, F.G.; Filiz, H.; Giannetto, D.; İlhan, A.; Kİllİ, N.; Kirankaya, G.; et al. Risk of invasiveness of non-native aquatic species in the eastern Mediterranean region under current and projected climate conditions. Eur. Zool. J. 2021, 88, 1130–1143. [Google Scholar] [CrossRef]
- Martínez, M.A.; Velazquez, G.; Cando, D.; Núñez-Flores, R.; Borderías, A.J.; Moreno, H.M. Effects of high pressure processing on protein fractions of blue crab (Callinectes sapidus) meat. Innov. Food Sci. Emerg. Technol. 2017, 41, 323–329. [Google Scholar] [CrossRef]
- Nanda, P.K.; Das, A.K.; Dandapat, P.; Dhar, P.; Bandyopadhyay, S.; Dib, A.L.; Lorenzo, J.M.; Gagaoua, M. Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review. Trends Food Sci. Technol. 2021, 112, 252–267. [Google Scholar] [CrossRef]
- Tufan, B. Biochemical composition of different sex and body parts of blue crabs (Callinectes sapidus) caught from the middle Black Sea coast. Mar. Sci. Technol. Bull. 2023, 12, 104–110. [Google Scholar] [CrossRef]
- Wu, H.; Ge, M.; Chen, H.; Jiang, S.; Lin, L.; Lu, J. Comparison between the nutritional qualities of wild-caught and rice-field male Chinese mitten crabs (Eriocheir sinensis). LWT 2020, 117, 108663. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, H.; Cheng, Y.; Wu, X. Growth performance, gonad development and nutritional composition of Chinese mitten crab Eriocheir sinensis selected for growth and different maturity time. Aquaculture 2020, 523, 735194. [Google Scholar] [CrossRef]
- Ayas, D. The Effects of Season and Sex on the Nutritional Quality of Muscle Types of Blue Crab Callinectes sapidus and Swimming Crab Portunus segnis. Nat. Eng. Sci. 2016, 1, 1–14. [Google Scholar] [CrossRef]
- Küçükgülmez, A.; Çelik, M.; Yanar, Y.; Ersoy, B.; Çikrikçi, M. Proximate composition and mineral contents of the blue crab (Callinectes sapidus) breast meat, claw meat and hepatopancreas. Int. J. Food Sci. Technol. 2006, 41, 1023–1026. [Google Scholar] [CrossRef]
- FAO; WHO; UNU. Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU Expert Consultation; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 1985; Volume 724, pp. 1–206. [Google Scholar]
- Gökoolu, N.; Yerlikaya, P. Determinaton of proximate composition and mineral contents of blue crab (Callinectes sapidus) and swim crab (Portunus pelagicus) caught off the Gulf of Antalya. Food Chem. 2003, 80, 495–498. [Google Scholar] [CrossRef]
- Çelik, M.; Türeli, C.; Çelik, M.; Yanar, Y.; Erdem, Ü.; Küçükgülmez, A. Fatty acid composition of the blue crab (Callinectes sapidus Rathbun, 1896) in the north eastern Mediterranean. Food Chem. 2004, 88, 271–273. [Google Scholar] [CrossRef]
- Alparslan, Y.; Metin, C.; Baygar, T. Sex-and season-based comparison of lipid and fatty acid profiles of blue crab meat. J. Food Nutr. Res. 2022, 61, 27–33. [Google Scholar]
- Luvizotto-Santos, R.; Lee, J.T.; Branco, Z.P.; Bianchini, A.; Nery, L.E.M. Lipids as Energy Source during Salinity Acclimation in the Euryhaline Crab Chasmagnathus granulata Dana, 1851 (Crustacea-grapsidae). J. Exp. Zool. Part A Comp. Exp. Biol. 2003, 295, 200–205. [Google Scholar] [CrossRef]
- Kuley, E.; Özoǧul, F.; Özogul, Y.; Olgunoglu, A.I. Comparison of fatty acid and proximate compositions of the body and claw of male and female blue crabs (Callinectes sapidus) from different regions of the Mediterranean coast. Int. J. Food Sci. Nutr. 2008, 59, 573–580. [Google Scholar] [CrossRef]
- Martínez-Maldonado, M.A.; Velazquez, G.; Ramírez de León, J.A.; Borderías, A.J.; Moreno, H.M. Effect of high pressure processing on heat-induced gelling capacity of blue crab (Callinectes sapidus) meat. Innov. Food Sci. Emerg. Technol. 2020, 59, 102253. [Google Scholar] [CrossRef]
- Pinheiro, M.A.A.; de Souza, C.A.; Borba, H. Meat yield of the mangrove crab, Ucides cordatus (Linnaeus, 1763) (Crustacea, Brachyura, Ucididae). Bol. do Inst. Pesca 2015, 41, 43–56. [Google Scholar]
- Galetti, J.A.; Calder, B.L.; Skonberg, D.I. Mechanical Separation of Green Crab (Carcinus maenas) Meat and Consumer Acceptability of a Value-Added Food Product. J. Aquat. Food Prod. Technol. 2017, 26, 172–180. [Google Scholar] [CrossRef]
- Galetti, J.A. Mechanical Processing of European Green Crab (Carcinus maenas), the Development of a Value-Added Product and the Use of Restructuring Additives to Increase the Functional Properties of Green Crab Patties. Master’s Thesis, University of Maine, Orono, ME, USA, 2010. [Google Scholar]
- Gates, K.W.; Parker, A.H. Characterization of Minced Meat Extracted from Blue Crab Picking Plant By-Products. J. Food Sci. 1992, 57, 267–270. [Google Scholar] [CrossRef]
- Gates, K.W.; Parker, A.H. Refrigerated and frozen storage characteristics of minced meat extracted from blue crab picking plant by-products. J. Aquat. Food Prod. Technol. 1993, 2, 15–45. [Google Scholar] [CrossRef]
- Murphy, M.G.; Skonberg, D.I.; Camire, M.E.; Dougherty, M.P.; Bayer, R.C.; Briggs, J.L. Chemical composition and physical properties of extruded snacks containing crab-processing by-product. J. Sci. Food Agric. 2003, 83, 1163–1167. [Google Scholar] [CrossRef]
- Marchessaux, G.; Sibella, B.; Garrido, M.; Abbruzzo, A.; Sarà, G. Can we control marine invasive alien species by eating them? The case of Callinectes sapidus. Ecol. Soc. 2024, 29, 28. [Google Scholar] [CrossRef]
- Zotti, M.; Del Coco, L.; De Pascali, S.A.; Migoni, D.; Vizzini, S.; Mancinelli, G.; Fanizzi, F.P. Comparative analysis of the proximate and elemental composition of the blue crab Callinectes sapidus, the warty crab Eriphia verrucosa, and the edible crab Cancer pagurus. Heliyon 2016, 2, e00075. [Google Scholar] [CrossRef]
- Elsayed, H.M.; Hassanien, F.R.; Ibrahim, S.M.; Sulieman, R.M. Biochemical Quality Indices of Blue Swimmer Crab (Callinectes sapidus) Meat. Adv. Anim. Vet. Sci. 2020, 8, 2309–3331. [Google Scholar] [CrossRef]
- Zakzok, S.M.; Tawfik, M.M.; Mohammad, S.H.; Alkaradawe, R.M. Biometric Study, Condition Factor and Biochemical Composition of the Blue Crab Callinectes sapidus Rathbun, 1896. J. Fish. Environ. 2022, 46, 100–115. [Google Scholar]
- Alparslan, Y.; Metin, C.; Emiroğlu, S.; Baygar, T. Investigating the quality changes and shelf life of vacuum shrink-packaged raw and steam-cooked blue crabs under cold storage. Aquat. Res. 2023, 6, 117–124. [Google Scholar] [CrossRef]
- Vidal, J.L.; Jin, T.; Lam, E.; Kerton, F.; Moores, A. Blue is the new green: Valorization of crustacean waste. Curr. Res. Green Sustain. Chem. 2022, 5, 100330. [Google Scholar] [CrossRef]
- Su, W.; Yu, S.; Wu, D.; Xia, M.; Wen, Z.; Yao, Z.; Tang, J.; Wu, W. A critical review of cast-off crab shell recycling from the perspective of functional and versatile biomaterials. Environ. Sci. Pollut. Res. 2019, 26, 31581–31591. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, S.; Yue, Q.; Wu, Y.; Gao, B. Chemical preparation of crab shell-based activated carbon with superior adsorption performance for dye removal from wastewater. J. Taiwan Inst. Chem. Eng. 2016, 61, 327–335. [Google Scholar] [CrossRef]
- Zapantioti, A.; Fotodimas, I.; Gkaliouri, C.; Ioannou, Z. Valorization of blue crab (Callinectes sapidus) by-products as adsorbents. In Proceedings of the 9th International Conference on Sustainable Solid Waste Management CORFU 2022, Corfu, Greece, 15–18 June 2022. [Google Scholar]
- Maschmeyer, T.; Luque, R.; Selva, M. Upgrading of marine (fish and crustaceans) biowaste for high added-value molecules and bio(nano)-materials. Chem. Soc. Rev. 2020, 49, 4527–4563. [Google Scholar] [CrossRef]
- Venugopal, V. Green processing of seafood waste biomass towards blue economy. Curr. Res. Environ. Sustain. 2022, 4, 100164. [Google Scholar] [CrossRef]
- Antunes-Valcareggi, S.A.; Ferreira, S.R.S.; Hense, H. Enzymatic hydrolysis of blue crab (Callinectes sapidus) waste processing to obtain chitin, protein, and astaxanthin-enriched extract. Int. J. Environ. Agric. Res. 2017, 3, 81–92. [Google Scholar]
- Abd El-Ghany, M.N.; Hamdi, S.A.; Elbaz, R.M.; Aloufi, A.S.; El Sayed, R.R.; Ghonaim, G.M.; Farahat, M.G. Development of a Microbial-Assisted Process for Enhanced Astaxanthin Recovery from Crab Exoskeleton Waste. Fermentation 2023, 9, 505. [Google Scholar] [CrossRef]
- Azelee, N.I.W.; Dahiya, D.; Ayothiraman, S.; Noor, N.M.; Rasid, Z.I.A.; Ramli, A.N.M.; Ravindran, B.; Iwuchukwu, F.U.; Selvasembian, R. Sustainable valorization approaches on crustacean wastes for the extraction of chitin, bioactive compounds and their applications—A review. Int. J. Biol. Macromol. 2023, 253, 126492. [Google Scholar] [CrossRef]
- Pinheiro, A.C.D.A.S.; Martí-Quijal, F.J.; Barba, F.J.; Tappi, S.; Rocculi, P. Innovative non-thermal technologies for recovery and valorization of value-added products from crustacean processing by-products—An opportunity for a circular economy approach. Foods 2021, 10, 2030. [Google Scholar] [CrossRef]
- Ahmadkelayeh, S.; Hawboldt, K. Extraction of lipids and astaxanthin from crustacean by-products: A review on supercritical CO2 extraction. Trends Food Sci. Technol. 2020, 103, 94–108. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Meireles, M.Â.A.; Ferreira, A.L.K.; Saito, E.; Cabral, F.A. Extraction of ω-3 fatty acids and astaxanthin from Brazilian redspotted shrimp waste using supercritical CO2+ ethanol mixtures. J. Supercrit. Fluids 2012, 61, 71–77. [Google Scholar] [CrossRef]
- Parthiban, F.; Balasundari, S.; Gopalakannan, A.; Rathnakumar, K.; Felix, S. Comparison of the Quality of Chitin and Chitosan from Shrimp, Crab and Squilla Waste. Curr. World Environ. 2017, 12, 670–677. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; Matias, A.A.; Paiva, A. Recovery of antioxidant protein hydrolysates from shellfish waste streams using subcritical water extraction. Food Bioprod. Process. 2021, 130, 154–163. [Google Scholar] [CrossRef]
- Khiari, Z.; Kelloway, S.; Mason, B. Turning Invasive Green Crab (Carcinus maenas) into Opportunity: Recovery of Chitin and Protein Isolate Through Isoelectric Solubilization/Precipitation. Waste Biomass Valoriz. 2020, 11, 133–142. [Google Scholar] [CrossRef]
- Pires, C.; Marques, A.; Carvalho, M.L.; Batista, I.B. Chemical Characterization of Cancer pagurus, Maja squinado, Necora puber and Carcinus maenas shells. Poultry Fish. Wildl. Sci. 2017, 5, 1000181. [Google Scholar]
- Mao, X.; Guo, N.; Sun, J.; Xue, C. Comprehensive utilization of shrimp waste based on biotechnological methods: A review. J. Clean. Prod. 2017, 143, 814–823. [Google Scholar] [CrossRef]
- Gildberg, A.; Stenberg, E. A new process for advanced utilisation of shrimp waste. Process Biochem. 2001, 36, 809–812. [Google Scholar] [CrossRef]
- Cahú, T.B.; Santos, S.D.; Mendes, A.; Córdula, C.R.; Chavante, S.F.; Carvalho, L.B.; Nader, H.B.; Bezerra, R.S. Recovery of protein, chitin, carotenoids and glycosaminoglycans from Pacific white shrimp (Litopenaeus vannamei) processing waste. Process Biochem. 2012, 47, 570–577. [Google Scholar] [CrossRef]
- Caruso, G.; Floris, R.; Serangeli, C.; Di Paola, L. Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Mar. Drugs 2020, 18, 622. [Google Scholar] [CrossRef]
- Dey, S.S.; Dora, K.C. Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology. J. Food Sci. Technol. 2014, 51, 16–24. [Google Scholar] [CrossRef]
- Gunasekaran, J.; Kannuchamy, N.; Kannaiyan, S.; Chakraborti, R.; Gudipati, V. Protein Hydrolysates from Shrimp (Metapenaeus dobsoni) Head Waste: Optimization of Extraction Conditions by Response Surface Methodology. J. Aquat. Food Prod. Technol. 2015, 24, 429–442. [Google Scholar] [CrossRef]
- Jiang, W.; Hu, S.; Li, S.; Liu, Y. Biochemical and antioxidant properties of peptidic fraction generated from crab (Portunus trituberculatus) shells by enzymatic hydrolysis. Int. J. Food Sci. Technol. 2017, 52, 2479–2488. [Google Scholar] [CrossRef]
- Kim, S.B.; Yoon, N.Y.; Shim, K.B.; Lim, C.W. Antioxidant and angiotensin I-converting enzyme inhibitory activities of northern shrimp (Pandalus borealis) by-products hydrolysate by enzymatic hydrolysis. Fish. Aquat. Sci. 2016, 19, 29. [Google Scholar] [CrossRef]
- Guerard, F.; Sumaya-Martinez, M.T.; Laroque, D.; Chabeaud, A.; Dufossé, L. Optimization of free radical scavenging activity by response surface methodology in the hydrolysis of shrimp processing discards. Process Biochem. 2007, 42, 1486–1491. [Google Scholar] [CrossRef]
- Yoon, N.Y.; Shim, K.B.; Lim, C.W.; Kim, S.B. Antioxidant and angiotensin I converting enzyme inhibitory activities of red snow crab Chionoecetes japonicas shell hydrolysate by enzymatic hydrolysis. Fish. Aquat. Sci. 2013, 16, 237–242. [Google Scholar] [CrossRef]
- Hajji, S.; Kchaou, H.; Bkhairia, I.; Ben Slama-Ben Salem, R.; Boufi, S.; Debeaufort, F.; Nasri, M. Conception of active food packaging films based on crab chitosan and gelatin enriched with crustacean protein hydrolysates with improved functional and biological properties. Food Hydrocoll. 2021, 116, 106639. [Google Scholar] [CrossRef]
- Messina, C.M.; Manuguerra, S.; Arena, R.; Renda, G.; Ficano, G.; Randazzo, M.; Fricano, S.; Sadok, S.; Santulli, A. In Vitro Bioactivity of Astaxanthin and Peptides from Hydrolisates of Shrimp (Parapenaeus longirostris) By-Products: From the Extraction Process to Biological Effect Evaluation, as Pilot Actions for the Strategy “From Waste to Profit”. Mar. Drugs 2021, 19, 216. [Google Scholar] [CrossRef]
- Syama Dayal, J.; Ponniah, A.; Imran Khan, H.; Madhu Badu, P.; Ambasankar, K.; Kumarguru Vasagam, P. Shrimps—A nutritional perspective on JSTOR. Curr. Sci. 2013, 104, 1487–1491. [Google Scholar]
- Maia, M.L.; Grosso, C.; Barroso, M.F.; Silva, A.; Delerue-Matos, C.; Domingues, V.F. Bioactive Compounds of Shrimp Shell Waste from Palaemon serratus and Palaemon varians from Portuguese Coast. Antioxidants 2023, 12, 435. [Google Scholar] [CrossRef]
- Hong, S.; Yuan, Y.; Yang, Q.; Zhu, P.; Lian, H. Versatile acid base sustainable solvent for fast extraction of various molecular weight chitin from lobster shell. Carbohydr. Polym. 2018, 201, 211–217. [Google Scholar] [CrossRef]
- Zou, Y.; Robbens, J.; Heyndrickx, M.; Debode, J.; Raes, K. Bioprocessing of marine crustacean side-streams into bioactives: A review. J. Chem. Technol. Biotechnol. 2021, 96, 1465–1474. [Google Scholar] [CrossRef]
- Ali, M.H.; Aljadaani, S.; Khan, J.; Sindi, I.; Aboras, M.; Aly, M.M. Isolation and molecular identification of two chitinase producing bacteria from marine shrimp shell wastes. Pak. J. Biol. Sci. 2020, 23, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Cretton, M.; Malanga, G.; Mazzuca Sobczuk, T.; Mazzuca, M. Lipid Fraction from Industrial Crustacean Waste and Its Potential as a Supplement for the Feed Industry: A Case Study in Argentine Patagonia. Waste Biomass Valoriz. 2021, 12, 2311–2319. [Google Scholar] [CrossRef]
- Kaya, M.; Dudakli, F.; Asan-Ozusaglam, M.; Cakmak, Y.S.; Baran, T.; Mentes, A.; Erdogan, S. Porous and nanofiber α-chitosan obtained from blue crab (Callinectes sapidus) tested for antimicrobial and antioxidant activities. LWT 2016, 65, 1109–1117. [Google Scholar] [CrossRef]
- Montoya, J.M.; Mata, S.V.; Acosta, J.L.; Cabrera, B.E.H.; Valdez, L.G.L.; Reyes, C.; Cureño, H.J.B. Obtaining of astaxanthin from crab exosqueletons and shrimp head shells. Biointerface Res. Appl. Chem. 2021, 11, 13516–13523. [Google Scholar]
- Nekvapil, F.; Mihet, M.; Lazar, G.; Pinzaru, S.C.; Gavrilović, A.; Ciorîță, A.; Levei, E.; Tamaș, T.; Soran, M.L. Comparative Analysis of Composition and Porosity of the Biogenic Powder Obtained from Wasted Crustacean Exoskeletonsafter Carotenoids Extraction for the Blue Bioeconomy. Water 2023, 15, 2591. [Google Scholar] [CrossRef]
- Jabeen, F.; Younis, T.; Sidra, S.; Muneer, B.; Nasreen, Z.; Saleh, F.; Mumtaz, S.; Saeed, R.F.; Abbas, A.S. Extraction of chitin from edible crab shells of Callinectes sapidus and comparison with market purchased chitin. Braz. J. Biol. 2021, 83, e246520. [Google Scholar] [CrossRef]
- Metin, C.; Alparslan, Y.; Baygar, T.; Baygar, T. Physicochemical, Microstructural and Thermal Characterization of Chitosan from Blue Crab Shell Waste and Its Bioactivity Characteristics. J. Polym. Environ. 2019, 27, 2552–2561. [Google Scholar] [CrossRef]
- Pinzaru, S.C.; Poplăcean, I.-C.; Maškarić, K.; Dumitru, D.-A.; Barbu-Tudoran, L.; Tămaș, T.L.; Nekvapil, F.; Neculai, B. Raman Technology for Process Control: Waste Shells Demineralization to Produce Transparent Polymer Foils Reinforced with Natural Antioxidant, and Calcium Acetate By-Product. Processes 2024, 12, 832. [Google Scholar] [CrossRef]
- Baron, R.D.; Pérez, L.L.; Salcedo, J.M.; Córdoba, L.P.; Sobral, P.J. do A. Production and characterization of films based on blends of chitosan from blue crab (Callinectes sapidus) waste and pectin from Orange (Citrus sinensis Osbeck) peel. Int. J. Biol. Macromol. 2017, 98, 676–683. [Google Scholar] [CrossRef]
- Félix-Valenzuela, L.; Higuera-Ciapara, I.; Goycoolea-Valencia, F.; Argüelles-Monal, W. Supercritical CO2/ethanol extraction of astaxanthin from blue crab (Callinectes sapidus) shell waste. J. Food Process Eng. 2001, 24, 101–112. [Google Scholar] [CrossRef]
- Akbay, İ.K.; Güngör, A.; Özdemir, T. Assessment of blue crab Shell (Callinectes sapidus) particles as bio-based filler to EPDM rubber. J. Appl. Polym. Sci. 2022, 139, 51540. [Google Scholar] [CrossRef]
- Nekvapil, F.; Ganea, I.V.; Ciorîță, A.; Hirian, R.; Ogresta, L.; Glamuzina, B.; Roba, C.; Pinzaru, S.C. Wasted biomaterials from crustaceans as a compliant natural product regarding microbiological, antibacterial properties and heavy metal content for reuse in blue bioeconomy: A preliminary study. Materials 2021, 14, 4558. [Google Scholar] [CrossRef] [PubMed]
- Mauricio-Sánchez, R.A.; Salazar, R.; Luna-Bárcenas, J.G.; Mendoza-Galván, A. FTIR spectroscopy studies on the spontaneous neutralization of chitosan acetate films by moisture conditioning. Vib. Spectrosc. 2018, 94, 1–6. [Google Scholar] [CrossRef]
- Ray, L.; Panda, A.N.; Mishra, S.R.; Pattanaik, A.K.; Adhya, T.K.; Suar, M.; Raina, V. Purification and characterization of an extracellular thermo-alkali stable, metal tolerant chitinase from Streptomyces chilikensis RC1830 isolated from a brackish water lake sediment. Biotechnol. Rep. 2019, 21, e00311. [Google Scholar] [CrossRef]
- Xu, T.; Qi, M.; Liu, H.; Cao, D.; Xu, C.; Wang, L.; Qi, B. Chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801. AMB Express 2020, 10, 29. [Google Scholar] [CrossRef]
- Asif, T.; Javed, U.; Zafar, S.B.; Ansari, A.; Ul Qader, S.A.; Aman, A. Bioconversion of Colloidal Chitin Using Novel Chitinase from Glutamicibacter uratoxydans Exhibiting Anti-fungal Potential by Hydrolyzing Chitin Within Fungal Cell Wall. Waste Biomass Valoriz. 2020, 11, 4129–4143. [Google Scholar] [CrossRef]
- Oyeleye, A.; Normi, Y.M. Chitinase: Diversity, limitations, and trends in Engineering for suitable applications. Biosci. Rep. 2018, 38, BSR2018032300. [Google Scholar] [CrossRef]
- Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT Food Sci. Technol. 2010, 43, 837–842. [Google Scholar] [CrossRef]
- Ouattara, B.; Simard, R.E.; Piette, G.; Bégin, A.; Holley, R.A. Diffusion of acetic and propionic acids from chitosan-based antimicrobial packaging films. J. Food Sci. 2000, 65, 768–773. [Google Scholar] [CrossRef]
- Lorevice, M.V.; Otoni, C.G.; de Moura, M.R.; Mattoso, L.H.C. Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocoll. 2016, 52, 732–740. [Google Scholar] [CrossRef]
- Mahgoub, S.; Alagawany, M.; Nader, M.; Omar, S.M.; Abd El-Hack, M.E.; Swelum, A.; Elnesr, S.S.; Khafaga, A.F.; Taha, A.E.; Farag, M.R.; et al. Recent Development in Bioactive Peptides from Plant and Animal Products and Their Impact on the Human Health. Food Rev. Int. 2023, 39, 511–536. [Google Scholar] [CrossRef]
- Nekvapil, F.; Aluas, M.; Barbu-Tudoran, L.; Suciu, M.; Bortnic, R.A.; Glamuzina, B.; Pinzaru, S.C. From Blue Bioeconomy toward Circular Economy through High-Sensitivity Analytical Research on Waste Blue Crab Shells. ACS Sustain. Chem. Eng. 2019, 7, 16820–16827. [Google Scholar] [CrossRef]
- Aneesh, P.A.; Ajeeshkumar, K.K.; Lekshmi, R.G.K.; Anandan, R.; Ravishankar, C.N.; Mathew, S. Bioactivities of astaxanthin from natural sources, augmenting its biomedical potential: A review. Trends Food Sci. Technol. 2022, 125, 81–90. [Google Scholar] [CrossRef]
- Siahaan, E.A.; Agusman Pangestuti, R.; Shin, K.H.; Kim, S.K. Potential Cosmetic Active Ingredients Derived from Marine By-Products. Mar. Drugs 2022, 20, 734. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arena, R.; Renda, G.; Ottaviani Aalmo, G.; Debeaufort, F.; Messina, C.M.; Santulli, A. Valorization of the Invasive Blue Crabs (Callinectes sapidus) in the Mediterranean: Nutritional Value, Bioactive Compounds and Sustainable By-Products Utilization. Mar. Drugs 2024, 22, 430. https://doi.org/10.3390/md22090430
Arena R, Renda G, Ottaviani Aalmo G, Debeaufort F, Messina CM, Santulli A. Valorization of the Invasive Blue Crabs (Callinectes sapidus) in the Mediterranean: Nutritional Value, Bioactive Compounds and Sustainable By-Products Utilization. Marine Drugs. 2024; 22(9):430. https://doi.org/10.3390/md22090430
Chicago/Turabian StyleArena, Rosaria, Giuseppe Renda, Giovanna Ottaviani Aalmo, Frédéric Debeaufort, Concetta Maria Messina, and Andrea Santulli. 2024. "Valorization of the Invasive Blue Crabs (Callinectes sapidus) in the Mediterranean: Nutritional Value, Bioactive Compounds and Sustainable By-Products Utilization" Marine Drugs 22, no. 9: 430. https://doi.org/10.3390/md22090430
APA StyleArena, R., Renda, G., Ottaviani Aalmo, G., Debeaufort, F., Messina, C. M., & Santulli, A. (2024). Valorization of the Invasive Blue Crabs (Callinectes sapidus) in the Mediterranean: Nutritional Value, Bioactive Compounds and Sustainable By-Products Utilization. Marine Drugs, 22(9), 430. https://doi.org/10.3390/md22090430