An Isotonic Drink Containing Pacific Cod (Gadus macrocephalus) Processing Waste Collagen Hydrolysate for Bone and Cartilage Health
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Pacific Cod Processing Waste Components
2.2. Quality and Chemical Parameters of Collagen Hydrolysate
2.3. Cell Morphology, Proliferation, and Viability Assay
2.4. Isotonic Drink Properties
3. Materials and Methods
3.1. Materials
3.2. Water Content Determination
3.3. Total Protein Content and Total Nitrogen Content Determination
3.4. Collagen Content or Total Content of Collagen-Derived Amino Acid Determination
3.5. Total Fat Content Determination
3.6. Ash Content Determination
3.7. Powder Flow Determination
3.8. Angle of Repose Determination
3.9. Enzymatic Activity Determination
3.10. Determination of pH
3.11. Molecular Weight Analysis
3.12. Amino Acid Analysis
3.13. Cell Cultures
3.14. Cell Viability Assay
3.15. Cell Proliferation Assay
3.16. Isotonic Drink Preparation
3.17. Osmolarity Determination
3.18. NaCl Content Determination
3.19. Total Carbohydrates Content Determination
3.20. Vitamin C Content Determination
3.21. Viscosity Determination
3.22. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-De Alvaro, M.T.; Muñoz-Calvo, M.T.; Martínez, G.; Barrios, V.; Hawkins, F.; Argente, J. Regional skeletal bone deficit in female adolescents with anorexia nervosa: Influence of the degree of malnutrition and weight recovery in a two year longitudinal study. J. Pediatr. Endocrinol. Metab. 2007, 20, 1223–1231. [Google Scholar] [CrossRef]
- Zhang, Z.; Yin, D.; Chen, H.; Liu, B.; Liu, X.; Shan, W.; Hua, J.; Qi, Z.; Zhang, Y.; Zhang, Q.; et al. Evaluation of anemia, malnutrition, mineral, and bone disorder for maintenance hemodialysis patients based on bioelectrical impedance vector analysis (BIVA). Clin. Exp. Nephrol. 2020, 24, 1162–1176. [Google Scholar] [CrossRef] [PubMed]
- Gaipov, A.; Cseprekal, O.; Potukuchi, P.K.; Kabulbayev, K.; Remport, A.; Mathe, Z.; Talwar, M.; Balaraman, V.; Fülöp, T.; Eason, J.D.; et al. Association between malnutrition-inflammation score and risk of subsequent self-reported bone fractures in prevalent kidney transplant recipients. Osteoporos. Int. 2019, 30, 611–620. [Google Scholar] [CrossRef]
- van den Bos, F.; Speelman, A.D.; Samson, M.; Munneke, M.; Bloem, B.R.; Verhaar, H.J. Parkinson’s disease and osteoporosis. Age Ageing 2013, 42, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Boujemaoui, A.; El Mangad, F.Z.; Belkhou, A.; El Hassani, S. Malnutrition in a patient with ankylosing spondylitis with special cause: Ankylosis of temporomandibular joints. Nutr. Clin. Metab. 2012, 26, 22–24. [Google Scholar] [CrossRef]
- Tintinago, L.F.; Victoria, W.; Velez-Esquivia, M.A.; Arias, J.J.; Candelo, E. Cricoid Cartilage Hypertrophy as the Cause of Larynx Stenoses: Case Report and Updated Literature Review. Indian J. Otolaryngol. Head Neck Surg. 2022, 74 (Suppl. S2), 2595–2598. [Google Scholar] [CrossRef]
- Pal, G.K.; Suresh, P.V. Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innov. Food Sci. Emerg. Technol. 2016, 37, 201–215. [Google Scholar] [CrossRef]
- Larder, C.E.; Iskandar, M.M.; Kubow, S. Assessment of Bioavailability after In Vitro Digestion and First Pass Metabolism of Bioactive Peptides from Collagen Hydrolysates. Curr. Issues Mol. Biol. 2021, 43, 1592–1605. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Harnedy, P.A.; Zhang, L.; Li, B.; Zhang, Z.; Hou, H.; Zhao, X.; FitzGerald, R.J. In vitro assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion. J. Sci. Food Agric. 2015, 95, 1514–1520. [Google Scholar] [CrossRef]
- Nikolaeva, T.I.; Shekhovtsov, P.V. Hydrolysates of collagen concerning prevention and healing joint diseases. Fundam. Res. 2014, 12–13, 524–528. [Google Scholar]
- Yaremenko, O.B.; Anokhina, H.A.; Burianov, O.A. Joint. Cartilage. Collagen. Trauma 2020, 21, 6–12. [Google Scholar] [CrossRef]
- Stevens, J.R.; Newton, R.W.; Tlusty, M.; Little, D.C. The rise of aquaculture by-products: Increasing food production, value, and sustainability through strategic utilisation. Mar. Policy 2018, 90, 115–124. [Google Scholar] [CrossRef]
- Zarubin, N.Y.; Kharenko, E.N.; Bredikhina, O.V.; Arkhipov, L.O.; Zolotarev, K.V.; Mikhailov, A.N.; Nakhod, V.I.; Mikhailova, M.V. Application of the Gadidae Fish Processing Waste for Food Grade Gelatin Production. Mar. Drugs 2021, 19, 455. [Google Scholar] [CrossRef] [PubMed]
- Caprure (Catch) of Aquatic Biological Resources by Russian Users in the Reporting Year in Comparison with the Previous Year. Available online: https://fish.gov.ru/wp-content/uploads/2021/10/diagrammy_osvoenie_kvot_04_10_2021.pdf (accessed on 24 November 2022).
- Tsibizova, M.E.; Razumovskaya, R.G.; Cao, T.H.; Pavlova, G.A. Practical aspects of amendment production from collagen fish raw material. Vestn. Astrakhan State Tech. Univ. Ser. Fish. Ind. 2011, 1, 145–151. [Google Scholar]
- Zhang, K.; Li, B.; Chen, Q.; Zhang, Z.; Zhao, X.; Hou, H. Functional Calcium Binding Peptides from Pacific Cod (Gadus macrocephalus) Bone: Calcium Bioavailability Enhancing Activity and Anti-Osteoporosis Effects in the Ovariectomy-Induced Osteoporosis Rat Model. Nutrients 2018, 10, 1325. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Li, Z.; Li, Y.; Hou, H. Typical structure, biocompatibility, and cell proliferation bioactivity of collagen from Tilapia and Pacific cod. Colloids Surf. B Biointerfaces 2022, 210, 112238. [Google Scholar] [CrossRef] [PubMed]
- Krasnova, I.S.; Semenov, G.V.; Zarubin, N.Y. Modern technologies for using fish wastes in the production of collagen hydrolysates and functional beverages. IOP Conf. Ser. Earth Environ. Sci. 2020, 421, 062030. [Google Scholar] [CrossRef]
- Antipova, L.V.; Storublevtsev, S.A.; Getmanova, A.A. Collagen drinks for functional nutrition. Proc. Voronezh State Univ. Eng. Technol. 2018, 80, 97–103. [Google Scholar] [CrossRef]
- Rowlands, D.S.; Kopetschny, B.H.; Badenhorst, C.E. The Hydrating Effects of Hypertonic, Isotonic and Hypotonic Sports Drinks and Waters on Central Hydration During Continuous Exercise: A Systematic Meta-Analysis and Perspective. Sports Med. 2022, 52, 349–375. [Google Scholar] [CrossRef]
- Moores, J. Vitamin C: A wound healing perspective. Br. J. Community Nurs. 2013, 18, S6–S11. [Google Scholar] [CrossRef]
- Aslanova, M.A.; Derevitskaya, O.K.; Soldatova, N.E. Functional beverage for the elderly. Food Ind. 2019, 9, 62–65. [Google Scholar] [CrossRef]
- Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.-E.; Benoit, J.-P. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003, 24, 4283–4300. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, M.; Baron, R.; Kouakou, C.; Prost, C.; Courcoux, P. Comparative value of a sorting procedure and quantitative descriptive analysis to investigate the influence of processing parameters: Case study of hydrolysate production from salmon by-products. J. Sens. Stud. 2014, 29, 159–170. [Google Scholar] [CrossRef]
- Tian, J.; Wang, Y.; Li, J.; Chen, Y.; Qinchen, J.; Deng, F.; Wu, X.; Liu, R.; Xiong, S.; Rong, J.; et al. Structural characteristics and physicochemical properties of fresh-water fish gelatins with different molecular weights and their potential application to food capsule film fabrication. Mater. Express 2020, 10, 419–429. [Google Scholar] [CrossRef]
- Novikov, V.Y.; Shumskaya, N.V.; Mukhin, V.A.; Zolotarev, K.V.; Mikhailov, A.N.; Nakhod, V.I.; Mikhailova, M.V. Chemical Characterization of Atlantic Cod (Gadus morhua) Collagen Hydrolyzed Using Enzyme Preparation Derived from Red King Crab (Paralithodes camtschaticus) and Its Potential as a Core Component of Bacterial Culture Medium. Mar. Drugs 2021, 19, 472. [Google Scholar] [CrossRef] [PubMed]
- Chong, A.S.C.; Hashim, R.; Ali, A.; Hara, K. Amino acid profile of various body tissues and eggs of discus fish, Symphysodon aequifasciata. J. Appl. Aquac. 2004, 16, 157–168. [Google Scholar] [CrossRef]
- Teodósio, R.; Aragão, C.; Conceição, L.E.C.; Dias, J.; Engrola, S. Metabolic Fate Is Defined by Amino Acid Nature in Gilthead Seabream Fed Different Diet Formulations. Animals 2022, 12, 1713. [Google Scholar] [CrossRef] [PubMed]
- O’Kane, M.; Wales, J.K. The effect of the composition of very low- and low-calorie diets on 1 week’s weight loss in obese patients. J. Hum. Nutr. Diet. 1994, 7, 3–10. [Google Scholar] [CrossRef]
- Krane, S.M. The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids 2008, 35, 703–710. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sim, J.H.; Sato, H. Conformational analyses of collagen-like Co -Glycine/L-proline oligopeptides by quantum chemical calculation (QCC): Sequence effects on conformations and intra-molecular hydrogen bonds. Polym. Bull. 2022, 79, 6627–6644. [Google Scholar] [CrossRef]
- Borzykh, O.B.; Shnayder, N.A.; Karpova, E.I.; Petrova, M.M.; Demina, O.M.; Nasyrova, R.F. Collagen synthesis in the skin, its functional and structural features. Med. News North Cauc. 2021, 16, 443–450. [Google Scholar] [CrossRef]
- Granger, M.; Eck, P. Dietary Vitamin C in Human Health. Adv. Food Nutr. Res. 2018, 83, 281–310. [Google Scholar] [CrossRef] [PubMed]
- Zarubin, N.; Strokova, N.; Kharenko, E.; Bredikhina, O. Protein hydrolysate as a product of biotechnological processing of fish filleting waste. In Proceedings of the 20th International Multidisciplinary Scientific GeoConference SGEM 2020, Albena, Bulgaria, 18–24 August 2020. [Google Scholar]
- Hofman, K.; Hall, B.; Cleaver, H.; Marshall, S. High-throughput quantification of hydroxyproline for determination of collagen. Anal. Biochem. 2011, 417, 289–291. [Google Scholar] [CrossRef] [PubMed]
- General Pharmacopoeia Monograph 1.4.2.0016.15. Russian Pharmacopoeia. Available online: https://pharmacopoeia.ru/en/ofs-1-4-2-0016-15-stepen-sypuchesti-poroshkov/ (accessed on 24 November 2022).
- Grimsley, G.R.; Pace, C.N. Spectrophotometric determination of protein concentration. In Current Protocols in Protein Science; Wiley: Hoboken, NJ, USA, 2004; Chapter 3; pp. 3.1.1–3.1.9. [Google Scholar] [CrossRef]
- Mikhailova, M.V.; Zolotarev, K.V.; Mikhailov, A.N.; Sanzhakov, M.A.; Farafonova, T.E. Differences in Nutritional Value of Various Fish Products Expressed by the Amino Acid Profiles of their Water-soluble Fractions. Int. J. Manag. Humanit. 2019, 4, 1–5. [Google Scholar] [CrossRef]
- Evlash, V.V.; Kuznetsova, T.O.; Dobrovolska, O.V.; Zhelezniak, Z.V.; Panchenko, V.G. Approval methods chromatographic determination of ascorbic acid in the food system with hydrocolloid. Adv. Chem. Chem. Technol. 2015, 29, 58–60. [Google Scholar]
Component of Waste | Water Content | Total Protein Content | Collagen Content | Total Fat Content | Ash Content |
---|---|---|---|---|---|
Heads with clavicles and muscle cutoffs | 78.21 ± 1.43 a | 15.71 ± 0.39 a | 10.02 ± 0.24 a | 0.77 ± 0.01 a | 5.37 ± 0.14 a |
Skin with scales | 75.79 ± 1.39 b | 18.61 ± 0.46 b | 14.38 ± 0.34 b | 1.03 ± 0.02 b | 3.56 ± 0.08 b |
Tails with tail fins | 79.55 ± 1.45 a | 14.38 ± 0.36 a | 11.52 ± 0.27 a | 0.53 ± 0.01 c | 5.54 ± 0.14 a |
Spinal bones | 74.32 ± 1.36 b | 18.25 ± 0.45 b | 13.51 ± 0.32 b | 0.75 ± 0.01 a | 6.68 ± 0.15 c |
Viscera (without roe, milt, or liver) | 74.47 ± 1.36 b | 19.96 ± 1.36 b | 14.98 ± 0.35 b | 2.58 ± 0.06 d | 2.99 ± 0.06 b |
Parameter | Value |
---|---|
Appearance before grinding | Porous plates |
Appearance after grinding | Homogenous finely dispersed powder |
Odor | Insipid |
Flavor | Insipid |
Color | Light gray |
Powder flow (g/s) | 0.87 ± 0.05 |
Angle of repose (°) | 43.5 ± 2.1 |
Solubility in water | Partial |
Enzymatic activity | None |
pH of 10% water suspension | 4.7 ± 0.2 |
Molecular weight (kDa) | 60.7 ± 49.7 |
Water content (% by weight) | 5.4 ± 1.2 |
Total protein content (% by weight) | 92.1 ± 1.6 |
Total content of collagen-derived amino acids (% by total content of amino acids) | 85.2 ± 1.1 |
Total fat content (% by weight) | 0.8 ± 0.2 |
Ash content (% by weight) | 1.9 ± 0.2 |
Amino Acid | Content (% by Weight) |
---|---|
Lysine | 4.23 ± 0.16 |
Histidine | 1.49 ± 0.04 |
Arginine | 4.58 ± 0.1 |
Aspartic acid | 5.7 ± 0.13 |
Threonine | 2.33 ± 0.05 |
Serine | 2.88 ± 0.06 |
Glutamic acid | 10.09 ± 0.16 |
Proline | 9.32 ± 0.17 |
Hydroxyproline | 7.84 ± 0.18 |
Tryptophan | 0.11 ± 0.01 |
Cysteine | 0.13 ± 0.01 |
Glycine | 28.51 ± 0.61 |
Alanine | 5.05 ± 0.11 |
Valine | 2.1 ± 0.05 |
Methionine | 0.05 ± 0.01 |
Isoleucine | 2.27 ± 0.05 |
Leucine | 3.26 ± 0.07 |
Tyrosine | 0.04 ± 0.01 |
Phenylalanine | 1.3 ± 0.03 |
Hydroxylysine | 0.79 ± 0.02 |
Parameter | Lemon Drink | Orange Drink | Grapefruit Drink |
---|---|---|---|
Osmolarity (mOsm/L) | 299.1 ± 1.1 | 297.5 ± 1.6 | 298.3 ± 1.8 |
NaCl content (g/L) | 5.7 ± 0.4 a | 6.1 ± 0.3 b | 5.8 ± 0.4 a |
Total carbohydrate content (g/L) | 46.5 ± 3.6 | 42.3 ± 3.4 | 44.1 ± 2.3 |
Total nitrogen content (g/L) | 3.9 ± 0.3 | 3.3 ± 0.2 | 3.6 ± 0.3 |
Total collagen-derived amino acids content (g/L) | 19.9 ± 1.2 | 18.0 ± 1.0 | 20.5 ± 1.4 |
Vitamin C content (mg/L) | 75.5 ± 8.9 a | 90.4 ± 10.4 b | 72.4 ± 9.3 a |
pH | 4.5 ± 0.1 | 4.8 ± 0.1 | 4.6 ± 0.0 |
Viscosity (kPa∙s) | 1.14 ± 0.23 | 1.16 ± 0.19 | 1.19 ± 0.24 |
Color | Light yellow | Yellow | Light red |
Odor | Lemon-like | Orange-like | Grapefruit-like |
Flavor | Sour-sweet | Sour-sweet | Sour-sweet |
Transparency | Homogeneously turbid | Homogeneously turbid | Homogeneously turbid |
Powder Flow Rate | Angle of Repose (°) |
---|---|
Very good | <30 |
Good | 30–35 |
Satisfactory | 35–45 |
Unsatisfactory | 45–55 |
Bad | 55–65 |
Very bad | >65 |
Component | Manufacturer | Content (% by Weight) | ||
---|---|---|---|---|
Lemon Drink | Orange Drink | Grapefruit Drink | ||
Drinking water | Svyatoy Istochnik, Kostroma, Russia | 75.14 | 78.89 | 76.07 |
Fruit juice concentrate | Authors; extracted from natural fruits | 18.78 | 15.03 | 17.85 |
Fructose | Molecularmeal, Moscow, Russia | 2.09 | 2.09 | 2.09 |
Glucose | Molecularmeal, Moscow, Russia | 1.17 | 1.17 | 1.17 |
Collagen hydrolysate | Authors | 2.35 | 2.35 | 2.35 |
Sea salt | Mareman, Tashkent, Uzbekistan | 0.47 | 0.47 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarubin, N.Y.; Kharenko, E.N.; Bredikhina, O.V.; Lavrukhina, E.V.; Rysakova, K.S.; Novikov, V.Y.; Leonov, G.E.; Vakhrushev, I.V.; Zolotarev, K.V.; Mikhailov, A.N.; et al. An Isotonic Drink Containing Pacific Cod (Gadus macrocephalus) Processing Waste Collagen Hydrolysate for Bone and Cartilage Health. Mar. Drugs 2024, 22, 202. https://doi.org/10.3390/md22050202
Zarubin NY, Kharenko EN, Bredikhina OV, Lavrukhina EV, Rysakova KS, Novikov VY, Leonov GE, Vakhrushev IV, Zolotarev KV, Mikhailov AN, et al. An Isotonic Drink Containing Pacific Cod (Gadus macrocephalus) Processing Waste Collagen Hydrolysate for Bone and Cartilage Health. Marine Drugs. 2024; 22(5):202. https://doi.org/10.3390/md22050202
Chicago/Turabian StyleZarubin, Nikita Yu., Elena N. Kharenko, Olga V. Bredikhina, Elizaveta V. Lavrukhina, Kira S. Rysakova, Vitaly Yu. Novikov, Georgy E. Leonov, Igor V. Vakhrushev, Konstantin V. Zolotarev, Anton N. Mikhailov, and et al. 2024. "An Isotonic Drink Containing Pacific Cod (Gadus macrocephalus) Processing Waste Collagen Hydrolysate for Bone and Cartilage Health" Marine Drugs 22, no. 5: 202. https://doi.org/10.3390/md22050202